
Chemistry, by its very nature, is concerned with change.
Substances with well defined properties are converted
by chemical reactions into other substances with
different properties. For any chemical reaction, chemists
try to find out

(a) the feasibility of a chemical reaction which can be
predicted by thermodynamics ( as you know that a
reaction with ∆G < 0, at constant temperature and
pressure is feasible);

(b) extent to which a reaction will proceed can be
determined from chemical equilibrium;

(c) speed of a reaction i.e. time taken by a reaction to
reach equilibrium.

Along with feasibility and extent, it is equally
important to know the rate and the factors controlling
the rate of a chemical reaction for its complete
understanding. For example, which parameters
determine as to how rapidly food gets spoiled? How
to design a rapidly setting material for dental filling?
Or what controls the rate at which fuel burns in an
auto engine? All these questions can be answered by
the branch of chemistry, which deals with the study
of reaction rates and their mechanisms, called
chemical kinetics. The word kinetics is derived from
the Greek word ‘kinesis’ meaning movement.
Thermodynamics tells only about the feasibility of a
reaction whereas chemical kinetics tells about the rate
of a reaction.  For example, thermodynamic data
indicate that diamond shall convert to graphite but
in reality the conversion rate is so slow that the change
is not perceptible at all. Therefore, most people think

After studying this Unit, you will be
able to

• define the average and
instantaneous rate of a reaction;

• express the rate of a reaction in
terms of change in concentration
of either of the reactants or
products with time;

• distinguish between elementary
and complex reactions;

• differentiate between the
molecularity and order of a
reaction;

• define rate constant;

• discuss the dependence of rate of
reactions on concentration,
temperature and catalyst;

• derive integrated rate equations
for the zero and first order
reactions;

• determine the rate constants for
zeroth and first order reactions;

• describe collision theory.

Objectives

Chemical Kinetics helps us to understand how chemical reactions

occur.

4
Chemical Kinetics

UnitUnitUnitUnitUnit

4
Chemical Kinetics
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that diamond is forever. Kinetic studies not only help us to determine
the speed or rate of a chemical reaction but also describe the
conditions by which the reaction rates can be altered. The factors
such as concentration, temperature, pressure and catalyst affect the
rate of a reaction. At the macroscopic level, we are interested in
amounts reacted or formed and the rates of their consumption or
formation. At the molecular level, the reaction mechanisms involving
orientation and energy of molecules undergoing collisions,
are discussed.

In this Unit, we shall be dealing with average and instantaneous
rate of reaction and the factors affecting these. Some elementary
ideas about the collision theory of reaction rates are also given.
However, in order to understand all these, let us first learn about the
reaction rate.

Some reactions such as ionic reactions occur very fast, for example,
precipitation of silver chloride occurs instantaneously by mixing of
aqueous solutions of silver nitrate and sodium chloride. On the other
hand, some reactions are very slow, for example, rusting of iron in
the presence of air and moisture. Also there are reactions like inversion
of cane sugar and hydrolysis of starch, which proceed with a moderate
speed. Can you think of more examples from each category?

You must be knowing that speed of an automobile is expressed in
terms of change in the position or distance covered by it in a certain
period of time. Similarly, the speed of  a reaction or  the rate of a
reaction can be defined as the change in concentration of  a reactant
or product in unit time. To be more specific, it can be expressed in
terms of:

(i) the rate of decrease in concentration of any one of the
reactants, or

(ii) the rate of increase in concentration of any one of the products.

Consider a hypothetical reaction, assuming that the volume of the
system remains constant.

R → P

One mole of the reactant R produces one mole of the product P. If
[R]

1
  and [P]

1
 are the concentrations of R and P respectively at time t

1

and [R]
2
 and [P]

2
 are their concentrations at time  t

2
 then,

∆t = t
2
 – t

1

∆[R] = [R]
2 

– [R]
1

∆ [P] = [P]
2
 – [P]

1

The square brackets in the above expressions are used to express
molar concentration.

Rate of disappearance of R

[ ]Decrease in concentration of R R
=

Time taken t

∆
= −

∆ (4.1)

4. 14 . 14 . 14 . 14 . 1 Rate of aRate of aRate of aRate of aRate of a
ChemicalChemicalChemicalChemicalChemical
ReactionReactionReactionReactionReaction
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Rate of appearance of P

[ ]Increase in concentration of P P
=

Time taken t

∆
= +

∆
(4.2)

Since, ∆[R] is a negative quantity (as concentration of reactants is
decreasing), it is multiplied with –1 to make the rate of the reaction a
positive quantity.

Equations (4.1) and (4.2) given above represent the average rate of
a reaction, r

av
.

Average rate depends upon the change in concentration of reactants
or products and the time taken for that change to occur (Fig. 4.1).

Fig. 4.1:  Instantaneous and average rate of a reaction

Units of rate of a reaction

From equations (4.1) and (4.2), it is clear that units of rate are
concentration time–1. For example, if concentration is in  mol L–1  and
time is in seconds then the units will be mol L-1s–1. However, in gaseous
reactions, when the concentration of gases is expressed in terms of their
partial pressures, then the units of the rate equation will be atm s–1.

From the concentrations of C
4
H

9
Cl (butyl chloride) at different times given

below, calculate the average rate of the reaction:

C
4
H

9
Cl  +  H

2
O  →  C

4
H

9
OH + HCl

during different intervals of time.

t/s 0 50 100 150 200 300 400 700 800

 [C
4
H

9
Cl]/mol L–1 0.100 0.0905 0.0820 0.0741 0.0671 0.0549 0.0439 0.0210 0.017

We can determine the difference in concentration over different intervals

of time and thus determine the average rate by dividing ∆[R] by ∆t

(Table 4.1).

{         }

Example 4.1Example 4.1Example 4.1Example 4.1Example 4.1

SolutionSolutionSolutionSolutionSolution
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It can be seen (Table 4.1) that the average rate falls from 1.90 ×  0-4 mol L-1s-1

to 0.4 × 10-4 mol L-1s-1. However, average rate cannot be used to predict
the rate of a reaction at a particular instant as it would be constant for the
time interval for which it is calculated. So, to express the rate at a particular
moment of time we determine the instantaneous rate. It is obtained when
we consider the average rate at the smallest time interval say dt ( i.e. when

∆t approaches zero). Hence, mathematically for an infinitesimally small

dt instantaneous rate is given by

[ ] [ ]−∆ ∆
= =

∆ ∆av

R P
r

t t
(4.3)

As  ∆t → 0 or
[ ] [ ]

inst

d dR P

d d
r

t t

−
= =

Table 4.1: Average rates of hydrolysis of butyl chloride

[C
4
H

9
CI]

t1
 / [C

4
H

9
CI]

t
2

 / t
1
/s t

2
/s r

av
 × 104/mol L–1s–1

 mol L–1 mol L–1 [ ] [ ] ( ){ }= – − ×
2 1

4
4 9 4 9 2 1t t

C H Cl – C H Cl / t t 10

0.100 0.0905 0 50 1.90

0.0905 0.0820 50 100 1.70

0.0820 0.0741 100 150 1.58

0.0741 0.0671 150 200 1.40

0.0671 0.0549 200 300 1.22

0.0549 0.0439 300 400 1.10

0.0439 0.0335 400 500 1.04

0.0210 0.017 700 800 0.4

Fig 4.2

Instantaneous rate of

hydrolysis of butyl

chloride(C
4
H

9
Cl)
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It can be determined graphically by drawing a tangent at time t on

either of the curves for concentration of R and P vs time t and calculating

its slope (Fig. 4.1). So in problem 4.1, r
inst 

at 600s for example, can be

calculated by plotting concentration of butyl chloride as a function of

time. A tangent is drawn that touches the curve at t = 600 s (Fig. 4.2).

