

NCERT SOLUTIONS

Coordinate Geometry

Ex-7.1

Q1. Find the distance between the following pairs of points :
(a) $(2,3),(4,1)$
(b) $(-5,7),(-1,3)$
(c) $(a, b),(-a,-b)$

Sol.(a) The given points are : $\mathrm{A}(2,3), \mathrm{B}(4,1)$.
Required distance $=A B=B A=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$\mathrm{AB}=\sqrt{(4-2)^{2}+(1-3)^{2}}=\sqrt{(2)^{2}+(-2)^{2}}$
$=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$ units
(b) Here $\mathrm{x}_{1}=-5, \mathrm{y}_{1}=7$ and $\mathrm{x}_{2}=-1, \mathrm{y}_{2}=3$
\therefore The required distance
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{[-1-(-5)]^{2}+(3-7)^{2}}$
$=\sqrt{(-1+5)^{2}+(-4)^{2}}$
$=\sqrt{16+16}=\sqrt{32}=\sqrt{2 \times 16}$
$=4 \sqrt{2}$ units
(c) Here $\mathrm{x}_{1}=\mathrm{a}, \mathrm{y}_{1}=\mathrm{b}$ and $\mathrm{x}_{2}=-\mathrm{a}, \mathrm{y}_{2}=-\mathrm{b}$
\therefore The required distance

$$
\begin{aligned}
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-a-a)^{2}+(-b-b)^{2}} \\
& =\sqrt{(-2 a)^{2}+(-2 b)^{2}}=\sqrt{4 a^{2}+4 b^{2}} \\
& =\sqrt{4\left(a^{2}+b^{2}\right)}=2 \sqrt{\left(a^{2}+b^{2}\right)} \text { units }
\end{aligned}
$$

Q2. Find the distance between the points $(0,0)$ and $(36,15)$.

Sol. Part-I

Let the points be $\mathrm{A}(0,0)$ and $\mathrm{B}(36,15)$

$$
\begin{aligned}
& \therefore \quad \mathrm{AB}=\sqrt{(36-0)^{2}+(15-0)^{2}} \\
&=\sqrt{(36)^{2}+(15)^{2}}=\sqrt{1296+225} \\
&=\sqrt{1521}=\sqrt{39^{2}}=39
\end{aligned}
$$

Part-II

We have $\mathrm{A}(0,0)$ and $\mathrm{B}(36,15)$ as the positions of two towns

Here $\mathrm{x}_{1}=0, \mathrm{x}_{2}=36$ and $\mathrm{y}_{1}=0, \mathrm{y}_{2}=15$
$\therefore \quad \mathrm{AB}=\sqrt{(36-0)^{2}+(15-0)^{2}}=39 \mathrm{~km}$

Q3. Determine if the points $(1,5),(2,3)$ and $(-2,-11)$ are collinear.
Sol. The given points are :
$\mathrm{A}(1,5), \mathrm{B}(2,3)$ and $\mathrm{C}(-2,-11)$.
Let us calculate the distance : AB, BC and CA by using distance formula.

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(2-1)^{2}+(3-5)^{2}}=\sqrt{(1)^{2}+(-2)^{2}} \\
& =\sqrt{1+4}=\sqrt{5} \text { units } \\
\mathrm{BC} & =\sqrt{(-2-2)^{2}+(-11-3)^{2}}=\sqrt{(-4)^{2}+(-14)^{2}} \\
& =\sqrt{16+196}=\sqrt{212}=2 \sqrt{53} \text { units } \\
\mathrm{CA} & =\sqrt{(-2-1)^{2}+(-11-5)^{2}} \\
& =\sqrt{(-3)^{2}+(-16)^{2}}=\sqrt{9+256}=\sqrt{265} \\
& =\sqrt{5} \times \sqrt{53} \text { units }
\end{aligned}
$$

