NEET Chemistry syllabus 2021 – Detailed Chemistry Syllabus – eSaral

Hey, are you looking for the NEET Chemistry syllabus 2021? If yes. Then you are at the right place.

If you want to score well in NEET exam then it is very important for you to know the syllabus of the exam before starting your preparations. The purpose of this separate article on NEET Chemistry Syllabus is that to let student know about the content to be studied.

NEET Syllabus Chemistry 2021

Class 11 Units Class 12 Units
Some basic concepts of Chemistry Solid state
Structure of atom Solutions
Classification of Elements and Periodicity in Properties Electrochemistry
Chemical Bonding and Molecular structure Chemical Kinetics
States of Matter: Gases and liquids Surface Chemistry
Thermodynamics General principles and Processes of Isolation of Elements
Equilibrium P Block elements
Redox reactions D and F block elements
Hydrogen Coordination compounds
s-Block elements (Alkali and Alkaline earth metals) Haloalkanes and Haloarenes
Some p-Block elements Alcohols, Phenols, and Ethers
Organic Chemistry – Some basic principles and techniques Aldehydes, Ketones and Carboxylic Acids
Hydrocarbons Organic compounds containing Nitrogen
Environmental chemistry Biomolecules, Polymers, and Chemistry in everyday life

 


NEET Chemistry Syllabus 2021 All Units 


Contents of Class XI Syllabus


Unit I: Some Basic Concepts of Chemistry

  General Introduction: Important and scope of chemistry. Laws of chemical combination, Dalton’s atomic theory: concept of elements, atoms and molecules. Atomic and molecular masses. Mole concept and molar mass; percentage composition and empirical and molecular formula; chemical reactions, stoichiometry and calculations based on stoichiometry.  


Unit II: Structure of Atom


Atomic number, isotopes and isobars. Concept of shells and subshells, dual nature of matter and light, de Broglie’s relationship, Heisenberg uncertainty principle, concept of orbital, quantum numbers, shapes of s,p and d orbitals, rules for filling electrons in orbitals- Aufbau principle, Pauli exclusion principles and Hund’s rule, electronic configuration of atoms, stability of half filled and completely filled orbitals.  


Unit III: Classification of Elements and Periodicity in Properties


Modern periodic law and long form of periodic table, periodic trends in properties of elements- atomic radii, ionic radii, ionization enthalpy, electron gain enthalpy, electronegativity, valence.  


Unit IV: Chemical Bonding and Molecular Structure


Valence electrons, ionic bond, covalent bond, bond parameters, Lewis structure, polar character of covalent bond, valence bond theory, resonance, geometry of molecules, VSEPR theory, concept of hybridization involving s, p and d orbitals and shapes of some simple molecules, molecular orbital theory of homonuclear diatomic molecules (qualitative idea only). Hydrogen bond.  


Unit V: States of Matter: Gases and Liquids


Three states of matter, intermolecular interactions, types of bonding, melting and boiling points, role of gas laws of elucidating the concept of the molecule, Boyle’s law, Charle’s law, Gay Lussac’s law, Avogadro’s law, ideal behaviour of gases, empirical derivation of gas equation. Avogadro number, ideal gas equation. Kinetic energy and molecular speeds (elementary idea), deviation from ideal behaviour, liquefaction of gases, critical temperature. Liquid State- Vapour pressure, viscosity and surface tension (qualitative idea only, no mathematical derivations).  


Unit VI : Thermodynamics


First law of thermodynamics-internal energy and enthalpy, heat capacity and specific heat, measurement of U and H, Hess’s law of constant heat summation, enthalpy of : bond dissociation, combustion, formation, atomization, sublimation, phase transition, ionization, solution and dilution. Introduction of entropy as state function, Second law of thermodynamics, Gibbs energy change for spontaneous and non-spontaneous process, criteria for equilibrium and spontaneity. Third law of thermodynamics- Brief introduction.  


Unit VII: Equilibrium


Equilibrium in physical and chemical processes, dynamic nature of equilibrium, law of chemical equilibrium, equilibrium constant, factors affecting equilibrium-Le Chatelier’s principle; ionic equilibrium- ionization of acids and bases, strong and weak electrolytes, degree of ionization, ionization of polybasic acids, acid strength, concept of PH., Hydrolysis of salts (elementary idea), buffer solutions, Henderson equation, solubility product, common ion effect (with illustrative examples).  


Unit VIII: Redox Reactions


Concept of oxidation and oxidation and reduction, redox reactions oxidation number, balancing redox reactions in terms of loss and gain of electron and change in oxidation numbers.  


Unit IX: Hydrogen


Occurrence, isotopes, preparation, properties and uses of hydrogen; hydrides-ionic, covalent and interstitial; physical and chemical properties of water, heavy water; hydrogen peroxide-preparation, reactions, uses and structure;  


Unit X: s-Block Elements (Alkali and Alkaline earth metals)


Group I and group 2 elements: General introduction, electronic configuration, occurrence, anomalous properties of the first element of each group, diagonal relationship, trends in the variation of properties (such as ionization enthalpy, atomic and ionic radii), trends in chemical reactivity with oxygen, water, hydrogen and halogens; uses. Preparation and Properties of Some important Compounds: Sodium carbonate, sodium chloride, sodium hydroxide and sodium hydrogencarbonate, biological importance of sodium and potassium. Industrial use of lime and limestone, biological importance of Mg and Ca.  


Unit XI: Some p-Block Elements


General Introduction to p-Block Elements. Group 13 elements: General introduction, electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous properties of first element of the group; Boron, some important compounds: borax, boric acids, boron hydrides. Aluminium: uses, reactions with acids and alkalies. General 14 elements: General introduction, electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous behaviour of first element. Carbon, allotropic forms, physical and chemical properties: uses of some important compounds: oxides. Important compounds of silicon and a few uses: silicon tetrachloride, silicones, silicates and zeolites, their uses.  


Unit XII: Organic Chemistry- Some Basic Principles and Techniques


General introduction, methods of purification qualitative and quantitative analysis, classification and IUPAC nomenclature of organic compounds. Electronic displacements in a covalent bond: inductive effect, electromeric effect, resonance and hyper conjugation. Homolytic and heterolytic fission of a covalent bond: free radials, carbocations, carbanions; electrophiles and nucleophiles, types of organic reactions  


Unit XIII: Hydrocarbons


Alkanes- Nomenclature, isomerism, conformations (ethane only), physical properties, chemical reactions including free radical mechanism of halogenation, combustion and pyrolysis. Alkanes-Nomenclature, structure of double bond (ethene), geometrical isomerism, physical properties, methods of preparation: chemical reactions: addition of hydrogen, halogen, water, hydrogen halides (Markovnikov’s addition and peroxide effect), ozonolysis, oxidation, mechanism of electrophilic addition. Alkynes-Nomenclature, structure of triple bond (ethyne), physical properties, methods of preparation, chemical reactions: acidic character of alkynes, addition reaction of- hydrogen, halogens, hydrogen halides and water. Aromatic hydrocarbons- Introduction, IUPAC nomenclature; Benzene; resonance, aromaticity; chemical properties: mechanism of electrophilic substitution- Nitration sulphonation, halogenation, Friedel Craft’s alkylation and acylation; directive influence of functional group in mono-substituted benzene; carcinogenicity and toxicity.


Unit XIV: Environmental Chemistry


Environmental pollution: Air, water and soil pollution, chemical reactions in atmosphere, smogs, major atmospheric pollutants; acid rain ozone and its reactions, effects of depletion of ozone layer, greenhouse effect and global warming-pollution due to industrial wastes; green chemistry as an alternative tool for reducing pollution, strategy for control of environmental pollution.


Contents of Class XII Syllabus


Unit I: Solid State


Classification of solids based on different binding forces; molecular, ionic covalent and metallic solids, amorphous and crystalline solids (elementary idea), unit cell in two dimensional and three dimensional lattices, calculation of density of unit cell, packing in solids, packing efficiency, voids, number of atoms per unit cell in a cubic unit cell, point defects, electrical and magnetic properties, Band theory of metals, conductors, semiconductors and insulators.  


Unit II: Solutions


Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions, colligative properties- relative lowering of vapour pressure, Raoult’s law, elevation of boiling point, depression of freezing point, osmotic pressure, determination of molecular masses using colligative properties abnormal molecular mass. Van Hoff factor.  


Unit III: Electrochemistry


Redox reactions, conductance in electrolytic solutions, specific and molar conductivity variation of conductivity with concentration, kohlrausch’s Law, electrolysis and Laws of electrolysis (elementary idea), dry cell- electrolytic cells and Galvanic cells; lead accumulator, EMF of a cell, standard electrode potential, Relation between Gibbs energy change and EMF of a cell, fuel cells; corrosion.  


Unit IV: Chemical Kinetics


Rate of a reaction (average and instantaneous), factors affecting rates of reaction; concentration, temperature, catalyst; order and molecularity of a reaction; rate law and specific rate constant, integrated rate equations and half life (only for zero and first order reactions); concept of collision theory ( elementary idea, no mathematical treatment). Activation energy, Arrhenious equation.  


Unit V: Surface Chemistry


Adsorption-physisorption and chemisorption; factors affecting adsorption of gases on solids, catalysis homogeneous and heterogeneous, activity and selectivity: enzyme catalysis; colloidal state: distinction between true solutions, colloids and suspensions; lyophillic, lyophobic multimolecular and macromolecular colloids; properties of colloids; Tyndall effect, Brownian movement, electrophoresis, coagulation; emulsions- types of emulsions.  


Unit VI: General Principles and Processes of Isolation of Elements


Principles and methods of extraction- concentration, oxidation, reduction electrolytic method and refining; occurrence and principles of extraction of aluminium, copper, zinc and iron.  


Unit VII: p- Block Elements


Group 15 elements: General introduction, electronic configuration, occurrence, oxidation states, trends in physical and chemical properties; preparation and properties of ammonia and nitric acid, oxides of nitrogen (structure only); Phosphorous- allotropic forms; compounds of phosphorous: preparation and properties of phosphine, halides (PCI3 , PCI5 ) and oxoacids (elementary idea only). Group 16 elements: General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties; dioxygen: preparation, properties and uses; classification of oxides; ozone. Sulphur – allotropic forms; compounds of sulphur: preparation, preparation, properties and uses of sulphur dioxide; sulphuric acid: industrial process of manufacture, properties and uses, oxoacids of sulphur (structures only). Group 17 elements: General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties; compounds of halogens: preparation, properties and uses of chlorine and hydrochloric acid, interhalogen compounds oxoacids of halogens (structures only). Group 18 elements: General introduction, electronic configuration, occurrence, trends in physical and chemical properties, uses.  


Unit VIII: d and f Block Elements


General introduction, electronic configuration, characteristics of transition metals, general trends in properties of the first row transition metals- metallic character, ionization enthalpy, oxidation states, ionic radii, colour, catalytic property, magnetic properties, interstitial compounds, alloy formation. Preparation and properties of K2Cr2O7 and KMnO4. Lanthanoids- electronic configuration, oxidation states, chemical reactivity, and lanthanoid contraction and its consequences. Actinoids: Electronic configuration, oxidation states and comparison with lanthanoids.  


Unit IX: Coordination Compounds


Coordination compounds: Introduction, ligands, coordination number, colour, magnetic properties and shapes, IUPAC nomenclature of mononuclear coordination compounds, isomerism (structural and stereo) bonding, Werner’s theory VBT,CFT; importance of coordination compounds (in qualitative analysis, biological systems)  


Unit X: Haloalkanes and Haloarenes


Haloalkanes: Nomenclature, nature of C –X bond, physical and chemical properties, mechanism of substitution reactions. Optical rotation. Haloarenes: Nature of C-X bond, substitution reactions (directive influence of halogen for monosubstituted compounds only). Uses and environment effects of – dichloromethane, trichloromethane, tetrachloromethane, iodoform, freons, DDT.  