The slope of this tangent gives the instantaneous rate.

So, r
inst   

at 600 s = –   mol L–1 = 5.12 ×  10–5 mol L–1s–1

At t = 250 s r
inst

 = 1.22 × 10–4

 
mol L–1s–1

     t = 350 s r
inst

 = 1.0 × 10–4 mol L–1s–1

     t = 450 s r
inst

 = 6.4 ×  10–5 mol L–1s–1

Now consider a reaction

Hg(l) + Cl
2 
(g) →

 
HgCl

2
(s)

Where stoichiometric coefficients of the reactants and products are

same, then rate of the reaction is given as

[ ] [ ] [ ]2 2Hg Cl HgCl
Rate of reaction = – –

t t t

∆ ∆ ∆
= =

∆ ∆ ∆

i.e., rate of disappearance of any of the reactants is same as   the rate

of appearance of the products. But in the following reaction, two moles of

HI decompose to produce one mole each of H
2 
and I

2,

2HI(g)   →
   
H

2
(g)   +   I

2
(g)

For expressing the rate of such a reaction where stoichiometric

coefficients of reactants or products are not equal to one, rate of

disappearance of any of the reactants or  the rate of appearance of

products is divided by their respective stoichiometric coefficients. Since

rate of consumption of HI is twice the rate of formation of H
2
 or I

2
, to

make them equal, the term ∆[HI]  is divided by 2. The rate of this reaction

is given by

Rate  of reaction  
[ ] [ ] [ ]2 2H I1 HI

2 t t t

∆ ∆∆
= − = =

∆ ∆ ∆

Similarly, for the reaction

5 Br- (aq) + BrO
3

– (aq) + 6 H+ (aq)  →  3 Br
2
 (aq) + 3 H

2
O (l)

Rate
Br BrO H Br H

= − [ ] = −
  = − [ ] =

[ ]
=

− − +1

5

1

6

1

3

1

3

3 2 2∆
∆

∆

∆
∆

∆
∆

∆
∆

t t t t

OO[ ]
∆t

For a gaseous reaction at constant temperature, concentration is
directly proportional to the partial pressure of a species and hence, rate
can also be expressed as rate of change in partial pressure of the reactant
or the product.
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Intext QuestionsIntext QuestionsIntext QuestionsIntext QuestionsIntext Questions

4.1 For the reaction R →  P, the concentration of a reactant changes from 0.03M

to 0.02M in 25 minutes. Calculate the average rate of reaction using units
of time both in minutes and seconds.

4.2 In a reaction, 2A →  Products, the concentration of A decreases from 0.5

mol L–1 to 0.4 mol L–1 in 10 minutes. Calculate the rate during this interval?

Rate of reaction depends upon the experimental conditions such
as concentration of reactants (pressure in case of gases),
temperature and catalyst.

The rate of a chemical reaction at a given temperature may depend on
the concentration of one or more reactants and products.  The
representation of rate of reaction in terms of concentration of the
reactants is known as rate law. It is also called as rate equation or rate
expression.

The results in Table 4.1 clearly show that rate of a reaction decreases with

the passage of time as the concentration of reactants decrease.  Conversely,

rates generally increase when reactant concentrations increase. So, rate of

a reaction depends upon the concentration of reactants.

Example 4.2Example 4.2Example 4.2Example 4.2Example 4.2

4.2.2 Rate
Expression
and Rate
Constant

The decomposition of N
2
O

5
 in CCl

4
 at 318K has been studied by

monitoring the concentration of N
2
O

5 
in the solution. Initially the

concentration of N
2
O

5
 is 2.33 mol L–1 and after 184 minutes, it is reduced

to 2.08 mol L–1. The reaction takes place according to the equation

2 N
2
O

5
 (g) →  4 NO

2
 (g) + O

2
 (g)

Calculate the average rate of this reaction in terms of hours, minutes
and seconds. What is the rate of production of NO

2
 during this period?

Average Rate = −
[ ]








= − −( )









−1

2

1

2

2 08 2 33

184
2 5

1∆
∆

N O molL

t

. .

min

= 6.79 × 10–4 mol L–1/min = (6.79 × 10–4 mol L–1 min–1) × (60 min/1h)

= 4.07 × 10–2 mol L–1/h

= 6.79 × 10–4 mol L–1 × 1min/60s

= 1.13 × 10–5 mol L–1s–1

It may be remembered that

Rate
NO

= [ ]







1

4
2∆

∆t

[ ]2NO

t

∆
=

∆
6.79 × 10–4 × 4 mol L–1 min–1 = 2.72 × 10–3 mol L–1min–1

SolutionSolutionSolutionSolutionSolution

4.24.24.24.24.2 Factors InfluencingFactors InfluencingFactors InfluencingFactors InfluencingFactors Influencing
Rate of a ReactionRate of a ReactionRate of a ReactionRate of a ReactionRate of a Reaction

4.2.1 Dependence
of Rate on
Concentration
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Consider a general reaction

aA + bB   →   cC + dD

where a, b, c and d are the stoichiometric coefficients of reactants

and products.

The rate expression for this reaction is

Rate ∝ [A]
x 
 [B]

y
(4.4)

where exponents x and y may or may not be equal to the

stoichiometric coefficients (a and b) of the reactants. Above equation

can also be written as

Rate = k [A]
x 
 [B]

y
(4.4a)

[ ] [ ] [ ]x yd R
A B

d
k

t
− = (4.4b)

This form of equation (4.4 b) is known as differential rate equation,

where  k is a proportionality constant called rate constant. The equation

like (4.4), which relates the rate of a reaction to concentration of reactants

is called rate law or rate expression. Thus, rate law is the expression

in which reaction rate is given in terms of molar concentration

of reactants with each term raised to some power, which may

or may not be same as the stoichiometric coefficient of the

reacting species in a balanced chemical equation. For example:

2NO(g) + O
2
(g) → 2NO

2
 (g)

We can measure the rate of this reaction as a function of initial

concentrations either by keeping the concentration of one of the reactants

constant and changing the concentration of the other reactant or by

changing the concentration of both the reactants. The following results

are obtained (Table 4.2).