From the above we see that: $\mathrm{AB}+\mathrm{BC} \neq \mathrm{CA}$
Hence the above stated points $\mathrm{A}(1,5), \mathrm{B}(2,3)$ and $\mathrm{C}(-2,-11)$ are not collinear.
Q4. Check whether $(5,-2),(6,4)$ and $(7,-2)$ are the vertices of an isosceles triangle.
Sol. Let the points be $\mathrm{A}(5,-2), \mathrm{B}(6,4)$ and $\mathrm{C}(7,-2)$.

$$
\begin{aligned}
\therefore \quad \mathrm{AB} & =\sqrt{(6-5)^{2}+[4-(-2)]^{2}} \\
& =\sqrt{(1)^{2}+(6)^{2}}=\sqrt{1+36}=\sqrt{37} \\
\mathrm{BC} & =\sqrt{(7-6)^{2}+(-2-4)^{2}} \\
& =\sqrt{(1)^{2}+(-6)^{2}}=\sqrt{1+36}=\sqrt{37} \\
\mathrm{AC} & =\sqrt{(7-5)^{2}+(-2-(-2))^{2}} \\
& =\sqrt{(+2)^{2}+(0)^{2}}=\sqrt{4+0}=2
\end{aligned}
$$

We have $A B=B C \neq A C$.
$\therefore \quad \triangle \mathrm{ABC}$ is an isosceles triangle.

Q5. In a classroom, 4 friends are seated at the points A, B, C and D as shown in fig. Champa and Chameli walk into the class and after observing for a few minutes Champa asks Chameli, "Don't you think ABCD is a rectangle?" Chameli disagrees. Using distance formula, find which of them is correct.

Sol. Let the number of horizontal columns represent the x-coordinates whereas the vertical rows represent the y-coordinates.
$\therefore \quad$ The points are $: \mathrm{A}(3,4), \mathrm{B}(6,7), \mathrm{C}(9,4)$ and $\mathrm{D}(6,1)$
$\therefore \quad \mathrm{AB}=\sqrt{(6-3)^{2}+(7-4)^{2}}$
$=\sqrt{(3)^{2}+(3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
$B C=\sqrt{(9-6)^{2}+(4-7)^{2}}$
$=\sqrt{3^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
$\mathrm{CD}=\sqrt{(6-9)^{2}+(1-4)^{2}}$
$=\sqrt{(-3)^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
$\mathrm{AD}=\sqrt{(6-3)^{2}+(1-4)^{2}}$
$=\sqrt{(3)^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
Since, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}$ i.e., All the four sides are equal
Also $\mathrm{AC}=\sqrt{(9-3)^{2}+(4-4)^{2}}$
$=\sqrt{(+6)^{2}+(0)^{2}}=6$ and
$\mathrm{BD}=\sqrt{(6-6)^{2}+(1-7)^{2}}=\sqrt{(0)^{2}+(-6)^{2}}=6$
i.e., $\mathrm{BD}=\mathrm{AC}$
\Rightarrow Both the diagonals are also equal.
$\therefore \quad \mathrm{ABCD}$ is a square.
Thus, Chameli is correct as ABCD is not a rectangle.

Q6. Name the quadrilateral formed, if any, by the following points, and give reasons for your answer.
(i) $(-1,-2),(1,0),(-1,2),(-3,0)$
(ii) $(-3,5),(3,1),(0,3),(-1,-4)$
(iii) $(4,5),(7,6),(4,3),(1,2)$

Sol. (i) $\mathrm{A}(-1,-2), \mathrm{B}(1,0), \mathrm{C}(-1,2), \mathrm{D}(-3,0)$
Determine distances : $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}, \mathrm{AC}$ and BD .
$\mathrm{AB}=\sqrt{(1+1)^{2}+(0+2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$\mathrm{BC}=\sqrt{(-1-1)^{2}+(2-0)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$\mathrm{CD}=\sqrt{(-3+1)^{2}+(0-2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$\mathrm{DA}=\sqrt{(-1+3)^{2}+(-2-0)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
The sides of the quadrilateral are equal
$\mathrm{AC}=\sqrt{(-1+1)^{2}+(2+2)^{2}}=\sqrt{0+16}=4$
$\mathrm{BD}=\sqrt{(-3-1)^{2}+(0-0)^{2}}=\sqrt{16+0}=4$
Diagonal AC = Diagonal BD. \qquad (2)