Unit XI: Alcohols, Phenols and Ethers


Alcohols: Nomenclature, methods of preparation, physical and chemical properties (of primary alcohols only); identification of primary, secondary and tertiary alcohols; mechanism of dehydration, uses with special reference to methanol and ethanol. Phenols: Nomenclature, methods of preparation, physical and chemical properties, acidic nature of phenol, electrophillic substitution reactions, uses of phenols. Ethers: Nomenclature, methods of preparation, physical and chemical properties uses.  


Unit XII: Aldehydes, Ketones and Carboxylic Acids


Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical and chemical properties; and mechanism of nucleophilic addition, reactivity of alpha hydrogen in aldehydes; uses. Carboxylic Acids: Nomenclature, acidic nature, methods of preparation, physical and chemical properties; uses.  

Unit XIII: Organic Compounds Containing Nitrogen


Amines: Nomenclature, classification, structure, methods of preparation, physical and chemical properties, uses, identification of primary secondary and tertiary amines. Cyanides and Isocyanides- will be mentioned at relevant places. Diazonium salts: Preparation, chemical reactions and importance in synthetic organic chemistry.  


Unit XIV: Biomolecules


Carbohydrates- Classification (aldoses and ketoses), monosaccharide (glucose and fructose), D.L. configuration, oligosaccharides (sucrose, lactose, maltose), polysaccharides (starch, cellulose, glycogen): importance. Proteins- Elementary idea of – amino acids, peptide bond, polypeptides, proteins, primary structure, secondary structure, tertiary structure and quaternary structure (qualitative idea only), denaturation of proteins; enzymes. Hormones- Elementary idea (excluding structure). Vitamins- Classification and function. Nucleic Acids: DNA and RNA  


Unit XV: Polymers


Classification- Natural and synthetic, methods of polymerization (addition and condensation), copolymerization. Some important polymers: natural and synthetic like polyesters, bakelite; rubber, Biodegradable and non-biodegradable polymers.  


Unit XVI: Chemistry in Everyday Life


Chemicals in medicines- analgesics, tranquilizers, antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids, antihistamines. Chemicals in food- preservatives, artificial sweetening agents, elementary idea of antioxidants. Cleansing agents- soaps and detergents, cleansing action.  

Also read NEET Detailed Syllabus 

So, that’s all from this post. I hope you get the idea about NEET Chemistry syllabus 2021.   If you liked this article then please share it with your friends.

For study Material Download eSaral APP.

NEET Physics syllabus 2021 – Detailed Physics Syllabus – eSaral

Hey, are you looking for the NEET Physics syllabus 2021? If yes. Then you are at the right place. If you want to score well in NEET exam then it is very important for you to know the syllabus of the exam before starting your preparations. The purpose of this separate article on NEET Physics Syllabus is that to let student know about the content to be studied.

NEET Syllabus Physics 2021

Class 11 Units Class 12 Units
Physical world and measurement Electro statistics
Kinematics Current Electricity
Laws of Motion Magnetic effects of Current and Magnetism
Work, Energy, and Power Electromagnetic induction and alternating currents
Motion of systems of particles and rigid body Electromagnetic waves
Gravitation Optics
Properties of Bulk Matter Dual Nature of Matter and Radiation
Thermodynamics Atoms and Nuclei
Behavior of Perfect Gas and Kinetic theory Electronic Devices
Oscillations and wave  

NEET Physics Syllabus 2021 All Units 

Contents Class XI Syllabus

 

Unit I: Physical World and Measurement

Physics: Scope and excitement; nature of physical laws; Physics, technology and society Need for measurement: Units of measurement; systems of units; SI units, fundamental and derived units. Length, mass and time measurements; accuracy and precision of measuring instruments; errors in measurement; significant figures. Dimensions of physical quantities, dimensional analysis and its applications.  

Unit II: Kinematics

Frame of reference, Motion in a straight line; Position-time graph, speed and velocity. Uniform and non-uniform motion, average speed and instantaneous velocity. Uniformly accelerated motion, velocity-time and position-time graphs, for uniformly accelerated motion (graphical treatment). Elementary concepts of differentiation and integration for describing motion. Scalar and vector quantities: Position and displacement vectors, general vectors, general vectors and notation, equality of vectors, multiplication of vectors by a real number; addition and subtraction of vectors. Relative velocity. Unit vectors. Resolution of a vector in a plane-rectangular components. Scalar and Vector products of Vectors. Motion in a plane. Cases of uniform velocity and uniform acceleration- projectile motion. Uniform circular motion.  

Unit III: Laws of Motion

Intuitive concept of force. Inertia, Newton’s first law of motion; momentum and Newton’s second law of motion; impulse; Newton’s third law of motion. Law of conservation of linear momentum and its applications. Equilibrium of concurrent forces. Static and Kinetic friction, laws of friction, rolling friction, lubrication. Dynamics of uniform circular motion. Centripetal force, examples of circular motion (vehicle on level circular road, vehicle on banked road).  

Unit IV: Work, Energy and Power

Work done by a constant force and variable force; kinetic energy, work-energy theorem, power. Notion of potential energy, potential energy of a spring, conservative forces; conservation of mechanical energy (kinetic and potential energies); non-conservative forces; motion in a vertical circle, elastic and inelastic collisions in one and two dimensions.  

Unit V: Motion of System of Particles and Rigid Body

Centre of mass of a two-particle system, momentum conservation and centre of mass motion. Centre of mass of a rigid body; centre of mass of uniform rod. Moment of a force,-torque, angular momentum, conservation of angular momentum with some examples. Equilibrium of rigid bodies, rigid body rotation and equation of rotational motion, comparison of linear and rotational motions; moment of inertia, radius of gyration. Values of M.I. for simple geometrical objects (no derivation). Statement of parallel and perpendicular axes theorems and their applications.  

Unit VI: Gravitation

Kepler’s laws of planetary motion. The universal law of gravitation. Acceleration due to gravity and its variation with altitude and depth. Gravitational potential energy; gravitational potential. Escape velocity, orbital velocity of a satellite. Geostationary satellites.  

Unit VII: Properties of Bulk Matter

Elastic behavior, Stress-strain relationship. Hooke’s law, Young’s modulus, bulk modulus, shear, modulus of rigidity, poisson’s ratio; elastic energy. Viscosity, Stokes’ law, terminal velocity, Reynold’s number, streamline and turbulent flow. Critical velocity, Bernoulli’s theorem and its applications. Surface energy and surface tension, angle of contact, excess of pressure, application of surface tension ideas to drops, bubbles and capillary rise. Heat, temperature, thermal expansion; thermal expansion of solids, liquids, and gases. Anomalous expansion. Specific heat capacity: Cp, Cv- calorimetry; change of state – latent heat. Heat transfer- conduction and thermal conductivity, convection and radiation. Qualitative ideas of Black Body Radiation, Wein’s displacement law, and Green House effect. Newton’s law of cooling and Stefan’s law.  

Unit VIII: Thermodynamics

Thermal equilibrium and definition of temperature (zeroth law of Thermodynamics). Heat, work and internal energy. First law of thermodynamics. Isothermal and adiabatic processes. Second law of the thermodynamics: Reversible and irreversible processes. Heat engines and refrigerators.  

Unit IX: Behaviour of Perfect Gas and Kinetic Theory

Equation of state of a perfect gas, work done on compressing a gas. Kinetic theory of gases: Assumptions, concept of pressure. Kinetic energy and temperature; degrees of freedom, law of equipartition of energy (statement only) and application to specific heat capacities of gases; concept of mean free path.  

Unit X: Oscillations and Waves

Periodic motion-period, frequency, displacement as a function of time. Periodic functions. Simple harmonic motion(SHM) and its equation; phase; oscillations of a spring-restoring force and force constant; energy in SHM –Kinetic and potential energies; simple pendulum-derivation of expression for its time period; free, forced and damped oscillations (qualitative ideas only), resonance. Wave motion. Longitudinal and transverse waves, speed of wave motion. Displacement relation for a progressive wave. Principle of superposition of waves, reflection of waves, standing waves in strings and organ pipes, fundamental mode and harmonics. Beats. Doppler effect.

Contents of Class XII Syllabus

Unit I: Electrostatics

Electric charges and their conservation. Coulomb’s law-force between two point charges, forces between multiple charges; superposition principle and continuous charge distribution. Electric field, electric field due to a point charge, electric field lines; electric dipole, electric field due to a dipole; torque on a dipole in a uniform electric field. Electric flux, statement of Gauss’s theorem and its applications to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell (field inside and outside) Electric potential, potential difference, electric potential due to a point charge, a dipole and system of charges: equipotential surfaces, electrical potential energy of a system of two point charges and of electric diploes in an electrostatic field. Conductors and insulators, free charges and bound charges inside a conductor. Dielectrics and electric polarization, capacitors and capacitance, combination of capacitors in series and in parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, energy stored in a capacitor, Van de Graaff generator.  

Unit II: Current Electricity

Electric current, flow of electric charges in a metallic conductor, drift velocity and mobility, and their relation with electric current; Ohm’s law, electrical resistance, V-I characteristics (liner and non-linear), electrical energy and power, electrical resistivity and conductivity. Carbon resistors, colour code for carbon resistors; series and parallel combinations of resistors; temperature dependence of resistance. Internal resistance of a cell, potential difference and emf of a cell, combination of cells in series and in parallel. Kirchhoff’s laws and simple applications. Wheatstone bridge, metre bridge. Potentiometer-principle and applications to measure potential difference, and for comparing emf of two cells; measurement of internal resistance of a cell.  

Unit III: Magnetic Effects of Current and Magnetism

Concept of magnetic field, Oersted’s experiment. Biot-Savart law and its application to current carrying circular loop. Ampere’s law and its applications to infinitely long straight wire, straight and toroidal solenoids. Force on a moving charge in uniform magnetic and electric fields. Cyclotron. Force on a current-carrying conductor in a uniform magnetic field. Force between two parallel current-carrying conductors-definition of ampere. Torque experienced by a current loop in a magnetic field; moving coil galvanometer-its current sensitivity and conversion to ammeter and voltmeter. Current loop as a magnetic dipole and its magnetic dipole moment. Magnetic dipole moment of a revolving electron. Magnetic field intensity due to a magnetic dipole (bar magnet) along its axis and perpendicular to its axis. Torque on a magnetic dipole (bar magnet) in a uniform magnetic field; bar magnet as an equivalent solenoid, magnetic field lines; Earth’s magnetic field and magnetic elements. Para-, dia-and ferro-magnetic substances, with examples. Electromagnetic and factors affecting their strengths. Permanent magnets.  

Unit IV: Electromagnetic Induction and Alternating Currents

Electromagnetic induction; Faraday’s law, induced emf and current; Lenz’s Law, Eddy currents. Self and mutual inductance. Alternating currents, peak and rms value of alternating current/ voltage; reactance and impedance; LC oscillations (qualitative treatment only), LCR series circuit, resonance; power in AC circuits, wattles current. AC generator and transformer.  

Unit V: Electromagnetic Waves

Need for displacement current. Electromagnetic waves and their characteristics (qualitative ideas only). Transverse nature of electromagnetic waves. Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, x-rays, gamma rays) including elementary facts about their uses.  

Unit VI: Optics

Reflection of light, spherical mirrors, mirror formula. Refraction of light, total internal reflection and its applications optical fibres, refraction at spherical surfaces, lenses, thin lens formula, lens-maker’s formula. Magnification, power of a lens, combination of thin lenses in contact combination of a lens and a mirror. Refraction and dispersion of light through a prism. Scattering of light- blue colour of the sky and reddish appearance of the sun at sunrise and sunset. Optical instruments: Human eye, image formation and accommodation, correction of eye defects (myopia and hypermetropia) using lenses. Microscopes and astronomical telescopes (reflecting and refracting) and their magnifying powers. Wave optics: Wavefront and Huygens’ principle, reflection and refraction of plane wave at a plane surface using wavefronts. Proof of laws of reflection and refraction using Huygens’ principle. Interference, Young’s double hole experiment and expression for fringe width, coherent sources and sustained interference of light. Diffraction due to a single slit, width of central maximum. Resolving power of microscopes and astronomical telescopes. Polarisation, plane polarized light; Brewster’s law, uses of plane polarized light and Polaroids.  