Table 4.2: Initial rate of formation of NO
2

Experiment Initial [NO]/ mol L-1 Initial [O
2
]/ mol L-1 Initial rate of

formation of NO
2
/ mol L-1s-1

1. 0.30 0.30 0.096

2. 0.60 0.30 0.384

3. 0.30 0.60 0.192

4. 0.60 0.60 0.768

It is obvious, after looking at the results, that when the concentration

of NO is doubled and that of O
2
 is kept constant then the initial rate

increases by a factor of four from 0.096 to 0.384 mol L–1s–1. This

indicates that the rate depends upon the square of the concentration of

NO.  When concentration of NO is kept constant and concentration of

O
2
 is doubled the rate also gets doubled indicating that rate depends

on concentration of O
2 
to the first power.  Hence, the rate equation for

this reaction will be

Rate = k[NO]
2
[O2]
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The differential form of this rate expression is given as

[ ] [ ] [ ]2
2

d R
ONO

d
k

t
− =

Now, we observe that for this reaction in the rate equation derived

from the experimental data, the exponents of the concentration terms

are the same as their stoichiometric coefficients in the balanced

chemical equation.

Some other examples are given below:

Reaction Experimental rate expression

1. CHCl
3
 + Cl

2
 →  CCl

4
 + HCl Rate = k [CHCl

3
 ]  [Cl

2
]1/2

2. CH
3
COOC

2
H

5
 + H

2
O →  CH

3
COOH + C

2
H

5
OH Rate = k [CH

3
COOC

2
H

5
]1 [H

2
O]0

In these reactions, the exponents of the concentration terms are not

the same as their stoichiometric coefficients. Thus, we can say that:

Rate law for any reaction cannot be predicted by merely looking

at the balanced chemical equation, i.e., theoretically but must be

determined experimentally.

In the rate equation (4.4)

Rate = k [A]x  [B]y

x and y indicate how sensitive the rate is to the change in concentration

of A and B.  Sum of these exponents, i.e., x + y in (4.4) gives the overall

order of a reaction whereas x and y represent the order with respect

to the reactants A and B respectively.

Hence, the sum of powers of the concentration of the reactants

in the rate law expression is called the order of that chemical

reaction.

Order of a reaction can be 0, 1, 2, 3 and even a fraction. A zero

order reaction means that the rate of reaction is independent of the

concentration of reactants.

4.2.3 Order of a

Reaction

Calculate the overall order of a reaction which

has the rate expression

(a) Rate = k [A]1/2 [B]3/2

(b) Rate = k [A]3/2 [B]–1

(a) Rate = k [A]x  [B]y

order = x + y

So order = 1/2 + 3/2 = 2, i.e., second order

(b) order = 3/2 + (–1) = 1/2,  i.e., half order.

Example 4.3Example 4.3Example 4.3Example 4.3Example 4.3

SolutionSolutionSolutionSolutionSolution

A balanced chemical equation never gives us a true picture of how
a reaction takes place since rarely a reaction gets completed in one
step.  The reactions taking place in one step are called elementary
reactions.  When a sequence of elementary reactions (called mechanism)
gives us the products, the reactions are called complex reactions.
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Example 4.4Example 4.4Example 4.4Example 4.4Example 4.4

SolutionSolutionSolutionSolutionSolution

These may be consecutive reactions (e.g., oxidation of ethane to CO2

and H2O passes through a series of intermediate steps in which alcohol,
aldehyde and acid are formed), reverse reactions and side reactions
(e.g., nitration of phenol yields o-nitrophenol and p-nitrophenol).

Units of rate constant

For a general reaction

aA + bB → cC + dD

Rate = k [A]
x 
 [B]

y

Where x + y = n = order of the reaction

k = x

Rate

[A] [B]y

( )
( )=

n

concentration 1
= × where [A] [B]

time concentration

Taking SI units of concentration, mol L–1 and time, s, the units of
k for different reaction order are listed in Table 4.3

Table 4.3: Units of rate constant

Reaction Order Units of rate constant

Zero order reaction 0 ( )
1

1 1

01

molL 1
molL s

s molL

−
− −

−
× =

First order reaction 1 ( )
1

1

11

molL 1
s

s molL

−
−

−
× =

Second order reaction 2 ( )
1

1 1

21

molL 1
mol L s

s molL

−
− −

−
× =

Identify the reaction order from each of the following rate constants.

(i) k = 2.3 × 10–5 L mol–1 s–1

(ii) k = 3 × 10–4 s–1

(i) The unit of second order rate constant is L mol–1 s–1, therefore

k = 2.3 × 10–5 L mol–1 s–1 represents a second order reaction.

(ii) The unit of a first order rate constant is s–1 therefore

k = 3 × 10–4 s–1  represents a first order reaction.

4.2.4 Molecularity

of a

Reaction

Another property of a reaction called molecularity helps in

understanding its mechanism.   The number of reacting species

(atoms, ions or molecules) taking part in an elementary  reaction,

which must collide simultaneously in order to bring about a

chemical reaction is called molecularity of a reaction. The reaction

can be unimolecular when one reacting species is involved, for example,

decomposition of ammonium nitrite.
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NH
4
NO

2
 → N

2
 + 2H

2
O

Bimolecular reactions involve simultaneous collision between two

species, for example, dissociation of hydrogen iodide.

2HI → H
2
 + I

2

Trimolecular or termolecular reactions involve simultaneous collision

between three reacting species, for example,

2NO + O
2
 → 2NO

2

The probability that more than three molecules can collide and

react simultaneously is very small.  Hence, reactions with the

molecularity three are very rare and slow to proceed.

It is, therefore, evident that complex reactions involving more than

three molecules in the stoichiometric equation must take place in more

than one step.

KClO
3
 + 6FeSO

4
 + 3H

2
SO

4
 → KCl + 3Fe

2
(SO

4
)
3 

+ 3H
2
O

This reaction which apparently seems to be of tenth order is actually

a second order reaction. This shows that this reaction takes place in

several steps. Which step controls the rate of the overall reaction? The

question can be answered if we go through the mechanism of reaction,

for example, chances to win the relay race competition by a team

depend upon the slowest person in the team.  Similarly, the overall rate

of the reaction is controlled by the slowest step in a reaction called the

rate determining step. Consider the decomposition of hydrogen

peroxide which is catalysed by iodide ion in an alkaline medium.

2H2O2 
-I

Alkaline medium
→  2H2O + O2

The rate equation for this reaction is found to be

[ ] [ ][ ]2 2
2 2

d H O
Rate H O I

d
−

−
= = k

t

This reaction is first order with respect to both H
2
O

2
 and I–.

 
 Evidences

suggest that this reaction takes place in two steps

(1) H
2
O

2 
+

 
I– → H

2
O + IO–

(2) H
2
O

2 
+

 
IO– → H

2
O + I– + O

2

Both the steps are bimolecular elementary reactions. Species IO- is

called as an intermediate since it is formed during the course of the

reaction but not in the overall balanced equation. The first step, being

slow, is the rate determining step.  Thus, the rate of formation of

intermediate will determine the rate of this reaction.

Thus, from the discussion, till now, we conclude the following:

(i) Order of a reaction is an experimental quantity. It can be zero and
even a fraction but molecularity cannot be zero or a non integer.

(ii) Order is applicable to elementary as well as complex reactions
whereas molecularity is applicable only for elementary reactions.
For complex reaction molecularity has no meaning.
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(iii) For complex reaction, order is given by the slowest step and
molecularity of the slowest step is same as the order of the overall
reaction.

Intext QuestionsIntext QuestionsIntext QuestionsIntext QuestionsIntext Questions

4.3 For a reaction, A + B →  Product; the rate law is given by,  r  = k [ A]1/2 [B]2.

What is the order of the reaction?