From (1) and (2) we conclude that ABCD is a square.
(ii) Let the points be $\mathrm{A}(-3,5), \mathrm{B}(3,1), \mathrm{C}(0,3)$ and $\mathrm{D}(-1,-4)$.

$$
\begin{aligned}
\therefore \mathrm{AB} & =\sqrt{[3-(-3)]^{2}+(1-5)^{2}} \\
& =\sqrt{6^{2}+(-4)^{2}}=\sqrt{36+16} \\
& =\sqrt{52}=2 \sqrt{13} \\
\mathrm{BC} & =\sqrt{(0-3)^{2}+(3-1)^{2}}=\sqrt{9+4}=\sqrt{13} \\
\mathrm{CD} & =\sqrt{(-1-0)^{2}+(-4-3)^{2}}=\sqrt{(-1)^{2}+(-7)^{2}} \\
& =\sqrt{1+49}=\sqrt{50} \\
\mathrm{DA} & =\sqrt{[-3-(-1)]^{2}+[5-(-4)]^{2}} \\
& =\sqrt{(-2)^{2}+(9)^{2}} \\
& =\sqrt{4+81}=\sqrt{85} \\
\mathrm{AC} & =\sqrt{[0-(-3))^{2}+(3-5)^{2}}=\sqrt{(3)^{2}+(-2)^{2}} \\
& =\sqrt{9+4}=\sqrt{13} \\
\mathrm{BD} & =\sqrt{(-1-3)^{2}+(-4-1)^{2}}=\sqrt{(-4)^{2}+(-5)^{2}} \\
& =\sqrt{16+25}=\sqrt{41}
\end{aligned}
$$

We see that $\sqrt{13}+\sqrt{13}=2 \sqrt{13}$
i.e., $\mathrm{AC}+\mathrm{BC}=\mathrm{AB}$
$\Rightarrow \mathrm{A}, \mathrm{B}$ and C are collinear. Thus, ABCD is not a quadrilateral.
(iii) Let the points be $\mathrm{A}(4,5), \mathrm{B}(7,6), \mathrm{C}(4,3)$ and $\mathrm{D}(1,2)$.
$\therefore A B=\sqrt{(7-4)^{2}+(6-5)^{2}}=\sqrt{3^{2}+1^{2}}=\sqrt{10}$
$\mathrm{BC}=\sqrt{(4-7)^{2}+(3-6)^{2}}$
$=\sqrt{(-3)^{2}+(-3)^{2}}=\sqrt{18}$
$\mathrm{CD}=\sqrt{(1-4)^{2}+(2-3)^{2}}$
$=\sqrt{(-3)^{2}+(-1)^{2}}=\sqrt{10}$
$\mathrm{DA}=\sqrt{(1-4)^{2}+(2-5)^{2}}=\sqrt{9+9}=\sqrt{18}$
$\mathrm{AC}=\sqrt{(4-4)^{2}+(3-5)^{2}}=\sqrt{0+(-2)^{2}}=2$
$\mathrm{BD}=\sqrt{(1-7)^{2}+(2-6)^{2}}=\sqrt{36+16}=\sqrt{52}$
Since, $\mathrm{AB}=\mathrm{CD}, \mathrm{BC}=\mathrm{DA}$ [opposite sides of the quadrilateral are equal]
And $\mathrm{AC} \neq \mathrm{BD} \Rightarrow$ Diagonals are unequal.
$\therefore \mathrm{ABCD}$ is a parallelogram.
Q7. Find the point on the x-axis which is equidistant from $(2,-5)$ and $(-2,9)$.
Sol. We know that any point on x -axis has its ordinate $=0$
Let the required point be $\mathrm{P}(\mathrm{x}, 0)$.
Let the given points be $\mathrm{A}(2,-5)$ and $\mathrm{B}(-2,9)$