Unit VII: Dual Nature of Matter and Radiation

Photoelectric effect, Hertz and Lenard’s observations; Einstein’s photoelectric equation- particle nature of light. Matter waves- wave nature of particles, de Broglie relation. Davisson-Germer experiment (experimental details should be omitted; only conclusion should be explained).  

Unit VIII: Atoms and Nuclei

Alpha- particle scattering experiments; Rutherford’s model of atom; Bohr model, energy levels, hydrogen spectrum. Composition and size of nucleus, atomic masses, isotopes, isobars; isotones. Radioactivity- alpha, beta and gamma particles/ rays and their properties decay law. Mass-energy relation, mass defect; binding energy per nucleon and its variation with mass number, nuclear fission and fusion.  

Unit IX: Electronic Devices

Energy bands in solids (qualitative ideas only), conductors, insulators and semiconductors; semiconductor diode- I-V characteristics in forward and reverse bias, diode as a rectifier; I-V characteristics of LED, photodiode, solar cell, and Zener diode; Zener diode as a voltage regulator. Junction transistor, transistor action, characteristics of a transistor; transistor as an amplifier (common emitter configuration) and oscillator. Logic gates (OR, AND, NOT, NAND and NOR). Transistor as a switch.  



Also read NEET Detailed Syllabus 

So, that’s all from this post. I hope you get the idea about NEET Physics syllabus 2021.



If you liked this article then please share it with your friends. For study Material Download eSaral APP.

Best books for NEET – Best biology books for NEET – eSaral

If you are preparing for the Exams like NEET then Good books should be the essential part of your Study Material. By using a good book you can understand different concepts easily. in this article we have listed the best books for NEET Exam preparations.

NEET Exam is conducted by NTA (National Testing Agency) It is a highly competitive Entrance Exam That’s why it is very important for students who want to make a career in Medical to put lots of hard work and dedication into Studies. The NEET exam syllabus consists of three Major subjects which are Physics, Chemistry, and Biology.

The major part of the NEET Syllabus is similar to the NCERT Class 11 and 12 Syllabus. You can also use your NCERT books to prepare for the NEET Exam But NCERT books don’t cover all the topics that are important for NEET that’s why you need a good book that covers all topics so that you can prepare for your Exam.

There are lots of different books available in the market that you can use for your NEET Exam Preparations but if you are looking for the best books that you can use to build a good understanding of concepts then you are at the right place.

In this article, we have listed the best books for NEET Exam preparations that are recommended by Kota’s Top IITian and Doctor faculties.

Best book for NEET Biology

In the NEET exam, 90 Questions come from Biology subject that provides 360 Marks That’s why it is very important for every student to put extra effort to understand the core concepts of subject.

Best Books for Biology NEET

S.no Book Author
1 Biology SC Verma
2 Objective Biology Dinesh
3 Biology Publications GR Bathla
4 Biology Vol 1 and Vol 2 Trueman
5 NCERT (Textbook) Biology Class 11 & 12 NCERT

Best book for NEET Physics

In the NEET exam, 45 Questions come from the Physics subject that provides 180 Marks If you want to become better at Physics then you can refer books mention below.

Best Books for Physics NEET

S.no Book Author
1 Concepts of Physics H. C. Verma
2 Objective Physics DC Pandey
3 Objective Physics Pramod Agarwal 
4 Problems in General Physics I. E. Irodov
5 Fundamentals of Physics Halliday, Resnick, and Walker
6 NCERT (Textbook) Physics Class 11 & 12 NCERT

Best book for NEET Chemistry

In the NEET exam, 45 Questions come from the Chemistry subject that provides 180 Marks If you want to understand different complex chemical reactions and equations then you can use the books mentioned below.

Best Books for Chemistry NEET

S.no Book Author
1 Physical Chemistry OP Tandon
2 Concise Inorganic Chemistry  JD Lee
3 Physical Chemistry P. Bahadur
4 Physical Chemistry OP Tandon
5 NCERT (Textbook) Chemistry Class 11 & 12 NCERT

 

If you want to boost your NEET exam preparations then you should also use previous year’s question papers. by solving the previous year’s question papers you will get an idea about the Exam patterns, Important topics, and many other factors that are important from the exam perspective.

Also Read,

CBSE Class 12 Physics syllabus

If you have any Confusion related to the Best Books for NEET then feel free to ask in the comments section down below. If you liked this list then please share it with other students.

To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.

 

Frame of reference in physics – Inertial and Non-inertial – eSaral
A non-accelerating frame of reference is called an inertial frame of reference. If you want to learn more about the frame of reference in physics. Then keep reading.

Inertial and accelerated frames of reference

(a) Inertial frames of reference:

A non-accelerating frame of reference is called an inertial frame of reference. A frame of reference moving with a constant velocity is an inertial frame of reference.
  1. All the fundamental laws of physics have been formulated in respect of the inertial frame of reference.
  2. All the fundamental laws of physics can be expressed as having the same mathematical form in all the inertial frames of reference.
  3. The mechanical and optical experiments performed in an inertial frame in any direction will always yield the same results. It is called the isotropic property of the inertial frame of reference.

Examples of inertial frames of reference:

  1. A frame of reference remaining fixed w.r.t. distance stars is an inertial frame of reference.
  2. A spaceship moving in outer space without spinning and with its engine cut-off is also an inertial frame of reference.
  3. For practical purposes, a frame of reference fixed to the earth can be considered as an inertial frame. Strictly speaking, such a frame of reference is not an inertial frame of reference, because the motion of the earth around the sun is accelerated motion due to its orbital and rotational motion. However, due to negligibly small effects of rotation and orbital motion, the motion of earth may be assumed to be uniform and hence a frame of reference fixed to it may be regarded as an inertial frame of reference.

(b) Non-inertial frame of reference:

An accelerating frame of reference is called a non-inertial frame of reference.

Newton’s laws of motion are not directly applicable in such frames, before application

Note:

A rotating frame of reference is a non-inertial frame of reference because it is also an accelerating one due to its centripetal acceleration.

Pseudo force

The force on a body due to the acceleration of non-inertial frame is called fictitious or apparent or pseudo

force and is given by $\overrightarrow{\mathrm{F}}=-\mathrm{m} \overrightarrow{\mathrm{a}_{0}}$, where $\vec{a}_{0}$ is acceleration of non-inertial frame with respect to an inertial frame and m is mass of the particle or body.

The direction of pseudo force must be opposite to the direction of acceleration of the non-inertial frame.

When we draw the free body diagram of a mass, with respect to an inertial frame of reference we apply only the real forces (forces that are actually acting on the mass).

But when the free body diagram is drawn from a non-inertial frame of reference a pseudo force

(in addition to all real forces) has to be applied to make the equation $\overrightarrow{\mathrm{F}}=\mathrm{m} \overrightarrow{\mathrm{a}}$ to be valid in this frame also.

So, that’s all from this article. I hope you get the idea about the frame of reference in physics. If you have any confusion related to this article then feel free to ask in the comments section down below.

Also, read
Motion of bodies connected by strings

To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.
Applications of impulse – Impulse, Physics – eSaral
Hey do you want to learn about the applications of impulse? If so, Then you are at the right place

Impulse

It is not convenient to measure the varying force of impact. Suppose that $\overrightarrow{\mathrm{F}}$ av is the average force acting during impact and $t$ is the small-time for which the impact lasts.

In such situations, it is found that the quantity Fav. It is very easy to measure.

The quantity $\overrightarrow{\mathrm{F}}_{\text {av }} . \mathrm{t}$ is called impulse.

If a variable force acts on a body or particle for a interval of time $t_{1} \rightarrow t_{2}$

Impules is

$\overrightarrow{\mathrm{I}}=\int_{t_{1}}^{t_{2}} \overrightarrow{\mathrm{F}} \mathrm{dt}=\overrightarrow{\mathrm{p}_{2}}-\overrightarrow{\mathrm{p}_{1}}$

Impules momentum theorem

The integral $\int_{0}^{t} \overrightarrow{\mathrm{F}} \mathrm{dt}$ is measure of the impulse, when the force of impact acts on the body and from equation, we find that it is equal to total change in momentum of the body.

Dimensional formula $\&$ unit. The dimensional formula of impulse is the same as that of momentum i.e. [ML $T^{-1}$ ]. In SI, the unit of impulse is N-s or kg ms $^{-1}$ and in cgs system it is dyne-s or $\mathrm{g} \mathrm{cm} \mathrm{s}^{-1}$

Applications of Concept of Impulse :

(a) Bogies of a train are provided with buffers: The buffers increase the time interval of jerks during shunting and hence reduce the force with which the bogies pull each other. $(\because \mathrm{F} \Delta \mathrm{t}=\mathrm{constant})$

(b) A cricket player draws his hands back while catching a ball: The drawing back of hands increases time interval and hence reduces force with which the ball hits the hand.

(c) A person jumping on a hard cement floor receives more injuries than a person jumping on a muddy or sandy road: Because on the hard cemented floor the feet of the man immediately comes to rest and the time is small, therefore, the force experienced by the man is large while on the sandy soil the feet embedes into the soil, thus the time taken for same change in momentum is comparatively increased. Thus the force is decreased.

(d) Cars, buses, trucks, bogies of the train, etc are provided with a spring system to avoid severe jerks. Due to the spring system, the time interval of the jerks increases. As the rate of change of momentum will be smaller, comparatively lesser force acts on the passengers during the jerks.

(e) China wares are wrapped in straw or paper before packing. China wares are wrapped in straw or paper so that when they receive jerks during transportation, the time of impact may be more. As such, only a small force can act on the china wares during jerks and there is no fear of damage to them.

(f) If a graph is plotted between $\overrightarrow{\mathrm{F}}$ and $\mathrm{t}$ with $\overrightarrow{\mathrm{F}}$ as ordinate (Y-axis)

and $t$ as $(X$ -axis)

Impulse = Area enclosed by F-t curve and time axis for specified duration.

For example impulse between time $t_{1}$ and $t_{2}=$ area abdc.

applications of impulse

So, that’s all from this article. I hope you get the idea about the applications of impulse. If you found this article helpful then please share it with your friends. If you have any confusion related to this topic then feel free to ask in the comments section down below.

Also, read
Newton’s Laws of Motion

To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.

Ex. A hammer weighing $2.5 \mathrm{kg}$ moving with a speed of $1 \mathrm{m} / \mathrm{s}$ strikes the head of a nail driving it $10 \mathrm{cm}$ into the wall. What is the acceleration during impact and the impulse imparted to wall.

Sol. The initial velocity of nail is same as that of hammer i.e. $\mathrm{u}=1 \mathrm{m} / \mathrm{s}, \mathrm{v}=0, \mathrm{s}=10 \mathrm{cm}=0.10 \mathrm{m}$

$$\begin{array}{l}\therefore \quad v^{2}=u^{2}+2 a s \text { gives } \\0=1^{2}+2 a \times 0.1\end{array}$$

This gives $a=-\frac{1}{0.2}=-5 \mathrm{m} / \mathrm{s}^{2}$

i.e. Retardation $\mathrm{a}=5 \mathrm{m} / \mathrm{s}^{2}$

Impulse imparted to wall = – change in momentum of hammer

$$=-\{\mathrm{M}(\mathrm{v}-\mathrm{u})\}=-\{0.5(0-1)\}=+2.5 \mathrm{N}-\mathrm{s}$$

Ex. Magnitude of the force in newton acting on a body varies with time $t$ (in mili-second) as shown in fig. below. Calculate magnitude of total impulse of the force.

Sol. The impulse

$$\begin{aligned} \mathrm{I}=\int \mathrm{F} \mathrm{dt} &=\frac{1}{2}(0.014 \mathrm{s}-0.003 \mathrm{s})(10 \mathrm{N}) \\ &=0.055 \mathrm{N} \cdot \mathrm{s}=0.055 \mathrm{kg} \cdot \mathrm{m} / \mathrm{s} \end{aligned}$$

Area of the graph gives the magnitude of the Impulse.