4.4 The conversion of molecules X to Y follows second order kinetics. If

concentration of X is increased to three times how will it affect the rate of

formation of Y ?

We have already noted that the concentration dependence of rate is

called differential rate equation. It is not always convenient to

determine the instantaneous rate, as it is measured by determination

of slope of the tangent at point ‘t’ in concentration vs time plot

(Fig. 4.1).  This makes it difficult to determine the rate law and hence

the order of the reaction. In order to avoid this difficulty, we can

integrate the differential rate equation to give a relation between directly

measured experimental data, i.e., concentrations at different times

and rate constant.

The integrated rate equations are different for the reactions of different

reaction orders.  We shall determine these equations only for zero and

first order chemical reactions.

Zero order reaction means that the rate of the reaction is proportional

to zero power of the concentration of reactants. Consider the reaction,

R → P

Rate = 
[ ] [ ]0d R

R
d

k
t

− =

As  any quantity raised to power zero is unity

Rate = 
[ ]d R

1
d

k ×
t

− =

d[R] = – k dt

Integrating both sides

[R] = – k t + I (4.5)

where, I is the constant of integration.

At  t = 0, the concentration of the reactant R = [R]
0
, where [R]

0
 is

initial concentration of the reactant.

Substituting in equation (4.5)

[R]
0

= –k × 0 + I

[R]
0

= I

Substituting the value of I in the equation (4.5)

[R] = -kt + [R]
0

(4.6)

4 .34 .34 .34 .34 .3 IntegratedIntegratedIntegratedIntegratedIntegrated
RateRateRateRateRate
EquationsEquationsEquationsEquationsEquations

4.3.1 Zero Order

Reactions
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Fig. 4.3: Variation in the concentration vs

time plot for a zero order reaction

Time

k = -slope

C
o
n

c
e
n

tr
a
ti

o
n

 o
f 

R

[R ]0

0

Comparing (4.6) with equation of a straight line,

y = mx + c, if we plot [R] against t, we get a straight

line (Fig. 4.3) with slope = –k and intercept equal

to  [R]
0
.

Further simplifying equation (4.6), we get the rate

constant, k as

[ ] [ ]0R R
k

t

−
= (4.7)

Zero order reactions are relatively uncommon but

they occur under special conditions. Some enzyme

catalysed reactions and reactions which occur on

metal surfaces are a few examples of zero order

reactions.  The decomposition of gaseous ammonia

on a hot platinum surface is a zero order reaction at

high pressure.

( ) ( ) ( )1130K
3 2 2Pt catalyst

2NH g N g +3H g→

Rate = k [NH
3
]0 = k

In this reaction, platinum metal acts as a catalyst. At high pressure,

the metal surface gets saturated with gas molecules. So, a further

change in reaction conditions is unable to alter the amount of ammonia

on the surface of the catalyst making rate of the reaction independent

of its concentration. The thermal decomposition of HI on gold surface

is another example of zero order reaction.

In this class of reactions, the rate of the reaction is proportional to the

first power of the concentration of the reactant R. For example,

R → P

[ ] [ ]d R
Rate R

d
k

t
= − =

or  
[ ]

[ ]
d R

– d
R

k t=

Integrating this equation, we get

ln [R] = – kt + I (4.8)

Again, I  is the constant of integration and its value can be determined
easily.

When  t = 0, R = [R]
0
, where [R]

0
 is the initial concentration of the

reactant.

Therefore, equation (4.8) can be written as

ln [R]
0
 = –k × 0 + I

ln [R]
0
 =  I

Substituting the value of I in equation (4.8)

ln[R] = -kt + ln[R]
0

(4.9)

4.3.2 First Order

Reactions
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Rearranging this equation

[ ]
[ ]0
R

ln
R

kt= −

or 
[ ]
[ ]

0
R1

ln
R

=k
t

(4.10)

At time t
1 

from equation (4.8)

*ln[R]
1
 = – kt

1
 + *ln[R]

0
(4.11)

At time t
2

ln[R]
2
 = – kt

2
 + ln[R]

0
(4.12)

where, [R]
1
 and [R]

2
 are the concentrations of the reactants at time

t
1
 and t

2
 respectively.

Subtracting (4.12) from (4.11)

ln[R]
1
– ln[R]

2
 = – kt

1 
– (–kt

2
)

[ ]
[ ]

( )1
2 1

2

R
ln k

R
t t−=

( )
[ ]
[ ]

1

2 1 2

1 R
ln

R
k

t t
=

− (4.13)

Equation (4.9) can also be written as

[ ]
[ ]

= −
0

R
ln

R
kt

Taking antilog of both sides

[R] = [R]
0
 e-kt (4.14)

Comparing equation (4.9) with y = mx + c, if we plot ln [R] against
t (Fig. 4.4) we get a straight line with slope = –k and intercept equal to
ln [R]

0

The first order rate equation (4.10) can also be written in the form

[ ]
[ ]

0
R2.303

log
R

k
t

= (4.15)

*
[ ]
[ ]

0R
log

2.303R

kt
=

If we plot a graph between log [R]
0
/[R] vs t, (Fig. 4.5),

the slope = k/2.303

Hydrogenation of ethene is an example of first order reaction.

C
2
H

4
(g) + H

2
 (g) → C

2
H

6
(g)

Rate = k [C
2
H

4
]

All natural and artificial radioactive decay of unstable nuclei take
place by first order kinetics.

* Refer to Appendix-IV for ln and log (logarithms).

2020-21



108Chemistry

Fig. 4.4: A plot between ln[R] and t

for a first order reaction
Fig. 4.5: Plot of log [R]

0
/[R] vs time for a first

order reaction

Slope = /2.303k

lo
g
 (
[R

/
[R

])
0]

Time
0

226 4 222
88 2 86Ra He Rn→ +

Rate = k [Ra]

Decomposition of  N
2
O

5
  and N

2
O are some more examples of first

order reactions.

The initial concentration of N
2
O

5
  in the following first order reaction

N
2
O

5
(g) → 2 NO

2
(g) + 1/2O

2 
(g) was 1.24 × 10–2 mol L–1 at 318 K. The

concentration of N
2
O

5
 after 60 minutes was 0.20 × 10–2 mol L–1.

Calculate the rate constant of the reaction at  318 K.

For a first order reaction

[ ]
[ ]

1

2

R
log

R
= 

( )2 1

2.303

k t t−

    k = ( )
[ ]
[ ]

1

2 1 2

2.303
log

R

t t R−

= ( )
2 1

2 1

1.24 10 mol L2.303
log

60min 0min 0.20 10 molL

− −

− −

×
− ×

= 
12.303

log 6.2 min
60

−

k = 0.0304 min-1

Example 4.5Example 4.5Example 4.5Example 4.5Example 4.5

SolutionSolutionSolutionSolutionSolution

Let us consider a typical first order gas phase reaction

A(g) → B(g) + C(g)

Let p
i
 be the initial pressure of A and p

t
 the total pressure at

time ‘t’. Integrated rate equation for such a reaction can be derived  as

Total pressure p
t
 = p

A
 + p

B
 + p

C
 (pressure units)
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p
A
, p

B
 and p

C
 are the partial pressures of A, B and C, respectively.