$$
\begin{aligned}
\therefore \quad \mathrm{AP} & =\sqrt{(x-2)^{2}+5^{2}}=\sqrt{x^{2}-4 x+4+25} \\
& =\sqrt{x^{2}-4 x+29} \\
\mathrm{BP} & =\sqrt{[x-(-2)]^{2}+(-9)^{2}}=\sqrt{(x+2)^{2}+(-9)^{2}} \\
& =\sqrt{x^{2}+4 x+4+81}=\sqrt{x^{2}+4 x+85}
\end{aligned}
$$

Since, A and B are equidistant from P,
$\therefore \quad \mathrm{AP}=\mathrm{BP}$
$\Rightarrow \sqrt{x^{2}-4 x+29}=\sqrt{x^{2}+4 x+85}$
$\Rightarrow x^{2}-4 \mathrm{x}+29=\mathrm{x}^{2}+4 \mathrm{x}+85$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}-\mathrm{x}^{2}-4 \mathrm{x}=85-29$
$\Rightarrow-8 \mathrm{x}=56 \Rightarrow \mathrm{x}=\frac{56}{-8}=-7$
\therefore The required point is $(-7,0)$

Q8. Find the values of y for which the distance between the points $\mathrm{P}(2,-3)$ and $\mathrm{Q}(10, \mathrm{y})$ is 10 units.
Sol. Distance between $\mathrm{P}(2,-3)$ and $\mathrm{Q}(10, \mathrm{y})=10$ units
$\Rightarrow \sqrt{(10-2)^{2}+(y+3)^{2}}=10$
$\Rightarrow 64+(y+3)^{2}=100$
$\Rightarrow(y+3)^{2}=36$
$\Rightarrow y^{2}+6 y+9=36$
$y^{2}+6 y-27=0$
$\Rightarrow y^{2}+9 y-3 y-27=0$
$\Rightarrow \mathrm{y}(\mathrm{y}+9)-3(\mathrm{y}+9)=0$
$\Rightarrow(\mathrm{y}+9)(\mathrm{y}-3)=0$
$\Rightarrow \mathrm{y}+9=0$ or $\mathrm{y}-3=0$
$\Rightarrow y=-9$ or 3
Hence, there can be two values of y which are -9 and 3 .
Q9. If $\mathrm{Q}(0,1)$ is equidistant from $\mathrm{P}(5,-3)$ and $\mathrm{R}(\mathrm{x}, 6)$, find the values of x . Also find the distances QR and PR.

Sol. Here, $\mathrm{QP}=\sqrt{(5-0)^{2}+[(-3)-1]^{2}}=\sqrt{5^{2}+(-4)^{2}}$

$$
=\sqrt{25+16}=\sqrt{41}
$$

$\mathrm{QR}=\sqrt{(\mathrm{x}-0)^{2}+(6-1)^{2}}=\sqrt{\mathrm{x}^{2}+5^{2}}=\sqrt{\mathrm{x}^{2}+25}$
$\because \quad \mathrm{QP}=\mathrm{QR}$
$\therefore \quad \sqrt{41}=\sqrt{\mathrm{x}^{2}+25}$
Squaring both sides, we have $x^{2}+25=41$
$\Rightarrow x^{2}+25-41=0$
$\Rightarrow \mathrm{x}^{2}-16=0 \Rightarrow \mathrm{x}= \pm \sqrt{16}= \pm 4$
Thus, the point R is $(4,6)$ or $(-4,6)$
Now,
$\mathrm{QR}=\sqrt{[(\pm 4)-(0)]^{2}+(6-1)^{2}}=\sqrt{16+25}=\sqrt{41}$
and PR $=\sqrt{(\pm 4-5)^{2}+(6+3)^{2}}$
$\Rightarrow \mathrm{PR}=\sqrt{(-4-5)^{2}+(6+3)^{2}}$
or $\sqrt{(4-5)^{2}+(6+3)^{2}}$
$\Rightarrow \mathrm{PR}=\sqrt{(-9)^{2}+9^{2}}$ or $\sqrt{1+81}$
$\Rightarrow \mathrm{PR}=\sqrt{2 \times 9^{2}}$ or $\sqrt{82}$
$\Rightarrow \mathrm{PR}=9 \sqrt{2}$ or $\sqrt{82}$