Ex. $\quad$ A force exert an impulse I on a body changing its speed from u to v. The force and object’s motion are along the same line. Show that the work done by the force is $\frac{\mathrm{I}(\mathrm{u}+\mathrm{v})}{2}$.



Sol. According to work-energy theorem we have

$$W=\Delta K=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2} \quad \text { or } \quad W=\frac{1}{2} m(v-u)(v+u)$$

But according to impulse-momentum theorem

$$\mathrm{I}=\mathrm{m}(\mathrm{v}-\mathrm{u})$$

So, eliminating $\mathrm{m}$ between $\mathrm{eq}^{\mathrm{n}} .(1)$ and (2)

$$W=\frac{1}{2} \frac{I}{(v-u)}(v-u)(v+u)=\frac{I(v+u)}{2} \quad \text { This is the required result. }$$

Ex. A cricket ball of mass $150 \mathrm{g}$ is moving with a velocity of $12 \mathrm{m} / \mathrm{s}$ and is hit by a bat so that the ball is turned back with a velocity of $20 \mathrm{m} / \mathrm{s}$. If the duration of contact between the ball and bat is $0.01 \mathrm{s},$ find ther impulse and the average force exerted on the ball by the bat.

Sol. According to given problem change in momentum of the ball

$$\Delta p=p_{f}-p_{i}=m(v-u)=150 \times 10^{-3}[20-(-12)]$$

So by impulse-momentum theorem $I=\Delta p=4.8 \mathrm{N}-\mathrm{s}$

And by time averaged definition of force in case of impulse $\mathrm{F}_{\mathrm{av}}=\frac{\mathrm{I}}{\Delta \mathrm{t}}=\frac{\Delta \mathrm{p}}{\Delta \mathrm{t}}=\frac{4.80}{0.01}=480 \mathrm{N}$
Horizontal Projectile motion – Motion in Plane – eSaral
Hey, do you want to learn about Horizontal projectile motion? If yes. Then you are at the right place.

Horizontal Projectile motion

Suppose a body is thrown horizontally from point O, with velocity u. Height of O from ground = H. Let X-axis be along horizontal and Y-axis be vertically downwards and origin O is at point of projection as shown in fig. Let the particle be at P at a time t. The co-ordinates of P are (x, y) Distance travelled along X-axis at time t with uniform velocity i.e. Velocity of projection and without acceleration.

Horizontal Projectile motion

The horizontal component of velocity $\mathrm{V}_{\mathrm{x}}$ = u

and horizontal displacement x = u . t….(1)

to calculate y, consider vertical motion of the projectile

initial velocity in vertical direction $\mathrm{u}_{\mathrm{y}}$ = 0.

acceleration along y direction $a_{y}$ = g (acc. due to gravity)

so

$v_{v}=a_{y} t$

(y comp. of velocity at time t)

Or

$v_{y}=g t$….(2)

(as body were dropped from a height)

Resultant velocity at time t is

$\overrightarrow{\mathrm{v}}=\mathrm{u} \hat{\mathrm{i}}+(\mathrm{gt}) \hat{\mathrm{j}}$

$v=\sqrt{u^{2}+(g t)^{2}}$

if $\beta$ is the angle of velocity with X-axis (horizontal) $\tan \beta=\frac{\mathrm{gt}}{\mathrm{u}}$

and

$y=\frac{1}{2} g t^{2}$……(3)

Or

$y=\frac{1}{2} g\left(\frac{x}{u}\right)^{2}$

[from equation (i) $\left.\mathrm{t}=\frac{\mathrm{x}}{\mathrm{u}}\right]$

Or

$y=\frac{g}{2 u^{2}} \cdot x^{2}$

Or

$y=k x^{2}$

here $\mathrm{k}=\frac{\mathrm{g}}{2 \mathrm{u}^{2}} \quad(\mathrm{k}$ is constant)

This is eqn. of a parabola.

A body thrown horizontally from a certain height above the ground follows a parabolic trajectory till it hits the ground.
  1. Time of flight$\mathrm{T}=\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}$ [as $\left.\mathrm{y}=\frac{1}{2} \mathrm{gt}^{2}, \mathrm{~T}=\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}\right]$

  2. Range horizontal distance covered = R.R = u × time of flight$\mathrm{R}=\mathrm{u} \cdot \sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}$

    $\left[\because \mathrm{H}=\frac{\mathrm{g}}{2 \mathrm{u}^{2}} \mathrm{R}^{2}\right]$

  3. Velocity when it hits the ground$\mathrm{v}_{\mathrm{g}}=\sqrt{\mathrm{u}^{2}+2 \mathrm{gH}}$


So, that’s all from this blog, I hope you get the idea about the Horizontal projectile motion. If you found this article helpful then please share it with your friends.

Also, read
Oblique Projectile motion

To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.
Oblique Projectile motion – Motion in Plane – eSaral
Hey, do you want to learn about the Oblique Projectile motion? If yes. Then keep reading.

Oblique Projectile motion

Consider the motion of a bullet which is fired from a gun so that its initial velocity $\overrightarrow{\mathrm{u}}$ makes an angle $\theta$ with the horizontal direction. Let us take $X$ -axis along ground and Y-axis along vertical.

$\overrightarrow{\mathrm{u}}$ can be resolved as

$\mathrm{u}_{\mathrm{x}}=\mathrm{u} \cos \theta \quad$ (along horizontal)

$\& u_{y}=u \sin \theta$ (along vertical)

motion of bullet can be resolved into horizontal and vertical motion.

(i) In horizontal direction there is no acc. so it moves with constant velocity $v_{x}=u_{x}=u \cos \theta$

So distance traversed in time $t$ is $x=u_{x} t$ or  $t=\frac{x}{u \cos \theta}$




The motion in the vertical direction is the same as that of a ball thrown upward with an initial velocity $\mathrm{u}_{y}=\mathrm{u} \sin \theta$ and $\mathrm{acc}=-\mathrm{g}$ (downward).

So at time $t$ vertical component of velocity $v_{y}=u_{y}-g t=u \sin \theta-g t$

Displacement along y direction

$y=(u \sin \theta) t-\frac{1}{2} g t^{2}$

Substituting the value of $t$ from eqn. (i) in eqn. (iii)

we get

$\quad y=(u \sin \theta)\left(\frac{x}{u \cos \theta}\right)-\frac{1}{2} g\left(\frac{x}{u \cos \theta}\right)^{2}$

or $\left.y=x \tan \theta-\frac{g}{2 u^{2} \cos ^{2} \theta} \cdot x^{2}\right]$ This is eqn. of parabola.

The trajectory of projectile is parabolic

The projectile will rise to maximum height $\mathrm{H}$ (where $\mathrm{v}_{x}=\mathrm{u} \cos \theta, \mathrm{v}_{y}=0$ ) and then move down again to reach the ground at a distance $\mathrm{R}$ from origin.

Setting $x=R$ and $y=0$ (since projectile reaches ground again)

$\mathrm{O}=\mathrm{R} \tan \theta-\frac{\mathrm{g}}{2 \mathrm{u}^{2} \cos ^{2} \theta} \cdot \mathrm{R}^{2}$

We get $R=\frac{2 u^{2} \cos ^{2} \theta}{g} \times \frac{\sin \theta}{\cos \theta}$

or $\mathrm{R}=\frac{2 \mathrm{u}^{2}}{\mathrm{~g}} \cdot \sin \theta \cos \theta$

or Range $R=\frac{u^{2} \sin 2 \theta}{g}$

If time for upward journey is t

at highest point $\quad v_{y}=0$ so $0=(u \sin \theta)-g t$

$\left(v_{y}=u_{y}-g t\right)$



or $\mathrm{t}=\frac{\mathrm{u} \sin \theta}{\mathrm{g}}$

$\mathrm{T}=2 \mathrm{t} \quad$ (it will take same time for downward journey)

$\therefore$

$T=\frac{2 u \sin \theta}{g}$ Time of flight

At the highest point $y=H$ and $v_{y}=0$ Maximum Height and Time of

Flight Depends on Vertical

Component of Initial Velocity So that $H=\frac{u_{y}^{2}}{2 g} \quad\left[v_{y}^{2}=u_{y}^{2}-2 g y\right]$

or $\mathrm{H}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}$ Maximum Height

we can also determine $R$ as follows

so $x=u_{x} t$

$R=u_{x} \cdot T$

$=(u \cos \theta)\left(\frac{2 u \sin \theta}{g}\right)$

or $\mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{g}}$

velocity at time t $\vec{v}_{t}=v_{x t} \hat{i}+v_{y t} \hat{j}$

$=(u \cos \theta) \hat{i}+(u \sin \theta-g t) \hat{j}$

$v=\sqrt{u^{2} \cos ^{2} \theta+(u \sin \theta-g t)^{2}}$

Note :

(i) Alternative $e q^{n}$, of trajectory $y=x \tan \theta\left(1-\frac{x}{R}\right)$ where $R=\frac{2 u^{2} \sin \theta \cos \theta}{g}$

(ii) Vertical component of velocity $v_{y}=0,$ when particle is at the highest point of trajectory.

(iii) Linear momentum at highest point = mu cos $\theta$ is in horizontal direction.

(iv) Vertical component of velocity is +ive when particle is moving up.

(v) Vertical component of velocity is -ive when particle is moving down.

(vi) Resultant velocity of particle at time $t \vee=\sqrt{v_{x}^{2}+v_{y}^{2}}$ at an angle $\phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right) .$

(vii) Displacement from origin, $s=\sqrt{x^{2}+y^{2}}$

Special Points :

(1) The three basic equation of motion, i.e.

$v=u+a t$

$\mathrm{s}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2} \quad \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$

For projectile motion give:

$T=\frac{2 u \sin \theta}{g} \quad R=\frac{u^{2} \sin 2 \theta}{g}$

$H=\frac{u^{2} \sin ^{2} \theta}{2 g}$

(2) In case of projectile motion,

The horizontal component of velocity (u $\cos \theta$ ), acceleration (g), and mechanical energy remain constant.

Speed, velocity, vertical component of velocity (u $\sin \theta)$, momentum, kinetic energy and potential energy all change. Velocity and K.E. are maximum at the point of projection, while minimum (but not zero) at the highest point.

(3) If angle of projection is changed from

then range



$\theta-\theta=(90-\theta)$

$R=\frac{u^{2} \sin 2 \theta^{\prime}}{g}=\frac{u^{2} \sin 2(90-\theta)}{g}=\frac{u^{2} \sin 2 \theta}{g}=R$




So a projectile has same range for angles of projection $\theta$ and $(90-\theta)$

But has different time of flight (T), maximum height (H) \& trajectories

Range is also same for $\theta_{1}=45^{\circ}-\alpha$ and $\quad \theta_{2}=45^{\circ}+\alpha .\left[\right.$ equal $\left.\frac{u^{2} \cos 2 \alpha}{g}\right]$

(4) For maximum Range $\quad R=R_{\max } \Rightarrow 2 \theta=90^{\circ}$

$\text { for } \quad \theta=45^{\circ}$

$R_{\max }=\frac{u^{2}}{g} \quad\left[\right.$ For $\sin 2 \theta=1=\sin 90^{\circ}$ or $\left.\theta=45^{\circ}\right]$

When range is maximum $\Rightarrow$ Then maximum height reached

$\mathrm{H}=\frac{\mathrm{u}^{2} \sin ^{2} 45}{2 \mathrm{~g}}\left(\mathrm{When} \mathrm{R}_{\max }\right)$

or

$\mathrm{H}=\frac{\mathrm{u}^{2}}{4 \mathrm{~g}}$

hence maximum height reached (for $\left.R_{\max }\right) \quad H=\frac{R_{\max }}{4}$




(5) For height H to be maximum

$\mathrm{H}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}=\max \quad \text { i.e. } \sin ^{2} \theta=1(\max ) \text { or for } \theta=90^{\circ}$

So that $\mathrm{H}_{\max }=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}} \quad$ When projected vertically (i.e. at $\left.\theta=90^{\circ}\right)$

in this case Range $R=\frac{u^{2} \sin \left(2 \times 90^{\circ}\right)}{9}=\frac{u^{2} \sin 180^{\circ}}{9}=0$

$\mathrm{H}_{\max }=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}}$ (For vertical projection) and $\mathrm{R}_{\max }=\frac{\mathrm{u}^{2}}{\mathrm{~g}}$ (For oblique projection with same velocity)

so $\mathrm{H}_{\max }=\frac{R_{\max }}{2}$

If a person can throw a projectile to a maximum distance (with $\theta=45^{\circ}$ ) $R_{\max }=\frac{\mathbf{u}^{2}}{\mathrm{~g}}$.
.
The maximum height to which he can throw the projectile (with $\theta=90^{\circ}$ ) $\mathrm{H}_{\max }=\frac{R_{\text {max }}}{2}$

(6) At highest point

Potential energy will be max and equal to $(\mathrm{PE})_{4}=\mathrm{mgH}=\mathrm{mg} \cdot \frac{\mathrm{U}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}$ or $(\mathrm{PE})_{\mathrm{H}}=\frac{1}{2} \mathrm{mu}^{2} \sin ^{2} \theta$

While K.E. will be minimum (but not zero) and at the highest point as the vertical component of velocity is zero.

