Ex-9.3

Q1. In fig, E is any point on median AD of a $\triangle \mathrm{ABC}$. Show that ar $(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACE})$.

Sol. AD is a median of $\triangle \mathrm{ABC}$.
Therefore, we have $\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A C D)$
ED is a median of $\triangle \mathrm{EBC}$
Therefore, we have $\operatorname{ar}(\triangle \mathrm{EBD})=\operatorname{ar}(\triangle \mathrm{ECD})$
Subtracting (2) from (1),
$\operatorname{ar}(\triangle \mathrm{ABD})-\operatorname{ar}(\triangle \mathrm{EBD})=\operatorname{ar}(\triangle \mathrm{ACD})-\operatorname{ar}(\triangle \mathrm{ECD})$
\Rightarrow ar $(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{ACE})$.

Q2. In a triangle ABC, E is the mid-point of median AD . Show that ar $(\mathrm{BED})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$.
Sol. AD is a median of $\triangle \mathrm{ABC}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$

BE is a median of $\triangle \mathrm{BAD}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{BED})=\frac{1}{2}(\triangle \mathrm{ABD})$
From (1) and (2),
$\operatorname{ar}(\triangle \mathrm{BED})=\frac{1}{2}\left\{\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})\right\}=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$.

Q3. Show that the diagonals of a parallelogram divide it into four triangles of equal area.

Sol. We know, Diagonals of a $\| \mathrm{gm}$ bisect each other,

$$
\begin{align*}
\Rightarrow & \mathrm{AO}^{\prime}=\mathrm{OC} \text { and } \mathrm{OB}=\mathrm{OD} \\
& \operatorname{ar}(\triangle \mathrm{AOD})=\frac{1}{2} \times \mathrm{AO} \times \mathrm{DE} \\
& \operatorname{ar}(\triangle \mathrm{DOC})=\frac{1}{2} \times \mathrm{OC} \times \mathrm{DE} \\
& \text { Since } \mathrm{AO}=\mathrm{OC} \\
\therefore & \operatorname{ar}(\triangle \mathrm{AOD})=\operatorname{ar}(\triangle \mathrm{DOC}) \tag{1}\\
& \operatorname{ar}(\triangle \mathrm{DOC})=\operatorname{ar}(\triangle \mathrm{BOC}) \tag{2}\\
& \text { and } \operatorname{ar}(\triangle \mathrm{AOB})=\operatorname{ar}(\triangle B O C) \tag{3}
\end{align*}
$$

From (1), (2) and (3) we have $\operatorname{ar}(\triangle \mathrm{AOB})=\operatorname{ar}(\triangle \mathrm{BOC})=\operatorname{ar}(\Delta \mathrm{COD})=\operatorname{ar}(\mathrm{AOD})$

Q4. In fig, $A B C$ and $A B D$ are two triangles on the same base $A B$. If line- segment $C D$ is bisected by AB at O , show that $\operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{ABD})$.

Sol. $\quad \mathrm{CO}=\mathrm{DO}$
Now, $A O$ is a median of $\triangle A C D$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{AOC})=\operatorname{ar}(\triangle \mathrm{AOD})$
Similarly, $\operatorname{ar}(\triangle B O C)=\operatorname{ar}(\triangle B O D)$
Adding (1) and (2), we have $\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{ABD})$.

Q5. D, E and F are respectively the mid-points of the sides $B C, C A$ and $A B$ of a $\triangle A B C$. Show that
(i) BDEF is a parallelogram.
(ii) $\operatorname{ar}(\mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$
(iii) $\operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$

Sol. (i)

$$
\begin{aligned}
& \mathrm{EF} \| \mathrm{BC} \quad \quad \text { [Mid point theorem] } \\
\Rightarrow & \mathrm{EF} \| \mathrm{BD}
\end{aligned}
$$

Also, $\mathrm{EF}=\frac{1}{2} \mathrm{BC}$,

$$
\mathrm{EF}=\mathrm{BD}
$$

$[\because \mathrm{D}$ is the midpoint of BC$]$
$\therefore \mathrm{BDEF}$ is a parallelogram.
(ii) $\operatorname{ar}(\mathrm{BDEF})=\operatorname{ar}(\mathrm{DCEF})$

$$
\begin{align*}
& \Rightarrow \frac{1}{2} \operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \text { ar (DCEF) } \\
& \Rightarrow \operatorname{ar}(\triangle \mathrm{BDF})=\operatorname{ar}(\triangle \mathrm{CDE}) \tag{1}
\end{align*}
$$