Q10. Find a relation between x and y such that the point (x, y) is equidistant from the point $(3,6)$ and $(-3,4)$.
Sol. $\mathrm{A}(3,6)$ and $\mathrm{B}(-3,4)$ are the given points. Point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is equidistant from the points A and B.
$\Rightarrow \mathrm{PA}=\mathrm{PB}$
$\Rightarrow \sqrt{(x-3)^{2}+(y-6)^{2}}=\sqrt{(x+3)^{2}+(y-4)^{2}}$
$\Rightarrow(\mathrm{x}-3)^{2}+(\mathrm{y}-6)^{2}=(\mathrm{x}+3)^{2}+(\mathrm{y}-4)^{2}$
$\Rightarrow\left(\mathrm{x}^{2}-6 \mathrm{x}+9\right)+\left(\mathrm{y}^{2}-12 \mathrm{y}+36\right)$
$=\left(x^{2}+6 x+9\right)+\left(y^{2}-8 y+16\right)$
$\Rightarrow-6 x-12 y+45=6 x-8 y+25$
$\Rightarrow 12 \mathrm{x}+4 \mathrm{y}-20=0 \Rightarrow 3 \mathrm{x}+\mathrm{y}-5=0$

Ex-7.2

Q1. Find the co-ordinates of the point which divides the line joining of $(-1,7)$ and $(4,-3)$ in the ratio $2: 3$.
Sol. Let the required point be $\mathrm{P}(\mathrm{x}, \mathrm{y})$.
Here the end points are $(-1,7)$ and $(4,-3)$
$\because \quad$ Ratio $=2: 3=\mathrm{m}_{1}: \mathrm{m}_{2}$
$\therefore \quad x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}=\frac{(2 \times 4)+3(-1)}{2+3}$
$=\frac{8-3}{5}=\frac{5}{5}=1$
And $y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}$

$$
=\frac{2 \times(-3)+(3 \times 7)}{2+3}=\frac{-6+21}{5}=\frac{15}{5}=3
$$

Thus, the required point is $(1,3)$.
Q2. Find the coordinates of the points of trisection of the line segment joining $(4,-1)$ and $(-2,-3)$.

Sol.

Points P and Q trisect the line segment joining the points $\mathrm{A}(4,-1)$ and $\mathrm{B}(-2,-3)$,
i.e., $\mathrm{AP}=\mathrm{PQ}=\mathrm{QB}$.

Here, P divides AB in the ratio $1: 2$ and Q divides AB in the ratio $2: 1$.
x -coordinate of $\mathrm{P}=\frac{1 \times(-2)+2 \times(4)}{1+2}=\frac{6}{3}=2$;
y -coordinate of $\mathrm{P}=\frac{1 \times(-3)+2 \times(-1)}{1+2}=\frac{-5}{3}$
Thus, the coordinates of P are $\left(2, \frac{-5}{3}\right)$.
Now, x coordinate of $\mathrm{Q}=\frac{2 \times(-2)+1(4)}{2+1}=0$;
y -coordinate of $\mathrm{Q}=\frac{2 \times(-3)+1 \times(-1)}{2+1}=-\frac{7}{3}$
Thus, the coordinates of Q are $\left(0,-\frac{7}{3}\right)$.
Hence, the points of trisection are $P\left(2, \frac{-5}{3}\right)$ and $Q\left(0,-\frac{7}{3}\right)$.