If x atm be the decrease in pressure of A at time t and one mole each
of B and C is being formed, the increase in pressure of B and C will also
be x atm each.

   A(g)      →      B(g)       +         C(g)

At  t = 0 p
i 
atm 0 atm 0 atm

At time t (p
i
–x) atm x atm x atm

where, pi is the initial pressure at time t = 0.

p
t
 = (p

i
 – x) + x + x = p

i
 + x

x = (p
t
 - p

i
)

where,  pA  = pi – x = pi – (pt – pi)

 = 2pi – pt

 k = 
i

A

2.303
log

p

pt

  
      

(4.16)

= ( )
i

i t

2.303
log

2

p

p pt −

The following data were obtained during the first order thermal
decomposition of N

2
O

5
 (g) at constant volume:

( ) ( ) ( )2 5 2 4 2g g g2N O 2N O O→ +

S.No. Time/s Total Pressure/(atm)

1. 0 0.5

2. 100 0.512

Calculate the rate constant.

Let the pressure of N
2
O

5
(g) decrease by 2x atm. As two moles of

N
2
O

5
 decompose to give two moles of N

2
O

4
(g) and one mole of O

2
 (g),

the pressure of N
2
O

4
 (g) increases by 2x atm and that of O

2
 (g)

increases by x atm.

( ) ( ) ( )2 5 2 4 2g g g2N O 2N O O→ +

Start t = 0       0.5 atm 0 atm    0 atm

At time t     (0.5 – 2x) atm        2x atm    x atm

p
t

= 
2 5 2 4 2N O N O Op p p+ +

= (0.5 – 2x) + 2x + x = 0.5 + x

x 0.5tp= −

2 5N Op = 0.5 – 2x

= 0.5 – 2 (p
t 
– 0.5) = 1.5 – 2p

t

At   t = 100 s; p
t
 = 0.512 atm

Example 4.6Example 4.6Example 4.6Example 4.6Example 4.6

SolutionSolutionSolutionSolutionSolution
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The half-life of a reaction is the time in which the concentration of a
reactant is reduced to one half of its initial concentration. It is
represented as t1/2.

For a zero order reaction, rate constant  is given by equation 4.7.

[ ] [ ]0R R
k

t

−
=

[ ] [ ]0
1/2

1 RAt , R
2

t t= =

The rate constant at t
1/2   

becomes

[ ] [ ]0 0

1/2

1/2R R
k

t

−
=

[ ]0
1/2

R

2
t

k
=

It is clear that t
1/2 

for a zero order reaction is directly proportional
to the initial concentration of the reactants and inversely proportional
to the rate constant.

For the first order reaction,

[ ]
[ ]

02.303 R
log

R
k

t
= (4.15)

at t
1/2   [ ] [ ]0R

R
2

= (4.16)

So, the above equation becomes

[ ]
[ ]

0

1/2

2.303 R
log

/2R
k

t
=

or 1/2

2.303
log 2t

k
=

1/2

2.303
0.301t

k
= ×

1/2

0.693
t

k
= (4.17)

    
2 5N Op   = 1.5 – 2 × 0.512 = 0.476 atm

Using equation (4.16)

i

A

4 1

0.5 atm2.303 2.303
log log

100s 0.476 atm

2.303
0.0216 4.98 10 s

100s

p
k

t p

− −

= =

= × = ×

4.3.3 Half-Life of a
Reaction
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A first order reaction is found to have a rate constant, k = 5.5 × 10-14 s-1.
Find the half-life of the reaction.

Half-life for a first order reaction is

1/2t = 
0.693

k

1/2t = –14 –1

0.693

5.5×10 s  = 1.26 × 1013s

Show that in a first order reaction, time required for completion of
99.9% is 10 times of half-life (t

1/2
) of the reaction.

When reaction is completed 99.9%, [R]
n
 = [R]

0
 – 0.999[R]

0

k = 
[ ]
[ ]

02.303 R
log

Rt

= 
[ ]

[ ] [ ]
0

0 0

2.303 R
log

0.999R Rt −  = 
32.303

log10
t

t = 6.909/k

For half-life of the reaction

t
1/2

= 0.693/k

1/2

t

t = 
6.909

10
0.693

k

k
× =

It can be seen that for a first order reaction, half-life period is
constant, i.e., it is independent of initial concentration  of the reacting
species. The half-life of a first order equation is readily calculated from
the rate constant and vice versa.

For zero order reaction t
1/2

 ∝∝∝∝∝ [R]
0
. For first order reaction

t
1/2

 is independent of [R]
0
.

Example 4.7Example 4.7Example 4.7Example 4.7Example 4.7

SolutionSolutionSolutionSolutionSolution

Example 4.8Example 4.8Example 4.8Example 4.8Example 4.8

SolutionSolutionSolutionSolutionSolution

Table 4.4 summarises the mathematical features of integrated laws of
zero and first order reactions.

Table 4.4: Integrated Rate Laws for the Reactions of Zero and First Order

Order Reaction Differential Integrated Straight Half- Units of k
type rate law rate law line plot life

0 R→ P d[R]/dt = -k kt = [R]
0
-[R] [R] vs t [R]

0
/2k conc time-1

or mol L–1s–1

1 R→ P d[R]/dt = -k[R] [R] = [R]
0
e-kt ln[R] vs t ln 2/k time-1 or s–1

or kt =

ln{[R]
0
/[R]}
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Most of the chemical reactions are accelerated by increase in temperature.
For example, in decomposition of N

2
O

5
, the time taken for half of the

original amount of material to decompose is 12 min at 50oC, 5 h at
25oC and 10 days at 0oC.  You also know that in a mixture of potassium
permanganate (KMnO

4
) and oxalic acid (H

2
C

2
O

4
), potassium

permanganate gets decolourised faster at a higher temperature than
that at a lower temperature.

It has been found that for a chemical reaction with rise in
temperature by 10°, the rate constant is nearly doubled.

The temperature dependence of the rate of a chemical reaction can
be accurately explained by Arrhenius equation (4.18). It was first
proposed by Dutch chemist, J.H. van’t Hoff but Swedish chemist,
Arrhenius provided its physical justification and interpretation.

4.4 Temperature4.4 Temperature4.4 Temperature4.4 Temperature4.4 Temperature
Dependence ofDependence ofDependence ofDependence ofDependence of
the Rate of athe Rate of athe Rate of athe Rate of athe Rate of a
ReactionReactionReactionReactionReaction

The order of a reaction is sometimes altered by conditions.  There
are many reactions which obey first order rate law although they are
higher order reactions. Consider the hydrolysis of ethyl acetate which
is a chemical reaction between ethyl acetate and water. In reality, it
is a second order reaction and concentration of both ethyl acetate and
water affect the rate of the reaction. But water is taken in large excess
for hydrolysis, therefore, concentration of water is not altered much
during the reaction. Thus, the rate of reaction is affected by
concentration of ethyl acetate only. For example, during the hydrolysis
of 0.01 mol of ethyl acetate with 10 mol of water, amounts of the
reactants and products at the beginning (t = 0) and completion (t) of
the reaction are given as under.