$(\mathrm{KE})_{\mathrm{H}}=\frac{1}{2} \mathrm{mv}_{\mathrm{H}}^{2}=\frac{1}{2} \mathrm{~m}(\mathrm{u} \cos \theta)^{2}$

$=\frac{1}{2} \mathrm{mu}^{2} \cos ^{2} \theta$

so $(\mathrm{PE})_{\mathrm{H}}+(\mathrm{KE})_{\mathrm{H}}$

$=\frac{1}{2} m u^{2} \sin ^{2} \theta+\frac{1}{2} m u^{2} \cos ^{2} \theta$

= $\frac{1}{2} \mathrm{mu}^{2}=$ Total M.E.

So in projectile motion mechanical energy is conserved.

$\left(\frac{P E}{K E}\right)_{H}=\frac{\frac{1}{2} m u^{2} \sin ^{2} \theta}{\frac{1}{2} m u^{2} \cos ^{2} \theta}=\tan ^{2} \theta$



(7) In case of projectile motion if range $R$ is $n$ times the maximum height $H,$ l.e. $R=n H$

then $\frac{u^{2} \sin 2 \theta}{g}=n \cdot \frac{u^{2} \sin ^{2} \theta}{2 g}$

or $2 \cos \theta=\frac{n \sin \theta}{2}$

or $\tan \theta=\frac{4}{n} \quad \Rightarrow \quad \theta=\tan ^{-1}\left(\frac{4}{n}\right)$

(8) Weight of a body in projectile motion is zero as it is a freely falling body.

So, that’s all from this article. I hope you get the idea about the Oblique projectile motion. If you liked this explanation then please share it with your friends.

Also read
Motion in Two Dimension

To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.
Motion in two dimensions – Motion in Plane – eSaral
An object moving in a plane is said to have two-dimensional motion. If you want to learn more about Motion in two dimensions. Then read this article till the end. 

Motion in Two Dimensions

An object moving in a plane is said to have two-dimensional motion. The two-dimensional motion is equal to the vector sum of two one-dimensional motions along a mutually perpendicular direction.
Motion in two dimensions

Let the position of point P at a time t be given by position

vector $\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{r}}$

$\vec{r}=\hat{i} r \cos \theta+\hat{j} r \sin \theta$

$=\hat{i} x+\hat{j} y$

Displacement

Let the position of point P at time $\mathrm{t}_{1}$ be described by position vector $\vec{r}_{1}=x_{1} \hat{i}+y_{1} \hat{j}$ and at time $\mathrm{t}_{2}$

position Q is given by position vector $\vec{r}_{2}=x_{2} \hat{i}+y_{2} \hat{j}$
Motion in two dimensions

from $\Delta \mathrm{OPQ} \Rightarrow \overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{OQ}}$

or $\quad \overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{OQ}}-\overrightarrow{\mathrm{OP}}$

Displacement $\overrightarrow{P Q}=\delta \vec{r}=\vec{r}_{2}-\vec{r}_{1}$

in time interval $\delta \mathrm{t}=\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)$

or

$\vec{\delta}_{r}=\left(x_{2} \hat{i}+y_{2} \hat{j}\right)-\left(x_{1} \hat{i}+y_{1} \hat{j}\right)$

$=\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j}$

$=\delta \mathrm{x} \hat{\mathrm{i}}+8 \mathrm{y} \hat{\mathrm{j}}$

displacement along X-axis $\delta x=x_{2}-x_{1}$

displacement along Y-axis $\delta y=y_{2}-y_{1}$

Thus, displacement in 2 dimensions is equal to the vector sum of two one dimensional displacements along mutually perpendicular directions.

Let particle move with uniform velocity at $\overrightarrow{\mathrm{V}}$ an angle $\theta$ with X-axis.

Then in component form $\overrightarrow{\mathrm{v}}=\mathrm{v}_{\mathrm{x}} \hat{\mathrm{i}}+\mathrm{v}_{\mathrm{y}} \hat{\mathrm{j}}$

here $v_{x}=v \cos \theta$

and $\quad v_{y}=v \sin \theta$

and $\quad \delta \mathrm{x}=\mathrm{v}_{\mathrm{x}} \delta \mathrm{t}$

$\delta \mathrm{y}=\mathrm{v}_{\mathrm{y}} \delta \mathrm{t}$

or $\delta x=(v \cos \theta) \delta t$

$\delta y=(v \sin \theta) \delta t$

so with $\mathrm{V}_{\mathrm{x}}$ we get displacement along X-axis only and $\mathrm{v}_{\mathrm{y}}$ gives displacement along Y-axis only.

And if particle is moving with uniform acceleration $\overrightarrow{\mathrm{a}}$, then

$\overrightarrow{\mathrm{a}}=\mathrm{a}_{\mathrm{x}} \hat{\mathrm{i}}+\mathrm{a}_{\mathrm{y}} \hat{\mathrm{j}}$

If direction of $\vec{a}$ makes angle $\phi$ with X-axis then $a_{x}=a \cos \phi$ and $\mathrm{a}_{\mathrm{y}}=\mathrm{a} \sin \phi$

are components of $\overrightarrow{\mathrm{a}}$.

Due to $\mathrm{a}_{\mathrm{x}}$, there is a change in the X component of velocity only with no change in Y-component.

Similarly, $\mathrm{a}_{\mathrm{y}}$ will change only the Y component of velocity at time t

So $v_{x}=u_{x}+a_{x} t$

(here $\mathrm{u}_{\mathrm{x}}$ and $\mathrm{u}_{\mathrm{y}}$ are components of initial velocity)

And

$v_{y}=u_{y}+a_{y} t$

Hence

$v_{x} \hat{i}+v_{y} \hat{j}=\left(u_{x}+a_{x} t\right) \hat{i}+\left(u_{y}+a_{y} t\right) \hat{j}$

$=\left(u_{x} \hat{i}+u_{y} \hat{j}\right)+\left(a_{x} \hat{i}+a_{y} \hat{j}\right) t$

Or

$\overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{a}} \mathrm{t}$

and similarly, component of displacement are

$s_{x}=u_{x} t+\frac{1}{2} a_{x} t^{2}$

And

$s_{y}=u_{y} t+\frac{1}{2} a_{y} t^{2}$

Hence

$s_{x} \hat{i}+s_{y} \hat{j}=\left(u_{x} \hat{i}+u_{y} \hat{j}\right)+\frac{1}{2}\left(a_{x} \hat{i}+a_{y} \hat{j}\right) t^{2}$

Or

$\vec{s}=\vec{u} t+\frac{1}{2} \vec{a} t^{2}$

So, that’s all from this blog. I hope you get the idea about motion in two dimensions. If you liked this explanation then don’t forget to share this article with your friends. 

Also read
Newtons Laws of Motion 

To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.
State the law of radioactive decay – Radioactivity, Physics – eSaral
Hey, students do you want to know how to state the law of radioactive decay? If yes. Then read this article till the end.

Radioactive decay law

The rate of decay (number of disintegrations per second) is proportional to number of radioactive atoms (N) present at that time t

rate of decay $\frac{-\mathrm{d} \mathrm{N}}{\mathrm{dt}} \propto \mathrm{N}$

or $\frac{\mathrm{d} \mathrm{N}}{\mathrm{dt}}=-\lambda \mathrm{N}$

or $\quad N=N_{0} e^{-\lambda t}$…..(1)

where $\lambda$ is disintegration constant, $\mathrm{N}_{0}$ = number of active atoms at t = 0
  1. Equation one is the radioactive decay law. It shows that the number of active nuclei decreases exponentially with time.State the law of radioactive decay
  2. The fraction of active atoms remaining at time t is$\frac{\mathrm{N}}{\mathrm{N}_{0}}=\mathrm{e}^{-\lambda \mathrm{t}}$
  3. The number of atoms that have decayed in time t is$N_{0}-N$

    $=N_{0}\left(1-e^{-\lambda t}\right)$
  4. The fraction of atoms that have decayed in time t is$\frac{N_{0}-N}{N_{0}}$

    $=1-e^{-\lambda t}$
    State the law of radioactive decay

Decay constant

  1. Decay constant$\lambda=\frac{-\mathrm{d} \mathrm{N} / \mathrm{dt}}{\mathrm{N}}$

    $=\frac{\text { rate of decay }}{\text { number of active atoms }}$


  2. at $t=\frac{1}{\lambda}$$\mathrm{N}=\frac{\mathrm{N}_{0}}{\mathrm{e}}$

    The decay constant of a radioactive element is equal to the reciprocal of the time after which the number of remaining active atoms reduces to $\frac{1}{\mathrm{e}}$ times of original value.


  3. at $t=\frac{1}{\lambda}$fraction of active nuclei left

    $\frac{\mathrm{N}}{\mathrm{N}_{0}}=\frac{1}{\mathrm{e}}=0.37$

    or $37 \%$

    fraction of decayed nuclei

    $1-\frac{N}{N_{0}}$

    $=0.63=63 \%$
  4. $\lambda=\frac{\mathrm{dN} / \mathrm{N}}{\mathrm{dt}}$ The decay constant is the probability of decay per active atom per unit time.


  5. The decay constant depends on the nature of the radioactive substance and is independent of temperature, pressure, force, etc.


  6. The decay constant for a stable substance is zero


  7. Unit of decay constant is second $^{-1}$ and dimension is $\mathrm{T}^{-1}$


  8. If there are more than one radioactive elements in a group then the resultant decay constant is equal to sum of individual decay constants

    $\lambda=\lambda_{1}+\lambda_{2}+\lambda_{3}+$……..

    or

    $\frac{1}{\mathrm{~T}}=\frac{1}{\mathrm{~T}_{1}}+\frac{1}{\mathrm{~T}_{2}}+\ldots$

Half life

The time in which the number of radioactive atoms reduce to half of its initial value is known as half-life i.e. at

$\mathrm{t}=\mathrm{T}$

$N=\frac{N_{0}}{2}$

from radioactive decay law

$\frac{N_{0}}{2}=N_{0} e^{-\lambda T}$

or

$\mathrm{T}=\frac{0.693}{\lambda}$
  1. The half-life depends on the nature of radioactive elements.
  2. The half-life of an element indicates the rate of decay. When half-life is a large rate of decay is small.
  3. After t = nT number of active atoms left$N=\frac{N_{0}}{2^{n}}$

    $=\frac{1}{2^{t / T}} \cdot \mathrm{N}_{0}$

    where T = half-life and n = number of half-lives.
  4. Number of radioactive atoms decayed in n half-lives$N_{0}-\frac{N_{0}}{2^{n}}$
    $=N_{0}\left(\frac{2^{n}-1}{2^{n}}\right)$
  5. The half-life for a given radioactive substance is constant. It does not change with time. It is unaffected by pressure, temperature, etc.


so, that’s all from this blog, I hope you get the idea about how to state the law of radioactive decay. If you found this article informative then please share it with your friends.