Q3. To conduct Sports Day activities, in your rectangular shaped school ground ABCD, lines have been drawn with chalk powder at a distance of 1 m each. 100 flower pots have been placed at a distance of 1 m from each other along AD , as shown in fig. Niharika runs $\frac{1}{4}$ th the distance AD on the 2 nd line and posts a green flag. Preet runs $\frac{1}{5}$ th the distance AD on the eighth line and posts a red flag. What is the distance between both the flags? If Rashmi has to post a blue flag exactly halfway between the line segment joining the two flags, where should she post her flag?

Sol. Let us consider ' A ' as origin, then

$A B$ is the x-axis.
$A D$ is the y-axis.
Now, the position of green flag-post is
$\left(2, \frac{100}{4}\right)$ or $(2,25)$
And, the position of red flag-post is
$\left(8, \frac{100}{5}\right)$ or $(8,20)$
\Rightarrow Distance between both the flags
$=\sqrt{(8-2)^{2}+(20-25)^{2}}$

$$
=\sqrt{6^{2}+(-5)^{2}}=\sqrt{36+25}=\sqrt{61}
$$

Let the mid-point of the line segment joining the two flags be $M(x, y)$.

$\therefore \quad \mathrm{x}=\frac{2+8}{2}$ and $\mathrm{y}=\frac{25+20}{2}$
or $\mathrm{x}=5$ and $\mathrm{y}=22.5$
Thus, the blue flag is on the 5th line at a distance 22.5 m above AB .
Q4. Find the ratio in which the line segment joining the points $(-3,10)$ and $(6,-8)$ is divided by $(-$ $1,6)$.
Sol. Let the required ratio be $\mathrm{K}: 1$

$$
\left.\begin{gathered}
\text { Comparing x-coordinate } \\
\begin{array}{c}
\frac{\mathrm{k} \times(6)+1 \times(-3)}{\mathrm{k}+1}=-1
\end{array} \\
\begin{array}{c}
\text { Comparing y-coordinate } \\
\Rightarrow 6 \mathrm{k}-3=-\mathrm{k}-1 \\
\Rightarrow 7 \mathrm{k}=2 \\
\Rightarrow \mathrm{k}=\frac{2}{7}
\end{array} \\
\end{gathered} \right\rvert\, \begin{array}{cc}
\frac{\mathrm{k} \times(-8)+1 \times(10)}{\mathrm{k}+1}=6
\end{array}
$$

Q5. Find the ratio in which the line segment joining
$A(1,-5)$ and $B(-4,5)$ is divided by the x-axis. Also find the coordinates of the point of division.
Sol. The given points are : $\mathrm{A}(1,-5)$ and $\mathrm{B}(-4,5)$. Let the required ratio $=\mathrm{k}: 1$ and the required point be $\mathrm{P}(\mathrm{x}, \mathrm{y})$
Part-I : To find the ratio
Since, the point P lies on x -axis,
\therefore Its y-coordinate is 0 .
$x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}$ and $0=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}$
$\Rightarrow \mathrm{x}=\frac{-4 \mathrm{k}+1}{\mathrm{k}+1}$ and $0=\frac{5 \mathrm{k}-5}{\mathrm{k}+1}$
$\Rightarrow \mathrm{x}(\mathrm{k}+1)=-4 \mathrm{k}+1$
and $5 \mathrm{k}-5=0 \Rightarrow \mathrm{k}=1$
$\Rightarrow \mathrm{x}(\mathrm{k}+1)=-4 \mathrm{k}+1$
$\Rightarrow \mathrm{x}(1+1)=-4+1 \quad[\because \mathrm{k}=1]$
$\Rightarrow 2 \mathrm{x}=-3$
$\Rightarrow \mathrm{x}=-\frac{3}{2}$
\therefore The required ratio $\mathrm{k}: 1=1: 1$
Coordinates of P are $(\mathrm{x}, 0)=\left(\frac{-3}{2}, 0\right)$
Q6. If $(1,2),(4, y),(x, 6)$ and $(3,5)$ are the vertices of a parallelogram taken in order, find x and y.
Sol. Mid-point of the diagonal AC has x-coordinate
$=\frac{x+1}{2}$ and y-coordinate $=\frac{6+2}{2}=4$
i.e., $\left(\frac{x+1}{2}, 4\right)$ is the mid-point of AC.