CH
3
COOC

2
H

5
  + H

2
O   H+

→    CH
3
COOH   +   C

2
H

5
OH

t = 0 0.01 mol 10 mol 0 mol 0 mol

t 0 mol 9.99 mol 0.01 mol 0.01 mol

The concentration of water does not get altered much during the

course of the reaction.  So, the reaction behaves as first order reaction.

Such reactions are called pseudo first order reactions.

Inversion of cane sugar is another pseudo first order reaction.

C
12

H
22

O
11

   +   H
2
O   +H→    C

6
H

12
O

6
   +   C

6
H

12
O

6

Cane sugar       Glucose        Fructose

Rate = k  [C
12

H
22

O
11

]

Intext QuestionsIntext QuestionsIntext QuestionsIntext QuestionsIntext Questions

4.5 A first order reaction has a rate constant 1.15 × 10-3 s-1. How long will 5 g of
this reactant take to reduce to 3 g?

4.6 Time required to decompose  SO
2
Cl

2
 to half of its initial amount is 60

minutes. If the decomposition is a first order reaction, calculate the rate
constant of the reaction.
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k = A e -Ea /RT (4.18)

where A is the Arrhenius factor or the frequency factor. It is also called
pre-exponential factor. It is a constant specific to a particular reaction.
R is gas constant and E

a
 is activation energy measured in joules/mole

(J mol –1).

It can be understood clearly using the following simple reaction

( ) ( ) ( )2 2H g I g 2HI g+ →

According to Arrhenius, this reaction can take place
only when a molecule of hydrogen and a molecule of iodine
collide to form an unstable intermediate (Fig. 4.6). It exists
for a very short time and then breaks up to form two
molecules of hydrogen iodide.

Fig. 4.6: Formation of HI through

the intermediate

Intermediate

Fig. 4.7: Diagram showing plot of potential

energy vs reaction coordinate

Fig. 4.8: Distribution curve showing energies

among gaseous molecules

The energy required to form this
intermediate, called activated complex
(C), is known as activation energy (E

a
).

Fig. 4.7 is obtained by plotting potential

energy vs reaction coordinate. Reaction

coordinate represents the profile of energy

change when reactants change into

products.

Some energy is released when the

complex decomposes to form products.

So, the final enthalpy of the reaction

depends upon the nature of reactants

and products.

All the molecules in the reacting

species do not have the same kinetic

energy.  Since it is difficult to predict the

behaviour of any one molecule with

precision, Ludwig Boltzmann and James

Clark Maxwell used statistics to predict

the behaviour of large number of

molecules. According  to them, the

distribution of kinetic energy may be

described by plotting the fraction of

molecules (N
E
/N

T
) with a given kinetic

energy (E) vs kinetic energy (Fig. 4.8).

Here, N
E
 is the number of molecules with

energy E and N
T
 is total number

of molecules.

The peak of the curve corresponds to

the most probable kinetic energy, i.e.,

kinetic energy of maximum fraction of

molecules. There are decreasing number

of molecules with energies higher or

lower than this value. When the
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Fig. 4.10:  A plot between ln k and 1/T

In Fig. 4.10,   slope = – 
aE

R   
and  intercept =  ln

A.
  
So we can calculate E

a  
and A using these values.

At temperature T
1
, equation (4.19) is

ln k
1
 = –

a

1

E

RT  
+ ln A (4.20)

At temperature T
2
, equation (4.19) is

ln k
2
 = –

a

2

E

RT  
+ ln A (4.21)

(since A is constant for a given reaction)

k
1 

and k
2 

are the values of rate constants at
temperatures T

1 
and T

2 
 respectively.

Fig. 4.9: Distribution curve showing temperature

dependence of rate of a reaction

temperature is raised, the maximum

of the curve moves to the higher

energy value (Fig. 4.9) and the curve

broadens out, i.e., spreads to the right

such that there is a greater proportion

of molecules with much higher

energies. The area under the curve

must be constant since total

probability must be one at all times.

We can mark the position of  E
a
 on

Maxwell Boltzmann distribution curve

(Fig. 4.9).

  Increasing the temperature of the substance increases the fraction

of molecules, which collide with energies greater than E
a
. It is clear

from the diagram that in the curve at (t + 10), the area showing the

fraction of molecules having energy equal to or greater than activation

energy gets doubled leading to doubling the rate of a reaction.

In the Arrhenius equation (4.18) the factor e -Ea /RT

 
corresponds to

the fraction of molecules that have kinetic energy greater than E
a
.

Taking natural logarithm of both sides of equation (4.18)

ln k = –
aE

RT  
+ ln A (4.19)

The plot of ln k vs 1/T gives a straight line according to the equation
(4.19) as shown in Fig. 4.10.

Thus, it has been found from Arrhenius equation (4.18) that
increasing the temperature or decreasing the activation energy  will
result in an increase in the rate of the reaction and an exponential
increase in the rate constant.
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The rate constants of a reaction at 500K and 700K are 0.02s–1 and
0.07s–1 respectively. Calculate the values of E

a
 and A.

2

1

log
k

k
= 

2 1a

1 22.303

T TE

T TR

− 
 
 

0.07
log

0.02
= 

a
1 1

700 500

2.303 8.314 J mol 700 500

E

K − −
  − 
   × ×  

0.544 = E
a
 × 5.714 × 10-4/19.15

E
a

= 0.544 × 19.15/5.714 × 10–4 = 18230.8 J

Since k = Ae-Ea/RT

0.02 = Ae-18230.8/8.314 × 500

A = 0.02/0.012 = 1.61

The first order rate constant for the decomposition of ethyl iodide
by the reaction

C
2
H

5
I(g) → C

2
H

4 
(g) + HI(g)

at 600K is 1.60 × 10–5 s–1. Its energy of activation is 209 kJ/mol.
Calculate the rate constant of the reaction at 700K.

We know that

log k
2
 – log k

1 
=

 

a

1 2

1 1

2.303

E

T TR

 − 
 

Subtracting equation (4.20) from (4.21), we obtain

ln k
2 

–
 
ln k

1
 = 

a

1

E

RT
 – 

a

2

E

RT

ln
k

k

E

R T T
2

1 1 2

1 1
= −









a

log
.

k

k

E

R T T
2

1 1 22 303

1 1
= −









a
(4.22)

log
.

k

k

E T T

T T
2

1

2 1

1 22 303
=

−





a

R

SolutionSolutionSolutionSolutionSolution

SolutionSolutionSolutionSolutionSolution

Example 4.10Example 4.10Example 4.10Example 4.10Example 4.10

Example 4.9Example 4.9Example 4.9Example 4.9Example 4.9
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A catalyst is a substance which increases the rate of a reaction without
itself undergoing any permanent chemical change. For example, MnO

2

catalyses the following reaction so as to increase its rate considerably.

2KClO
3
 MnO2→  2 KCl + 3O

2

The word catalyst should not be used when the added substance
reduces the rate of raction. The substance is then called inhibitor. The
action of the catalyst can be explained by intermediate complex theory.
According to this theory, a catalyst participates in a chemical reaction by
forming temporary bonds with the reactants resulting in an intermediate
complex. This has a transitory existence and decomposes to yield products
and the catalyst.

