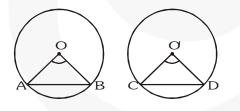

<mark>∛Saral</mark>


Ex - 10.2

- **Q1.** Recall that two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.
- Sol. Given : Two congruent circles C(O, r) and C(O', r) which have chords AB and CD respectively such that AB = CD.

	AB = CD	[Given]
	OA = O'C	[Each equal to r]
	OB = O'D	[Each equal to r]
<i>.</i>	$AOB \cong \Delta CO'D$	[By SSS-congruence]
\Rightarrow	∠AOB = ∠CO'D [C.P.C.T.]	

- **Q2.** Prove that if chords of congruent circles subtend equal angles at their centres, then the chords are equal.
- Sol. Given : Two congruent circle C(O, r) and C(O', r) which have chords AB and CD respectively, such that $\angle AOB = \angle CO'D$

To prove : AB = CD

Proof : In \triangle AOB and \triangle CO'D, we have :

 $OA = O'C \qquad [a]$ $OB = O'D \qquad [a]$ $\angle AOB = \angle CO'D \qquad [s]$ $\therefore \quad \Delta AOB \cong \Delta CO'D \qquad [n]$ Hence, AB = CD

[each equal to r] [each equal to r] [given] [by SAS - criterion] [C.P.C.T.]