Similarly, ar $(\triangle \mathrm{CDE})=\operatorname{ar}(\triangle \mathrm{DEF})$
ar $(\triangle \mathrm{AEF})=\operatorname{ar}(\triangle \mathrm{DEF})$
From (1), (2) and (3) we have
$\operatorname{ar}(\triangle \mathrm{AEF})=\operatorname{ar}(\triangle \mathrm{FBD})=\operatorname{ar}(\triangle \mathrm{DEF})$

$$
=\operatorname{ar}(\triangle \mathrm{CDE})
$$

$\therefore \operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{AEF})+\operatorname{ar}(\triangle \mathrm{FBD})+\operatorname{ar}(\triangle \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{CDE})$
$=4 \mathrm{ar}(\triangle \mathrm{DEF})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$.
(iii) ar $(\mathrm{BDEF})=\operatorname{ar}(\triangle \mathrm{BDF})+\operatorname{ar}(\triangle \mathrm{DEF})$

$$
\begin{aligned}
& =\operatorname{ar}(\triangle \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{DEF}) \\
& =2 \operatorname{ar}(\triangle \mathrm{DEF}) \\
& =2\left[\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})\right]=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})
\end{aligned}
$$

\therefore ar $(\mathrm{BDEF})=\frac{1}{2}$ ar $(\triangle \mathrm{ABC})$

Q6. In fig, diagonals AC and BD of quadrilateral ABCD intersect at O such that $\mathrm{OB}=\mathrm{OD}$.
If $A B=C D$, then show that :
(i) $\operatorname{ar}(\mathrm{DOC})=\operatorname{ar}(\mathrm{AOB})$
(ii) ar $(\mathrm{DCB})=\operatorname{ar}(\mathrm{ACB})$
(iii) $\mathrm{DA} \| \mathrm{CB}$ or ABCD is a parallelogram.

Sol. (i) In $\triangle \mathrm{DEO}$ and $\triangle \mathrm{BFO}$,

We have $\mathrm{DO}=\mathrm{BO}$
[given]
$\angle \mathrm{DOE}=\angle \mathrm{BOF}$

$$
\angle \mathrm{DEO}=\angle \mathrm{BFO}
$$

$\therefore \quad \triangle \mathrm{DEO} \cong \triangle \mathrm{BFO}$

$$
\Rightarrow \mathrm{DE}=\mathrm{BF}
$$

[Vertically opposite angles]
[each 90°]
[By ASA congruency]
[By CPCT]

$$
\begin{equation*}
\text { and ar }(\triangle \mathrm{DEO})=\operatorname{ar}(\Delta \mathrm{BFO}) \tag{1}
\end{equation*}
$$

Now, in $\triangle \mathrm{DEC}$ and $\triangle \mathrm{BFA}$, we have

$$
\begin{array}{ll}
\angle \mathrm{DEC}=\angle \mathrm{BFA} & {\left[\text { each } 90^{\circ}\right]} \\
\mathrm{DE}=\mathrm{BF} & {[\text { proved above }]} \\
\mathrm{DC}=\mathrm{BA} & {[\text { given }]}
\end{array}
$$

$\therefore \quad \triangle \mathrm{DEC} \cong \triangle \mathrm{BFA} \quad$ [By RHS congruency]
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEC})=\operatorname{ar}(\triangle \mathrm{BFA})$
Adding (1) and (2), we have
ar $(\triangle \mathrm{DEO})+\operatorname{ar}(\triangle \mathrm{DEC})$
$=\operatorname{ar}(\triangle \mathrm{BFO})+\operatorname{ar}(\triangle \mathrm{BFA})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DOC})=\operatorname{ar}(\triangle \mathrm{AOB})$.
(ii) $\because \operatorname{ar}(\triangle \mathrm{DOC})=\operatorname{ar}(\triangle \mathrm{AOB}) \quad$ [proved above]

Adding ar $(\triangle \mathrm{BOC})$ on both the sides, we have
$\operatorname{ar}(\triangle \mathrm{DCB})=\operatorname{ar}(\triangle \mathrm{ACB})$
(iii) Since $\triangle \mathrm{DCB}$ and $\triangle \mathrm{ACB}$ are on the same base CB and having equal areas.
$\Rightarrow \mathrm{CB} \| \mathrm{DA}$
Also $\angle 1=\angle 2$
[ABCD is a $\| \mathrm{gm}$]

So, $\mathrm{AB} \| \mathrm{CD}$
[By c.p.c.t]
$\Rightarrow \mathrm{ABCD}$ is a parallelogram.