It is believed that the catalyst provides an
alternate pathway or reaction mechanism by
reducing the activation energy between
reactants and products and hence lowering
the potential energy barrier as shown in
Fig. 4.11.

It is clear from Arrhenius equation (4.18)
that lower the value of activation energy faster
will be the rate of a reaction.

A small amount of the catalyst can catalyse
a large amount of reactants. A catalyst does
not alter Gibbs energy, ∆G of a reaction.  It
catalyses the spontaneous reactions but does
not catalyse non-spontaneous reactions. It is

also found that a catalyst does not change the equilibrium constant of
a reaction rather, it helps in attaining the equilibrium faster, that is, it
catalyses the forward as well as the backward reactions to the same
extent so that the equilibrium state remains same but is reached earlier.

Though Arrhenius equation is applicable under a wide range of
circumstances, collision theory, which was developed by Max  Trautz
and William Lewis in 1916 -18, provides a greater insight into the
energetic and mechanistic aspects of reactions. It is based on kinetic
theory of gases.  According to this theory, the reactant molecules are

4.4.1 Effect of
Catalyst

4.5 Collision4.5 Collision4.5 Collision4.5 Collision4.5 Collision
Theory ofTheory ofTheory ofTheory ofTheory of
ChemicalChemicalChemicalChemicalChemical
ReactionsReactionsReactionsReactionsReactions

Fig. 4.11:Fig. 4.11:Fig. 4.11:Fig. 4.11:Fig. 4.11: Effect of catalyst on activation

energy

log k
2

=
 

a
1

1 2

1 1
log

2.303

E
k

T TR

 −+  
 

= ( )
1

5
1 1

1 1209000 JmolL
log 1.60 10

600K 700K2.303 8.314 JmolL K

−
−

− −

 −+×  ×  

log k
2

= – 4.796 + 2.599 = – 2.197

k
2

=
 
6.36 × 10–3

  
s–1
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assumed to be hard spheres and reaction is postulated to occur when
molecules collide with each other.  The number of collisions per
second per unit volume of the reaction mixture is known as
collision frequency (Z). Another factor which affects the rate of
chemical reactions is activation energy (as we have already studied).
For a bimolecular elementary reaction

A + B   →   Products

rate of reaction can be expressed as

a /
ABRate Z e E RT−= (4.23)

where ZAB represents the collision frequency of reactants, A and B
and e

-Ea /RT
 represents the fraction of molecules with energies equal to

or greater than Ea. Comparing (4.23) with Arrhenius equation, we can
say that A is related to collision frequency.

Equation (4.23) predicts the value of rate constants fairly
accurately for the reactions that involve atomic species or simple
molecules but for complex molecules significant deviations are
observed.  The reason could be that all collisions do not lead to the
formation of products. The collisions in which molecules collide with
sufficient kinetic energy (called threshold energy*) and proper
orientation, so as to facilitate breaking of bonds between reacting
species and formation of new bonds to form products are called as
effective collisions.

For example, formation of
methanol from bromoethane depends
upon the orientation of reactant
molecules as shown in
Fig. 4.12. The proper orientation of

reactant molecules lead to bond

formation whereas improper

orientation makes them simply

bounce back and no products are

formed.

To account for effective collisions,
another factor P, called the probability
or steric factor is introduced. It takes into account the fact that in a
collision, molecules must be properly oriented i.e.,

a /
ABRate Z e E RTP −=

Thus, in collision theory activation energy and proper orientation of
the molecules together determine the criteria for an effective collision
and hence the rate of a chemical reaction.

Collision theory also has certain drawbacks as it considers atoms/
molecules to be hard spheres and ignores their structural aspect. You
will study details about this theory and more on other theories in your
higher classes.

*  Threshold energy = Activation Energy + energy possessed by reacting species.

Fig. 4.12:Fig. 4.12:Fig. 4.12:Fig. 4.12:Fig. 4.12: Diagram showing molecules having proper and

improper  orientation
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Intext QuestionsIntext QuestionsIntext QuestionsIntext QuestionsIntext Questions

4.7 What will be the effect of temperature on rate constant ?

4.8 The rate of the chemical reaction doubles for an increase of 10K in absolute
temperature from 298K. Calculate E

a
.

4.9 The activation energy for the reaction

     2 HI(g) → H
2
 + I

2
 (g)

is 209.5 kJ mol–1 at 581K.Calculate the fraction of molecules of reactants
having energy equal to or greater than activation energy?

SummarySummarySummarySummarySummary
Chemical kinetics is the study of chemical reactions with respect to reaction
rates, effect of various variables, rearrangement of atoms and formation of

intermediates.  The rate of a reaction is concerned with decrease in concentration

of reactants or increase in the concentration of products per unit time.  It can

be expressed as instantaneous rate at a particular instant of time and average
rate over a large interval of time.  A number of factors such as temperature,

concentration of reactants, catalyst, affect the rate of a reaction.  Mathematical

representation of rate of a reaction is given by rate law.  It has to be determined

experimentally and cannot be predicted.  Order of a reaction with respect to
a reactant is the power of its concentration  which appears in the rate law

equation. The order of a reaction is the sum of all such powers of concentration

of terms for different reactants. Rate constant is the proportionality factor in

the rate law.  Rate constant and order of a reaction can be determined from rate
law or its integrated rate equation.  Molecularity is defined only for an elementary

reaction.  Its values are limited from 1 to 3 whereas order can be 0, 1, 2, 3 or

even a fraction. Molecularity and order of an elementary reaction are same.

Temperature dependence of rate constants is described by Arrhenius equation

(k = Ae–Ea/RT). E
a
 corresponds to the activation energy and is given by the

energy difference between activated complex and the reactant molecules, and A

(Arrhenius factor or pre-exponential factor)  corresponds to  the collision frequency.

The equation clearly shows that increase of temperature or lowering of E
a
 will

lead to an increase in the rate of reaction and presence of a catalyst lowers the
activation energy by providing an alternate path for the reaction. According to

collision theory, another factor P called steric factor which refers to the orientation

of molecules which collide, is important and contributes to effective collisions,

thus, modifying the Arrhenius equation to a /
ABZ e E RTk P −= .
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4.1 From the rate expression for the following reactions, determine their
order of reaction and the dimensions of the rate constants.

(i) 3NO(g) → N
2
O (g) Rate = k[NO]2

(ii) H
2
O

2
 (aq) + 3I– (aq) + 2H+ → 2H

2
O (l) + 

3I
− Rate = k[H

2
O

2
][I-]

(iii) CH
3
CHO (g) → CH

4
 (g) + CO(g) Rate = k [CH

3
CHO]3/2

(iv) C
2
H

5
Cl (g) → C

2
H

4
 (g) + HCl (g) Rate = k [C

2
H

5
Cl]

4.2 For the reaction:

2A + B → A
2
B

the rate = k[A][B]2 with k = 2.0 × 10–6 mol–2 L2 s–1. Calculate the initial
rate of the reaction when [A] = 0.1 mol L–1, [B] = 0.2 mol L–1. Calculate
the rate of reaction after [A] is reduced to 0.06 mol L–1.