Also, read
Uses Of radioactive Isotopes 

To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.
Uses of radioactive isotopes – Radioactivity, Physics – eSaral
Hey, do you want to learn about the uses of radioactive isotopes? If yes. Then you are at the right place.

Uses of radioactive isotopes

  1. In Medicine 

    a. $\mathrm{Co}^{60}$ for treatment of cancerb. $\mathrm{Na}^{24}$ for circulation of blood

    c. $\mathbf{I}^{131}$ for thyroid

    d. $S r^{90}$ for treatment of skin & eye

    e. $\mathrm{Fe}^{59}$ for location of brain tumor

    f. Radiographs of castings and teeth


  2. In Industries

    a. For detecting leakage in water and oil pipe lines

    b. For investigation of wear & tear, study of plastics & alloys, thickness measurement.


  3. In Agriculture 

    a. $\mathrm{C}^{14}$ to study kinetics of plant photosynthesis

    b. $\mathrm{P}^{32}$ to find nature of phosphate which is best for given soil & crop

    c. $\mathrm{Co}^{60}$ for protecting potato crop from earth worm

    d. sterilization of insects for pest control.

     
  4. radioactive isotopes 

    a. $\mathrm{K}^{40}$ to find age of meteorites

    b. $S^{35}$ in factories
  5. Carbon dating 

    a. It is used to find age of earth and fossils

    b. The age of earth is found by Uranium disintegration and fossil age by disintegration of $\mathrm{C}^{14}$.

    c. The estimated age of earth is about $5 \times 10^{9}$ years.

    d. The half-life of $\mathrm{C}^{14}$ is 5700 years.


  6. As Tracers 

    a. A very small quantity of radio isotope present in any specimen is called tracer.

    b. This technique is used to study complex biochemical reactions, in detection of cracks, blockages etc, tracing sewage or silt in sea.


  7. In Geology 

    a. For dating geological specimens like ancient rocks, lunar rocks using Uranium.

    b. For dating archaeological specimens, biological specimens using $\mathrm{C}^{14}$.


So, that’s it from this article. I hope you get the idea about the uses of radioactive isotopes. If you liked this explanation then please share it with your friends.

Also, see
Nuclear Fission and Fusion 

To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.
Working of NPN and PNP transistor – Electronics, Physics – eSaral
Hey, do you want to learn about the Working of NPN and PNP transistor? if yes. Then you are at the right place.

P-N-P Transistor:


Working of npn and pnp transistor
The holes of the P region (emitter) are rippled by the positive terminal of battery $\mathrm{V}_{\mathrm{EE}}$ towards the base. The potential barrier at the emitter junction is reduced as it is forward bias and hence the holes cross this junction and penetrate into the N region. This constitutes the emitter current. The width of the base region is very thin and it is lightly doped and hence only two to five percent of the holes recombine with the free electrons of the N region. This constitutes the base current $\mathrm{I}_{\mathrm{B}}$. which of course, is very small. The remaining holes (95% to 98%) are able to drift across the base and enter into the collector region. This constitutes the collector current.

N-P-N Transistor:


Working of npn and pnp transistor
Working:
The electron in the emitter region is rippled from the negative terminal of the battery towards the emitter junction. Since the potential barrier at the junction is reduced due to forward bias and the base region is very thin and lightly doped, electrons cross the p-type base region. A few electrons combine with the holes in P-region and are lost as the charge carriers. Now the electrons in N-region (collector region) readily swept up by the positive collector voltage $\mathrm{V}_{\mathrm{CC}}$.

The current conduction in the N-P-N transistor is carried out by electrons.

Transistor configuration

Three types of transistor circuit configuration are

Common base (CB)

Common emitter (CE)

Common collector (CC)

The term ‘Common’ is used to denote the transistor lead which is common to the input and the output.

Common Base Configuration


Common Base Configuration
In this configuration the input signal is applied between emitter and base and the output is taken from collector and base.

In common base as an amplifier phase difference between input and output is zero.

Characteristics:

Input characteristic:

The curve between emitter current $\mathrm{I}_{\mathrm{E}}$ and emitter base voltage $V_{\mathrm{EB}}$ at constant collector base voltage $\mathrm{V}_{\mathrm{CB}}$ represents the input characteristics. Collector base voltage $\mathrm{V}_{\mathrm{CB}}$ is kept fixed.
  • There exist a cut in, offset or threshold voltage $V_{\mathrm{EB}}$ below which the emitter current is very small.
  • The emitter current $\mathrm{I}_{\mathrm{E}}$ increases rapidly with small increase in emitter-base voltage $V_{\mathrm{EB}}$. This shows that the input resistance is very small.

Output characteristic:

Curve between collector current $\mathrm{I}_{\mathrm{C}}$ and collector base voltage $V_{\mathrm{CB}}$ at constant emitter $\mathrm{I}_{\mathrm{E}}$ represents the output characteristic.

Common emitter configuration

In this configuration the input signal is applied between base and emitter and the output is taken from collector and emitter.
Common emitter configuration
In common emitter as an amplifier phase difference between input and output is $\pi$.

Characteristic

Input characteristics:

The curve between base current $\mathrm{I}_{\mathrm{B}}$ and base emitter voltage $\mathrm{V}_{\mathrm{BE}}$ at constant collector-emitter voltage $\mathrm{V}_{\mathrm{CE}}$ represents the input characteristic.

In this case, $\mathrm{I}_{\mathrm{B}}$ increases less rapidly with $V_{B E}$ as compared to common-base configuration. This shows input resistance of the common-emitter circuit is higher than that of the common-base circuit.

Output characteristic:

The curve between collector current $\mathrm{I}_{\mathrm{C}}$ and collector emitter voltage $V_{C E}$ at constant base current $\mathrm{I}_{\mathrm{B}}$ represents the output characteristic.

Relationship between $\alpha, \beta$ and $\gamma$:

Emitter current $I_{E}=I_{B}+I_{C}$……(1)

divide by $\mathrm{I}_{\mathrm{C}}$ gives, $\frac{\mathrm{I}_{\mathrm{E}}}{\mathrm{I}_{\mathrm{C}}}=\frac{\mathrm{I}_{\mathrm{B}}}{\mathrm{I}_{\mathrm{C}}}+1$

or

$\frac{1}{\alpha}=\frac{1}{\beta}+1$

$\beta=\frac{\alpha}{1-\alpha}$

Comparison table between CB, CE and CC configuration


Comparison table between CB, CE and CC configuration

So, that’s all from this blog, I hope you get the idea about the Working of NPN and PNP transistor. If you enjoyed this explanation then don’t forget to share it with your friends.

Also, read
What is Transistor

To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.
What is Transistor and its types – Physics, Electronics – eSaral
A Transistor is an electronic device formed by P and N types of semiconductors. If you want to know about what is transistor and its types then read this article till the end.

Transistor

  • Transistor is used in place of triode valve, it is an electronic device formed by P and N types of semiconductors. It was discovered by American scientist J Barden, W.H. Bratain, W. Shockley.
  • The transistor is three-terminal and two P-N Jn. device.

There are two types of transistors

  1. N-P-N transistor
  2. P-N-P transistor
What is Transistor and its types
What is Transistor and its types
A transistor (P-N-P or N-P-N) has the following sections:

Emitter: It emits the charge carriers and it is heavily doped.

Base: The middle section of the transistor is known as the base. This is very lightly doped and very thin ($10^{-6}$ m).

Collector: This is moderately doped. It collects the charge carriers

Important points
  • The cross-sectional area of the base is very large as compared to the emitter.
  • The cross-sectional area of the collector is less than the base but greater than the emitter.
  • The base is much thinner than the emitter while the collector is wider than both because the emitter emits charge carriers and the collector has to receive a maximum of them. Since the base is very thin, so recombination in the base region is very less maximum 5%.
  • The emitter is heavily doped so that it can provide a large number of charge carriers (electrons or holes) into the base. The base is lightly doped and is very thin, hence the majority of charge carriers move on to the collector. This lower doping decreases the conductivity (increases the resistance) of the base material by limiting the number of charge carriers to the collector. The collector is moderately doped.
  • The emitter is always connected in forward biased and the collector is always connected in reverse biased.
  • The resistance of the emitter-base junction (forward-biased) is very small as compared to a collector-base junction (reverse biased). Therefore, the forward bias applied to the emitter base is generally very small whereas reverse bias on the collector base is much higher.
  • Arrowhead always shows the emitter’s current direction.
  • Current conduction within the P-N-P transistor takes place by hole conduction from emitter to collector.
  • Conduction in the external circuit is carried out by electrons.

So, that’s all from this blog. I hope you get the idea about what is transistors and its types. If you have any confusion related to this topic then feel free to ask in the comments section down below.

Also, read
Different types of PN-junction diodes

To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.
Different types of PN-junction diodes – Electronics – eSaral
Diode is a PN junction device. If you want to know about the different types of PN-junction diodes then keep reading.

Different types of PN-junction diodes

Different types of PN-junction diodes

1. Light Emitting Diode (LED)

Very much used in a dancing light display of music systems and information boards on railway stations.
In a forward-biased diode, the energy produced by recombination of electrons and holes at the junction can be emitted. If the energy is in the visible region, such a diode is called a light-emitting diode or LED.

The color of emitted light depends on the type of material used
Different types of PN-junction diodes

Ga-As Infrared radiation (Invisible)

Ga-P Red or green light

Ga-As-P Red or yellow light

A circuit for LED is shown in fig. The brightness can be controlled by $\mathrm{R}_{\mathrm{L}}$.

2. Photodiode

A PN junction diode made of photosensitive semiconductor is called a photodiode.

In photodiode, provision is made for allowing the light to fall at the junction.

Its function is controlled by the light allowed to fall on it.

In a semiconductor, the electrons jump from the valence band to the conduction band by absorbing energy from some external source of energy.

Energy of light photon

$E=\frac{h c}{\lambda}$

If this energy is sufficient to break a valence bond, when such light falls on the junction, new hole-electron pairs are created.

The number of charge carriers increases and hence the conductivity of the junction increases.

Fig. shows a circuit in which the photodiode is reverse-biased.
Photodiode
The applied voltage is less than the breakdown voltage. When visible light of suitable energy (hn > forbidden energy gap) is made incident on the photodiode, current begins to flow due to shifting of electrons from valence band to conduction band.

This current increases with the increase in the intensity of incident light. If the intensity of light increases to a value, the current becomes maximum. This maximum current is called saturation current.

3. Solar Cell

A pn-junction diode in which one of the P-or N regions is made very thin (so that the light energy is not greatly absorbed before reaching the junction) is used in converting light energy to electrical energy. Such diodes are called solar cells. In the solar cell, the thin region is called the emitter and the other base. When a light incident on the emitter, a current in the resistance $R_{\mathrm{L}}$ (Fig.). The magnitude of the current depends on the intensity of light.

Unlike a photodiode, a solar cell is not given any biasing.

It supplies emf like an ordinary cell.

The solar cell is based on the photovoltaic effect. When the light of suitable frequency is made incident on an open-circuited solar cell, an emf is produced across its terminals. This emf is called photo-voltaic emf, the effect is called the photovoltaic effect.

Uses
Solar Cell
  1. We can use a set of solar cells to charge storage batteries in the daytime. These batteries can be used for power during the night.
  2. Solar cells are extensively used in calculators, wristwatches, and light meters (in photography).
  3. The power source in artificial satellites is a solar panel which is an array of solar cells.

4. Zener Diode

Zener diode is a PN junction diode.

By careful adjustment of the concentration of acceptor and do not impurity atoms near the junction, the characters beyond the turn over-voltage become almost a vertical line.

Thus, in this region of its characteristic curve, the reverse voltage across the diode remains almost constant for a large change of the reverse current.

Therefore, a Zener diode is used as a voltage reference device for stabilizing a voltage at a predetermined value.

Zener diodes have been designed to operate from 1 to several hundred volts. In the diodes which are operated below 6V the breakdown of the junction is due to the Zener effect.
Zener Diode
In those operated between 5 and 8V, the breakdown is due to both the Zener effect and the avalanche multiplication.