Q7. D and E are points on sides $A B$ and $A C$ respectively of $\triangle A B C$ such that ar $(D B C)=$ ar $(E B C)$. Prove that $\mathrm{DE} \| \mathrm{BC}$.

Sol. $\triangle \mathrm{DBC}$ and $\triangle \mathrm{EBC}$ have equal areas and same base $B C$.
\Rightarrow The two triangles are between the same parallels.
$\Rightarrow \mathrm{DE} \| \mathrm{BC}$

Q8. XY is a line parallel to side BC of a triangle ABC . If $\mathrm{BE} \| \mathrm{AC}$ and $\mathrm{CF} \| \mathrm{AB}$ meet XY at E and F respectively, show that ar $(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{ACF})$.

Sol. In figure, AB (produced) and AC (produced) meet XY and G and H respectively.

Now, BGFC and BEHC are parallelograms.
$\Rightarrow \mathrm{BC}=\mathrm{GF}$ and $\mathrm{BC}=\mathrm{EH}$
$\Rightarrow \mathrm{GF}=\mathrm{EH} \Rightarrow \mathrm{GE}=\mathrm{FH}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{BGE})=\operatorname{ar}(\Delta \mathrm{CFH})$
Also, we find that
$\operatorname{ar}(\triangle \mathrm{AGE})=\operatorname{ar}(\triangle \mathrm{AHF})$
Subtracting (1) from (2), we have
$\operatorname{ar}(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{ACF})$.

Q9. The side AB of a parallelogram ABCD is produced to any point P . A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed Show that ar $(\mathrm{ABCD})=\operatorname{ar}(\mathrm{PBQR})$.

Sol. We join AC and PQ in figure.
we are given that $A Q \| C P$.
Now, $\triangle \mathrm{ACQ}$ and $\triangle \mathrm{APQ}$ have same base AQ . The two triangles are between same parallels.

Therefore, we have
$\operatorname{ar}(\triangle \mathrm{ACQ})=\operatorname{ar}(\triangle \mathrm{APQ})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABC})+\operatorname{ar}(\triangle \mathrm{ABQ})$
$=\operatorname{ar}(\triangle \mathrm{BPQ})+\operatorname{ar}(\triangle \mathrm{ABQ})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{BPQ})$
$\Rightarrow \quad \frac{1}{2} \operatorname{ar}(\mathrm{ABCD})=\frac{1}{2} \operatorname{ar}(\mathrm{PBQR})$
$\Rightarrow \operatorname{ar}(\mathrm{ABCD})=\operatorname{ar}(\mathrm{PBQR})$.

Q10. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at O. Prove that ar $(A O D)=\operatorname{ar}(B O C)$.

Sol. $\because \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ABC})$

Subtracting ar ($\triangle \mathrm{AOB}$) from both sides, we get
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABD})-\operatorname{ar}(\triangle \mathrm{AOB})=\operatorname{ar}(\triangle \mathrm{ABC})-\operatorname{ar}(\triangle \mathrm{AOB})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{AOD})=\mathrm{ar}(\triangle \mathrm{BOC})$

Q11. In fig, ABCDE is a pentagon. A line through B parallel to

AC meets DC produced at F . Show that
(i) ar $(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF})$
(ii) $\operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE})$

Sol. (i) $\triangle \mathrm{ACB}$ and $\triangle \mathrm{ACF}$ in figure, have same base AC and also, between the same parallels.
Therefore, $\operatorname{ar}(\triangle \mathrm{ACB})=\operatorname{ar}(\triangle \mathrm{ACF})$
(ii) $\operatorname{ar}(\mathrm{ACDE})+\operatorname{ar}(\triangle \mathrm{ACB})=\operatorname{ar}(\mathrm{ACDE})+\operatorname{ar}(\triangle \mathrm{ACF})$
$\Rightarrow \operatorname{ar}(\mathrm{ABCDE})=\operatorname{ar}(\mathrm{AEDF})$.

Q12. A villager Itwaari has a plot of land of the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Itwaari agrees to the above proposal with the condition that he should be given equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented.

Sol. Let us draw $D F \| A C$ and join A and F.
$\therefore \quad$ ar $(\triangle \mathrm{DAF})=\operatorname{ar}(\triangle \mathrm{DCF})$.