Similarly, mid-point of the diagonal BD is
$\left(\frac{4+3}{2}, \frac{y+5}{2}\right)$, i.e., $\left(\frac{7}{2}, \frac{y+5}{2}\right)$
We know that the two diagonals AC and BD bisect each other at M . Therefore,
$\left(\frac{x+1}{2}, 4\right)$ and $\left(\frac{7}{2}, \frac{y+5}{2}\right)$. Coincide
$\Rightarrow \frac{x+1}{2}=\frac{7}{2}$ and $\frac{y+5}{2}=4$
$\Rightarrow \mathrm{x}=6$ and $\mathrm{y}=3$
Q7. Find the coordinates of a point A , where AB is the diameter of a circle whose centre is $(2,-$ $3)$ and B is $(1,4)$.
Sol. Here, centre of the circle is $\mathrm{O}(2,-3)$
Let the end points of the diameter be $\mathrm{A}(\mathrm{x}, \mathrm{y})$ and $\mathrm{B}(1,4)$

The centre of a circle bisects the diameter.
$\therefore \quad 2=\frac{\mathrm{x}+1}{2} \Rightarrow \mathrm{x}+1=4$ or $\mathrm{x}=3$
And $-3=\frac{y+4}{2} \Rightarrow y+4=-6$ or $y=-10$
Here, the coordinates of A are ($3,-10$)

Q8. If A and B are $(-2,-2)$ and $(2,-4)$, respectively, find the coordinates of P such that $\mathrm{AP}=$ $\frac{3}{7} \mathrm{AB}$ and P lies on the line segment AB .

Sol.

$\mathrm{AP}=\frac{3}{7} \mathrm{AB}$,
$\mathrm{BP}=\mathrm{AB}-\mathrm{AP}=\mathrm{AB}-\frac{3}{7} \mathrm{AB}=\frac{4}{7} \mathrm{AB}$
$\frac{A P}{B P}=\frac{\frac{3}{7} A B}{\frac{4}{7} A B}=\frac{3}{4}$
Thus, P divides AB in the ratio $3: 4$.
x-coordinate of $\mathrm{P}=\frac{3 \times(2)+4 \times(-2)}{3+4}=-\frac{2}{7}$
y-coordinate of $\mathrm{P}=\frac{3 \times(-4)+4 \times(-2)}{3+4}=-\frac{20}{7}$
Hence, the coordiantes of P are $\left(-\frac{2}{7},-\frac{20}{7}\right)$.
Q9. Find the coordinates of the points which divide the line segment joining $\mathrm{A}(-2,2)$ and $\mathrm{B}(2$, 8) into four equal parts.

Sol. Here, the given points are $\mathrm{A}(-2,2)$ and $\mathrm{B}(2,8)$
Let $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3} divide AB in four equal parts.

$\because \quad \mathrm{AP}_{1}=\mathrm{P}_{1} \mathrm{P}_{2}=\mathrm{P}_{2} \mathrm{P}_{3}=\mathrm{P}_{3} \mathrm{~B}$
Obviously, P_{2} is the mid-point of AB
\therefore Coordinates of P_{2} are

$$
\left(\frac{-2+2}{2}, \frac{2+8}{2}\right) \text { or }(0,5)
$$

Again, P_{1} is the mid-point of AP_{2}.
\therefore Coordinates of P_{1} are

$$
\left(\frac{-2+0}{2}, \frac{2+5}{2}\right) \text { or }\left(-1, \frac{7}{2}\right)
$$

Also P_{3} is the mid-point of $\mathrm{P}_{2} \mathrm{~B}$.
\therefore Coordinates of P_{3} are

$$
\left(\frac{0+2}{2}, \frac{5+8}{2}\right) \text { or }\left(1, \frac{13}{2}\right)
$$

Thus, the coordinates of $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3} are $\left(-1, \frac{7}{2}\right),(0,5)$ and $\left(1, \frac{13}{2}\right)$ respectively.