In general, all diodes which are operated in the breakdown region of their reverse characteristic are known as Zener diodes.

Zener diode is a reverse-biased heavily doped P-N junction diode. Which is operated in the breakdown region.

So, that’s all from this article. I hope you get the idea about the Different types of PN-junction diodes. If you found this Explanation helpful then please share it with your friends and social media followers.

Also read
Bridge rectifier circuit Diagram 

To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.
Bridge rectifier circuit diagram – Definition, Efficiency – eSaral
Bridge Rectifier is also a full-wave rectifier. If you want to learn about the Bridge rectifier and Bridge rectifier circuit diagram then keep reading.

Bridge Rectifier

It is also a full-wave rectifier.
Bridge rectifier circuit diagram
Use of bridge rectifier

The bridge rectifier is used in the rectifier type voltmeter. The circuit arrangement is shown in fig. The rectifier elements are p-n junction diodes with a sensitive DC. ammeter as a load. This circuit can be used for the measurement of AC as well as DC voltage and currents. The DC ammeter reads the average value of currents. This may be calibrated to give r.m.s. values.
Bridge rectifier circuit diagram
The bridge rectifier has the following advantages
  • No center tap is required in the transformer secondary, hence both half cycles are similar.
  • PIV across each diode is $\mathrm{E}_{0}$ (which is 2 $\mathrm{E}_{0}$ in a full wave rectifier).
  • For a given power, output power transformer of small size can be used as the current in both the primary and secondary of the plate supply transformer flows for the entire cycle.
The main disadvantages of bridge rectifier are
  • The circuit requires two extra diodes
  • It has poor voltage regulation.

The efficiency of rectifier:

The efficiency rectifier is defined as the ratio of DC output power to the AC input power

$\eta=\frac{\text { dc power delivered to the load }}{\text { ac input power from transformer sec ondary }}$

$=\frac{P_{d c}}{P_{a c}}$

$=\frac{\mathrm{I}^{2} \mathrm{dc} \mathrm{R}_{\mathrm{L}}}{\mathrm{I}_{\mathrm{rms}}^{2}\left(\mathrm{R}_{\mathrm{F}}+\mathrm{R}_{\mathrm{L}}\right)}$

For bridge rectifier

$\eta=\frac{0.812 R_{L}}{2 R_{f}+R_{L}}$

for ideal diode

$R_{f}=0$

$\eta=81.2 \%$

So, that’s all from this article. I hope you get the idea about the Bridge rectifier and Bridge rectifier circuit diagram. If you liked this article then please share it with your friends.

Also, read
Full Wave Rectifier circuit diagram 

To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.
Full wave rectifier circuit diagram – Definition, Ripple Factor – eSaral
A device that rectifies both halves of the ac input is called a full-wave rectifier. If you want to learn about the full-wave rectifier and full-wave rectifier circuit diagram then keep reading.

Full-wave rectifier:

A rectifier that rectifies both halves of the ac input is called a full-wave rectifier.
Full wave rectifier circuit diagram
During the first half of the input cycle, the upper end of S coil is at positive potential and the lower end is at the negative potential the junction diode $\mathrm{D}_{1}$ will get forward biased, while the diode $\mathrm{D}_{2}$ reverse biased. The conventional current due to the diode $\mathrm{D}_{1}$ will flow.

When the second half of the input cycle comes, the situation will be exactly reverse. Now, the junction diode $\mathrm{D}_{2}$ will conduct and the current will flow.

The efficiency of rectifier:

The efficiency rectifier is defined as the ratio of dc output power to the ac input power

$\eta=\frac{\text { dc power delivered to the load }}{\text { ac input power from transformer sec ondary }}$

$=\frac{P_{d c}}{P_{a c}}$

$=\frac{\mathrm{I}^{2} \mathrm{dc} \mathrm{R}_{\mathrm{L}}}{\mathrm{I}_{\mathrm{rms}}^{2}\left(\mathrm{R}_{\mathrm{F}}+\mathrm{R}_{\mathrm{L}}\right)}$

for Full wave rectifier

$\eta=\frac{.812}{1+\frac{R_{\mathrm{F}}}{R_{\mathrm{L}}}}$

if $\frac{R_{F}}{R_{L}}<<1$

$\eta=81.2 \%$

Ripple and Ripple factor:

AC components are present in rectifier output these are known as ripple and they are measured in a factor which is known as Ripple Factor

Total Current Output

$\mathrm{I}_{\mathrm{rms}}=\sqrt{\mathrm{I}_{\mathrm{ac}}^{2}+\mathrm{I}^{2} \mathrm{dc}}$

Ripple Factor $=r=\frac{I_{\mathrm{ac}}}{\mathrm{I}_{\mathrm{dc}}}$

$r=\sqrt{\left(\frac{I_{r m s}}{I_{d c}}\right)^{2}-1}$

For full-wave or bridge rectifier

$\mathrm{I}_{\mathrm{rms}}=\frac{\mathrm{I}_{\mathrm{m}}}{\sqrt{2}}$

$I_{\mathrm{dc}}=\frac{2 \mathrm{I}_{\mathrm{m}}}{\pi}$

$r=0.48$

So, that’s all from this article. I hope you get the idea about the full-wave rectifier and full-wave rectifier circuit diagram. If you have any confusion related to this blog then feel free to ask in the comments section down below.

Also Read
Half Wave Rectifier Circuit Diagram 

To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.
Half wave rectifier circuit diagram – Definition, Explanation – eSaral
A device that converts alternating current into Direct current is called a rectifier. If you want to learn about the half-wave rectifier and half-wave rectifier circuit diagram then you are at the right place.

Application of diode as a rectifier:

An electronic device that converts alternating current into Direct current is called a rectifier.

Half wave rectifier:

A rectifier, which rectifies only one half of each ac supply cycle is called a half-wave rectifier.
Half wave rectifier circuit diagram

During the first half of the input cycle, the junction diode gets forward bias. The conventional current will flow. The upper end of $R_{L}$ will be positive potential with respect to the lower end during the second half cycle junction diode will get reverse biased and hence no output will be obtained across $R_{L}$.

Input voltage

$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}$

$\mathrm{i}=\mathrm{I}_{\mathrm{m}} \sin \omega \mathrm{t}$

for $0 \leq \omega t \leq \pi$

$\mathrm{i}=0$

for $\pi<\omega t<2 \pi$

$I_{m}=\frac{V_{m}}{R_{f}+R_{L}}$

here $\mathrm{R}_{\mathrm{f}}=$ forward resistance of diode

$R_{L}$ = load resistance

a. dc output current :

$\mathrm{I}_{\mathrm{dc}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{idt}$

$=\frac{1}{2 \pi}\left[\int_{0}^{\pi} \mathrm{I}_{\mathrm{m}} \sin t \mathrm{dt}+\int_{\pi}^{2 \pi} 0 \mathrm{dt}\right]$

$\mathrm{I}_{\mathrm{dc}}=\frac{\mathrm{I}_{\mathrm{m}}}{\pi}=0.318 \mathrm{I}_{\mathrm{m}}$

b. dc output voltage:

$V_{d c}=I_{d c} \times R_{L}$

$=\frac{I_{m}}{\pi} \times R_{L}$

$=\frac{\mathrm{V}_{\mathrm{m}}}{\pi\left[1+\left(\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{\mathrm{L}}\right)\right]}$

$V_{d c}=\frac{V_{m}}{\pi}=0.318 \mathrm{~V}_{\mathrm{m}}$

c. (Root mean square) RMS current:

$I_{r m s}=\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} i^{2} d(t)\right]^{1 / 2}$

$=\frac{I_{m}}{2}$

same

$V_{r m s}=\frac{V_{m}}{2}$

So, that’s all from this blog. I hope you enjoyed this explanation of the half-wave rectifier and half-wave rectifier circuit diagram. If you liked this article then please share it with your friends.

Also Read
What is Diode in electronics 

To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.
What is Diode in electronics – Definition, Important Points – eSaral
A diode is a PN junction device. If you want to know what is diode in electronics. Then keep reading.

Diode

A diode is a PN junction device

What is diode in electronics

Ideal diode

  • Conducts with zero resistance when forward biased.
  • Offer an infinite resistance when reverse biased.

    What is diode in electronics


Practical Circuit For diode



What is diode in electronics

The practical characteristic curve for a diode:



The practical characteristic curve for a diode:

Important terms related to diode:
  1. Knee VoltageKnee voltage is defined as the forward voltage at which the current through the junction starts increasing rapidly.For silicon = 0.7 volt for germanium = 0.3 volt

  2. Forward resistance or ac resistance:It is defined as the reciprocal of the slope of the forward characteristic curve.forward resistance

    $r_{f}=\frac{1}{\text { slope of forwardcharacteristic }}$

    $=\frac{1}{\Delta \mathrm{I}_{\mathrm{f}} / \Delta \mathrm{V}_{\mathrm{f}}}$

    $=\frac{\Delta \mathrm{V}_{\mathrm{f}}}{\Delta \mathrm{l}_{\mathrm{f}}}$


  3. Junction breakdown :When the reverse voltage is increased a point is reached when the junction breaks down with sudden rise in reverse current. This value of the voltage is known as the breakdown voltage. Two types of breakdown occur:a. Zener breakdown:

    a. Zener breakdown:
    Takes place in junction which are heavily doped so having narrow depletion layers. A very strong electric field appears across the narrow depletion layer which breaks the bond.

    b. Avalanche breakdown :

    Occur in junctions which are lightly doped. (having wide depletion layer) so at a high electric field, the minority charge carriers, while crossing the junction acquire very high velocities. A chain reaction is established, giving rise to the high current.


  4. Diffusion Current :Some electrons and holes have more kinetic energy $\left[\frac{1}{2} \mathrm{mv}^{2}>\mathrm{eV}\right]$ So $\mathrm{e}^{-}$ diffuse from n to p side and hole diffuse from p to n side due to diffusion of the charge carriers a current will flow known as diffusion current.

    a. Because of the concentration difference diffusion occurs.

    b. Diffusion results in an electric current from p side to the n side

    c. When P-N. Jn is in no Bias = diffusion current = drift current

    Net charge flow = 0

    Net current = 0

  5. Drift Current: Due to thermal collisions, the covalent bond is broken. If an electron-hole pair is created in the depletion region, there is a regular flow of electrons towards the n side and of holes towards the p side. Current flow n side to p side called drift current.Drift current and the diffusion current are in the opposite direction
 

So, that’s it from this blog. I hope you get the idea about what is a diode in electronics. If you found this Explanation helpful then share it with your friends and followers.

Also read

Types of Semiconductor   

To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.
What is P-N junction – Definition, Explanation, Types – eSaral
P-N junctions are formed by diffusing trivalent impurity to one-half side and pentavalent impurity to another side. If you want to know what is P-N junction then keep reading this article.

P-N Junction

  • By merely Joining the two pieces a P-N Junction cannot be formed.
  • P-N junctions are formed by diffusing trivalent impurity to one-half side and pentavalent impurity to another side.
  • The plane dividing the two zones is known as a junction.
  • P-N junction is unohmic
  • As P-type semiconductor has a high concentration of holes and N-type semiconductor has a high concentration of free electrons. there is a tendency of holes to diffuse over to the N side and electron to the P side.
  • When the hole diffuses from the P to N side then this will neutralize with free-electron similarly when electron diffuse from the N to P side it will neutralize with the hole. So, a depletion layer is formed near the Jn.What is P-N junction

Depletion layer:

There is a barrier near a junction that opposes the flow of charge carrier is known as depletion layer width of the depletion layer is in micrometer order.

Potential Barrier:

Potential developed in depletion layer is called P.B.

P-side is at lower potential and N-side is at higher potential.

P.B. for Ge  0.3 volt

P.B. for Si  0.7 volt

Electric field:

Electric field due to P.B.