Substracting ar ($\triangle \mathrm{DEF}$) from both sides, we get
$\operatorname{ar}(\triangle \mathrm{DAF})-\operatorname{ar}(\triangle \mathrm{DEF})$
$=\operatorname{ar}(\triangle \mathrm{DCF})-\operatorname{ar}(\triangle \mathrm{DEF})$
\Rightarrow ar $(\triangle \mathrm{ADE})=$ ar $(\triangle \mathrm{CEF})$
Let us prove that ar $(\triangle \mathrm{ABF})=\operatorname{ar}(\mathrm{ABCD})$,
We have:
$\operatorname{ar}(\triangle \mathrm{CEF})=\operatorname{ar}(\triangle \mathrm{ADE}) \quad$ [proved above]
Adding ar (ABCE) to both sides, we get :
$\operatorname{ar}(\triangle \mathrm{CEF})+\operatorname{ar}(\mathrm{ABCE})=\operatorname{ar}(\triangle \mathrm{ADE})+\operatorname{ar}(\mathrm{ABCE})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABF})=\operatorname{ar}(\mathrm{ABCD})$

Q13. $A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at X and $B C$ at Y.
Prove that ar $(A D X)=\operatorname{ar}(A C Y)$.

Sol. We have a trapezium ABCD such that $\mathrm{AB} \| \mathrm{DC}$.

AB || DC
$\therefore \quad$ ar $(\triangle A D X)=\operatorname{ar}(\triangle A C X)$ ar $(\triangle A C X)=\operatorname{ar}(\triangle A C Y)$
[Given]

From (1) and (2), we have
ar $(\triangle \mathrm{ADX})=\operatorname{ar}(\triangle \mathrm{ACY})$

Q14. In fig, $\mathrm{AP}\|\mathrm{BQ}\| \mathrm{CR}$. Prove that $\operatorname{ar}(\mathrm{AQC})=\operatorname{ar}(\mathrm{PBR})$.

Sol. In figure, $\mathrm{AP} \| \mathrm{BQ}$ and $\mathrm{BQ} \| \mathrm{CR}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABQ})=\operatorname{ar}(\triangle \mathrm{PBQ})$
and $\operatorname{ar}(\triangle \mathrm{BQC})=\operatorname{ar}(\triangle \mathrm{BQR})$
Adding (1) and (2), we have
$\operatorname{ar}(\triangle \mathrm{AQC})=\operatorname{ar}(\triangle \mathrm{PBR})$

Q15. Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O in such a way that ar $(A O D)=$ ar $(B O C)$. Prove that $A B C D$ is a trapezium.

Sol.

$\operatorname{ar}(\triangle \mathrm{AOD})=\operatorname{ar}(\triangle \mathrm{BOC})$
Adding ar ($\triangle \mathrm{AOB}$) to both the sides, we have
$\Rightarrow \operatorname{ar}(\triangle \mathrm{AOD})+\operatorname{ar}(\triangle \mathrm{AOB})=\operatorname{ar}(\triangle \mathrm{BOC})+\operatorname{ar}(\triangle \mathrm{AOB})$
$\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ABC})$
Since, they are on the same base $A B$,
$\therefore \mathrm{AB} \| \mathrm{DC}$
Now, ABCD is quadrilateral having a pair of opposite sides parallel.
$\therefore \quad \mathrm{ABCD}$ is trapezium.

Q16. In fig, $\operatorname{ar}(\mathrm{DRC})=\operatorname{ar}(\mathrm{DPC})$ and $\operatorname{ar}(\mathrm{BDP})=\operatorname{ar}(\mathrm{ARC})$. Show that both the quadrilaterals ABCD and DCPR are trapeziums.

Sol. \quad ar $(\triangle \mathrm{DRC})=\operatorname{ar}(\triangle \mathrm{DPC})$.
[Given]
$\therefore \quad \triangle \mathrm{DRC}$ and $\triangle \mathrm{DPC}$ must lie between the same parallels.
So, DC \| RP.
\therefore Quadrilateral DCPR is a trapezium.
Again, we have
ar $(\triangle \mathrm{BDP})=\operatorname{ar}(\triangle \mathrm{ARC})$
Also, ar $(\triangle \mathrm{DPC})=\operatorname{ar}(\triangle \mathrm{DRC})$
[Given]
[Given]
Substracting (2) from (1) we get :
ar $(\triangle \mathrm{BDP})-\operatorname{ar}(\triangle \mathrm{DPC})=\operatorname{ar}(\triangle \mathrm{ARC})-\operatorname{ar}(\triangle \mathrm{DRC})$
ar $(\triangle \mathrm{BDC})=\operatorname{ar}(\triangle \mathrm{ADC})$.
Since, they are on the same base DC
$\therefore \quad \triangle \mathrm{BDC}$ and $\triangle \mathrm{ADC}$ must lie between the same parallels
So; $\mathrm{AB} \| \mathrm{DC}$.
\therefore Quadrilateral ABCD is a trapezium.