4.3 The decomposition of NH
3
 on platinum surface is zero order reaction. What

are the rates of production of N
2
 and H

2
 if k = 2.5 × 10–4 mol–1 L s–1?

4.4 The decomposition of dimethyl ether leads to the formation of CH
4
, H

2

and CO and the reaction rate is given by

Rate = k [CH
3
OCH

3
]3/2

The rate of reaction is followed by increase in pressure in a closed
vessel, so the rate can also be expressed in terms of the partial pressure
of dimethyl ether, i.e.,

( )
3 3

3/2

CH OCHRate pk=

If the pressure is measured in bar and time in minutes, then what are
the units of rate and rate constants?

4.5 Mention the factors that affect the rate of a chemical reaction.

4.6 A reaction is second order with respect to a reactant. How is the rate
of reaction affected if the concentration of the reactant is

(i) doubled (ii) reduced to half ?

4.7 What is the effect of temperature on the rate constant of a reaction?
How can this effect of temperature on rate constant be represented
quantitatively?

4.8 In a pseudo first order reaction in water, the following results were
obtained:

t/s 0 30 60 90

[A]/ mol L–1 0.55 0.31 0.17 0.085

Calculate the average rate of reaction between the time interval 30
to 60 seconds.

4.9 A reaction is first order in A and second order in B.

(i) Write the differential rate equation.

(ii) How is the rate affected on increasing the concentration of B three
times?

(iii) How is the rate affected when the concentrations of both A and B
are doubled?

ExercisesExercisesExercisesExercisesExercises
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4.10 In a reaction between A and B, the initial rate of reaction (r
0
) was measured

for different initial concentrations of A and B as given below:

A/ mol L–1 0.20 0.20 0.40

B/ mol L–1 0.30 0.10 0.05

r
0
/mol L–1s–1 5.07 × 10–5 5.07 × 10–5 1.43 × 10–4

What is the order of the reaction with respect to A and B?

4.11 The following results have been obtained during the kinetic studies of the reaction:

2A + B → C + D

Experiment [A]/mol L–1 [B]/mol L–1 Initial rate of formation
of D/mol L–1 min–1

I 0.1 0.1 6.0 × 10–3

II 0.3 0.2 7.2 × 10–2

III 0.3 0.4 2.88 × 10–1

IV 0.4 0.1 2.40 × 10–2

Determine the rate law and the rate constant for the reaction.

4.12 The reaction between A and B is first order with respect to A and zero order
with respect to B. Fill in the blanks in the following table:

Experiment [A]/ mol L–1 [B]/ mol L–1 Initial rate/
 mol L–1 min–1

I 0.1 0.1 2.0 × 10–2

II – 0.2 4.0 × 10–2

III 0.4 0.4 –

IV – 0.2 2.0 × 10–2

4.13 Calculate the half-life of a first order reaction from their rate constants given
below:

(i) 200 s–1 (ii) 2 min–1 (iii) 4 years–1

4.14 The half-life for radioactive decay of 14C is 5730 years. An archaeological
artifact containing wood had only 80% of the 14C found in a living tree. Estimate
the age of the sample.

4.15 The experimental data for decomposition of N
2
O

5

[2N
2
O

5
 → 4NO

2
 + O

2
]

in gas phase at 318K are given below:

     t/s 0 400 800 1200 1600 2000 2400 2800 3200

102 × [N
2
O

5
]/ 1.63 1.36 1.14 0.93 0.78 0.64 0.53 0.43 0.35

mol L–1

(i) Plot [N
2
O

5
] against t.

(ii) Find the half-life period for the reaction.

(iii) Draw a graph between log[N
2
O

5
] and t.

(iv) What is the rate law ?
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(v) Calculate the rate constant.

(vi) Calculate the half-life period from k and compare it with (ii).

4.16 The rate constant for a first order reaction is 60 s–1. How much time will
it take to reduce the initial concentration of the reactant to its 1/16th

value?

4.17 During nuclear explosion, one of the products is 90Sr with half-life of

28.1 years. If 1µg of 90Sr was absorbed in the bones of a newly born

baby instead of calcium, how much of it will remain after 10 years and
60 years if it is not lost metabolically.

4.18 For a first order reaction, show that time required for 99% completion
is twice the time required for the completion of 90% of reaction.

4.19 A first order reaction takes 40 min for 30% decomposition. Calculate t
1/2

.

4.20 For the decomposition of azoisopropane to hexane and nitrogen at 543
K, the following data are obtained.

t (sec) P(mm of Hg)

0 35.0

360 54.0

720 63.0

Calculate the rate constant.

4.21 The following data were obtained during the first order thermal
decomposition of SO

2
Cl

2
  at a constant volume.

( ) ( ) ( )2 2 2 2SO Cl g SO g Cl g→ +

Experiment Time/s–1 Total pressure/atm

1 0 0.5

2 100 0.6

Calculate the rate of the reaction when total pressure is 0.65 atm.

4.22 The rate constant for the decomposition of N
2
O

5
 at various temperatures

is given below:

T/°C 0 20 40 60 80

105 × k/s-1 0.0787 1.70 25.7 178 2140

Draw a graph between ln k and 1/T and calculate the values of A and
E

a
. Predict the rate constant at 30° and 50°C.

4.23 The rate constant for the decomposition of hydrocarbons is 2.418 × 10–5s–

1 at 546 K. If the energy of activation is 179.9 kJ/mol, what will be the
value of pre-exponential factor.

4.24 Consider a certain reaction A → Products with k = 2.0 × 10 –2s–1. Calculate
the concentration of A remaining after 100 s if the initial concentration
of A is 1.0 mol L–1.

4.25 Sucrose decomposes in acid solution into glucose and fructose according
to the first order rate law, with t

1/2
 = 3.00 hours. What fraction of sample

of sucrose remains after 8 hours ?

4.26 The decomposition of hydrocarbon follows the equation

k = (4.5 × 1011s–1) e-28000K/T

Calculate E
a
.
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4.27 The rate constant for the first order decomposition of H
2
O

2
 is given by the

following equation:

log k = 14.34 – 1.25 × 104K/T

Calculate E
a
 for this reaction and at what temperature will its half-period

be 256 minutes?

4.28 The decomposition of A into product has value of k as 4.5 × 103 s–1 at 10°C
and energy of activation 60 kJ mol–1. At what temperature would k be
1.5 × 104s–1?

4.29 The time required for 10% completion of a first order reaction at 298K is
equal to that required for its 25% completion at 308K. If the value of A is
4 × 1010s–1. Calculate k at 318K and E

a
.

4.30 The rate of a reaction quadruples when the temperature changes from
293 K to 313 K. Calculate the energy of activation of the reaction assuming
that it does not change with temperature.

Answers to Some Intext Questions

4.1 r
av
 = 6.66 × 10–6 Ms–1

4.2 Rate of reaction = rate of diappearance of A
= 0.005 mol litre–1min–1

4.3 Order of the reaction is 2.5

4.4 X → Y
Rate = k[X]2

The rate will increase 9 times

4.5 t = 444 s

4.6 1.925 × 10–4 s–1

4.8 Ea = 52.897 kJ mol–1

4.9 1.471 × 10–19
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