$E=\frac{V}{d}$

For Ge

$E=\frac{0.3}{10^{-6}}$

$=3 \times 10^{5} \mathrm{~V} / \mathrm{m}$

order

$\mathrm{E} \approx 10^{5} \mathrm{~V} / \mathrm{m}$

the direction of E due to P.B. N to P-side

P-N Junction with forward bias :

When the Positive terminal of a battery is connected to the P side and the negative terminal to the N side. Then PN Junction is in forwarding Bias

Forward bias reduces the potential barrier. More charge carriers diffuse across the junction.
What is P-N junction
Special Point:
  • Potential barrier reduces
  • Width of the depletion layer decreases
  • P-N junction offers low resistance in forwarding bias.
  • Forward current flow in a circuit
  • The forward characteristic curve is shown in the figure. Forward Bias
  • Forward dynamic resistance $r_{f}=\frac{\Delta V_{f}}{\Delta I_{f}} \cong 100 \Omega$
  • Knee or cut in voltageGe  0.3 VSi  0.7 V
  • Dependence of forward current on bias voltage $\mathrm{I}=\mathrm{I}_{0}\left[\mathrm{e}^{\frac{\mathrm{qV}}{\mathrm{kT}}}-1\right]$$\mathrm{e}^{\frac{\mathrm{qV}}{\mathrm{kT}}}>>1$

    $I \approx I_{0} e^{\frac{+q V}{k T}}$ (Approximate exponential growth)

    I = Forward current

    $\mathrm{I}_{0}$ = reverse saturation current

    k = Boltzman constant

    q = charge of electron

    V = forward voltage

    T = temperature

P-N junction with reverse bias:

When the positive terminal of a battery is connected to the N-side and the negative terminal is connected to the P-side. Holes in the P-region are attracted towards the negative terminal and the electrons in the N-region are attracted towards the positive terminal.
P-N junction with reverse bias
Special Point:
  • The depletion layer increases for reverse biased.
  • Potential barrier increases
  • The reverse characteristic curve is shown in figure reverse bias
  • Very little current called reverse saturation current flows due to minority carrier flow.For Silicon = $10^{-9}$ AFor Germanium = $10^{-6}$ A
  • In reverse biased condition, junction behaves as a capacitor of few picofarads.
  • In reverse biased condition, junction behaves like high resistive material between two regions.
  • In reverse biased P-N diode behaves like an insulator.
  • Reverse resistance $\mathrm{R}_{\mathrm{B}}=\frac{\Delta \mathrm{V}_{\mathrm{B}}}{\Delta \mathrm{I}_{\mathrm{B}}} \cong 10^{6} \Omega$$\frac{R_{B}}{R_{f}}=10^{3}$ : 1 for Geand

    $\frac{R_{B}}{R_{f}}=10^{4}$ : 1 for Si
  • Dependence of reverse current on bias volt. $\mathrm{I}_{\mathrm{r}}=\mathrm{I}_{0}\left[\mathrm{e}^{-\frac{\mathrm{q} \mathrm{V}}{\mathrm{kT}}}-1\right]$$\mathrm{e}^{-\frac{\mathrm{qV}}{\mathrm{kT}}}<<1$$\mathrm{I} \cong-\mathrm{I}_{0}$

    Here $\mathrm{I}_{\mathrm{r}}$ = reverse current

    $\mathrm{I}_{0}$ = reverse saturation current

    V = applied voltage

    q = charge of electron

    T = temperature in kelvin
Special Point
  • The diffusion current in the p-n junction is greater than the drift current in magnitude if the junction is forward biased.
  • A hole diffuses from the p-side to the n-side in a p-n junction. This means that a bond is broken on the n-side and the electron freed from the bond jumps to a broken bond on the p-side to complete it.
 

So, that’s all from this article. I hope you get the idea about what is P-N junction. If you enjoyed this article then please leave your thoughts in the comments section down below.

Also, read

What is Fermi energy level in semiconductors

To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.
What is Fermi energy level in semiconductors – Electronics – eSaral

Hey, Do you want to know what is fermi energy level in semiconductors? If yes. Then keep reading.

Fermi Energy Level.

Fermi energy is the maximum kinetic energy of an electron at 0 K these electrons are called Fermi electrons and energy level is known as Fermi energy level.

  • It is always found between the conduction band and valance band

  • Fermi Level is the energy that corresponds to the center of gravity of the conduction electrons and holes weighted according to their energies.

    What is Fermi energy level in semiconductors
  • In pure germanium semiconductor, the Fermi level is about halfway in the forbidden gap.

  • In an n-type semiconductor, the Fermi level lies in the forbidden gap, very close to the conduction band.

  • In p-type semiconductor, the Fermi level lies in the forbidden gap, very close to the valence band.

  • With rising in temperature the Fermi level moves towards the center of the forbidden gap, for both types of semiconductors.

  • An n-type semiconductor is better than a p-type semiconductor as electrons have more mobility than holes.

Mass Action Law

Under thermal equilibrium, the product of concentration $\mathrm{n}_{\mathrm{e}}$ of free electrons and the concentration $\mathbf{n}_{\mathrm{h}}$ of holes is constant & independent of the amount of doping by donor & acceptor impurity.

$\mathrm{n}_{e} \mathrm{n}_{\mathrm{h}}=\mathbf{n}_{\mathrm{i}}^{2}$

where

$\mathrm{n}_{\mathrm{i}}=$ intrinsic concentration

However, the intrinsic concentration is a function of temperature.

  • In n-type semiconductors, the number density of electrons is nearly equal to the number density of donor atoms $\mathrm{N}_{\mathrm{d}}$ and is very large as compared to the number density of holes.

    $\mathrm{n}_{\mathrm{e}} \approx \mathrm{N}_{\mathrm{D}}$

    $N_{D}>>n_{h}$

  • In p-type semiconductor, the number density of holes is nearly equal to the number density of acceptor atoms $\mathrm{N}_{\mathrm{a}}$ and is very large as compared to number density of electrons.

    $\mathbf{n}_{\mathrm{h}} \approx \mathrm{N}_{\mathrm{A}}$

    $\mathrm{N}_{\mathrm{A}}>>\mathrm{n}_{\mathrm{e}}$

 
So, that’s all from this article. I hope you get the idea about what is fermi energy level in semiconductors. If you found this article informative then please share it with your friends. If you have any confusion related to this topic, then you can ask in the comments section down below.

For a better understanding of this chapter, please check the detailed notes of Electronics. To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.

Types of Semiconductors – Types, Examples – eSaral

Semiconductor in an extremely pure form is known as an intrinsic semiconductor and The impure semiconductor material is called an extrinsic semiconductor. If you want to learn about the Types of Semiconductors then keep reading.

Types of Semiconductors

Pure or intrinsic semiconductor:

A semiconductor in an extremely pure form is known as an intrinsic semiconductor. In an intrinsic semiconductor, the number of free electrons is always equal to the number of holes when an external field is applied across the intrinsic semiconductor the conduction through the semiconductor is by both free electrons and holes. Types of Semiconductors

  • Total current $I=I_{e}+I_{h}$

  • It is perfectly neutral

  • Number of free electron = Number of holes $\left(n_{e}=n_{h}\right)$

Extrinsic semiconductor:

The intrinsic semiconductors are of little importance because of negligible conductivity and moreover, the conductivity has little flexibility.

The electrical conductivity of an intrinsic semiconductor is zero at absolute zero and very small at ordinary (room) temperatures.

The conductivity is considerably increased by adding some impurity element to the pure (intrinsic) semiconductors.

The impure semiconductor material is called an extrinsic semiconductor.

The electrical conductivity of extrinsic semiconductors is called extrinsic conductivity.

Depending on impurity added, the extrinsic semiconductor can be divided into two parts-

Types of Semiconductors

N-Type:

An n-type Ge is obtained by adding a small quantity, for $10^{6}$ Ge atoms approximately one impurity atom of a pentavalent impurity

added the ratio of Ge and As atoms is $10^{6}: 1$.

Generally, Arsenic (As) is taken for this purpose.

Types of Semiconductors

Each arsenic atom replaces one Ge atom at its crystal lattice site without changing its structure. Four of the five valence electrons of As occupy the same positions in four covalent bonds as earlier occupied by four electrons of replaced Ge atom. But the fifth excess electron remains free. The energy level of this excess electron is only slightly smaller than the lowest energy level of the conduction band. Very small energy of about 0.01 eV (0.05 eV for Si) can detach this electron from the impurity atom.

The thermal energy at room temperature is sufficient to enable this electron to detach itself and become a member of the conduction band and take part in conduction.

Why n-type

Electrons with negative charges help in current conduction, the impure Ge is called n-type. Since impurity atoms donate electrons, the impurity is called donor impurity.

Each $1 \mathrm{~cm}^{3}$ of Ge crystal having $4.52 \times 10^{22}$ Ge atom, will have $4.52 \times 10^{16}$ (one millionth) As atoms and hence as many free electrons. The conductivity of the crystal is increased considerably.

At high temperatures, some covalent bonds are broken. Then more electrons and holes become free.

Free holes in n-type Ge act as minority carriers.

  • $\mathrm{n}_{\mathrm{e}}$$>>$$\mathrm{n}_{\mathrm{h}}$

  • $\mathrm{I}=\mathrm{I}_{\mathrm{e}}+\mathrm{I}_{\mathrm{h}}$

    $\left(\mathrm{I}_{\mathrm{e}}>>\mathrm{I}_{\mathrm{h}}\right)$ $I \approx I_{e}$


    In N-Type semiconductor current mainly flow due to free electrons.

  • Energy needed to detach fifth electron from impurity for 0.01 eV for Ge, 0.05 eV for Si.

  • Electrons are majority carriers due to the addition of pentavalent impurity.

  • Holes are minority carriers due to the breaking of covalent bonds.

  • N-type semiconductor has an excess of free electrons but it is electrically neutral.

  • It is called donor-type impurity because it gives one electron to a crystal.

  • The type of conductivity is called negative or N-type conductivity.

P-type:

A p-type Ge is obtained by adding a small quantity for $10^{6}$ Ge atoms approximately one impurity atom of a trivalent impurity added. Ratio of Ge and Al atoms is $10^{6}: 1$. Types of Semiconductors
Generally, Aluminum (Al) or Boron (B) is taken for this purpose.

Each aluminum atom replaces one Ge atom at its crystal lattice site without changing its structure. The three valence electrons of Al occupy the same positions in three covalent bounds as earlier occupied by four electrons of replaced Ge atom.

One covalent bond remains unfilled which shown an electron vacancy.

This electron vacancy is called a hole. The energy of this hole is slightly more than the highest energy level of the valence band (figure).

The electrons from the valence band get easily excited by thermal energy at room temperature to enter the hole. But the electrons filling these holes create new holes in the valence band. These holes in the valence band are filled by more electrons and this continues.

Holes can move freely through a crystal lattice and take part in conduction.

Why p-type

Since holes with positive charges help in current conduction, the impure Ge is called p-type. Since impurity atoms accept electrons (for their holes), the impurity is called acceptor impurity. Each $1 \mathrm{~cm}^{3}$ of Ge crystal having $4.52 \times 10^{22}$ Ge many holes. The conductivity of the crystal is increased considerably.

At high temperatures, some covalent bonds are broken. Then more electrons and holes become free.

Free electrons in p-type Ge act as minority carriers.

  • $n_{h}>>n_{e}$

  • $\mathrm{I}=\mathrm{I}_{\mathrm{e}}+\mathrm{I}_{\mathrm{h}}$

    $\left(\mathrm{I}_{\mathrm{h}}>>\mathrm{I}_{\mathrm{e}}\right)$
    $\mathrm{I} \approx

    \mathrm{I}_{\mathrm{h}}$


    In p-type semiconductor current mainly flow due to holes.

  • In a p-type semiconductor, majority carriers are positive holes due to the addition of trivalent impurity.

  • In a p-type semiconductor, minority carriers are electrons due to the breaking of covalent bonds.

  • This impurity is called acceptor type impurity

  • In P-type, the valence electrons move from one covalent bond to another bond.


So, that’s all from this article. I hope you get the idea about the Types of Semiconductors. If you found this article informative then please share it with your friends. If you have any confusion related to this topic, then you can ask in the comments section down below.

For a better understanding of this chapter, please check the detailed notes of Electronics. To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.