Q10. Find the area of a rhombus if its vertices are $(3,0),(4,5),(-1,4)$ and $(-2,-1)$ taken in order.
Sol. Diagonals AC and BD bisect each other at right angle to each other at O.

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{AC}=\sqrt{(-1-3)^{2}+(4-0)^{2}} \\
=\sqrt{16+16}=\sqrt{32}=4 \sqrt{2}
\end{array} \\
& \mathrm{BD}=\sqrt{(4+2)^{2}+(5+1)^{2}}=\sqrt{36+36}=6 \sqrt{2} \\
& \text { Then } \mathrm{OA}=\frac{1}{2} \mathrm{AC}=\frac{1}{2} \times 4 \sqrt{2}=2 \sqrt{2} \\
& \quad \mathrm{OB}=\frac{1}{2} \mathrm{BD}=\frac{1}{2} \times 6 \sqrt{2}=3 \sqrt{2}
\end{aligned}
$$

Area of $\triangle \mathrm{AOB}=\frac{1}{2}(\mathrm{OA}) \times(\mathrm{OB})=\frac{1}{2} \times 2 \sqrt{2} \times 3 \sqrt{2}=6$ sq. units
Hence, the area of the rhombus ABCD
$=4 \times$ area of $\triangle \mathrm{AOB}=4 \times 6=24$ sq. units.

Ex - 7.3

Q1. Find the area of the triangle whose vertices are :
(i) $(2,3),(-1,0),(2,-4)$
(ii) $(-5,-1),(3,-5),(5,2)$

Sol. (i) Let the vertices of the triangles be $\mathrm{A}(2,3), \mathrm{B}(-1,0)$ and $\mathrm{C}(2,-4)$
Here $\mathrm{x}_{1}=2, \mathrm{y}_{1}=3$,

$$
\begin{aligned}
& x_{2}=-1, y_{2}=0 \\
& x_{3}=2, y_{3}=-4
\end{aligned}
$$

\because Area of a Δ

$$
=\frac{1}{2}\left[\mathrm{x}_{1}\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)+\mathrm{x}_{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right]
$$

\therefore Area of a Δ

$$
\begin{aligned}
& =\frac{1}{2}[2\{0-(-4)+(-1)\{-4-(3)\}+2\{3-0\}] \\
& =\frac{1}{2}[2(0+4)+(-1)(-4-3)+2(3)] \\
& =\frac{1}{2}[8+7+6]=\frac{1}{2}[21]=\frac{21}{2} \text { sq.units }
\end{aligned}
$$

(ii) $\mathrm{A}(-5,-1), \mathrm{B}(3,-5), \mathrm{C}(5,2)$ are the vertices of the given triangle.
$x_{1}=-5, x_{2}=3, x_{3}=5 ; y_{1}=-1, y_{2}=-5, y_{3}=2$.
Area of the $\triangle \mathrm{ABC}$
$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=\frac{1}{2}[-5 \times(-5-2)+3 \times(2+1)+5 \times(-1+5)]$
$=\frac{1}{2}[35+9+20]=\frac{1}{2}[64]=32$ sq. units
Q2. In each of the following find the value of ' k ', for which the points are collinear.
(i) $(7,-2),(5,1),(3, \mathrm{k})$
(ii) $(8,1),(\mathrm{k}-4),(2,-5)$.

Sol. The given three points will be collinear if the Δ formed by them has equal to zero area.
(i) Let $\mathrm{A}(7,-2), \mathrm{B}(5,1)$ and $\mathrm{C}(3, \mathrm{k})$ be the vertices of a triangle.
\therefore The given points will be collinear, if

$$
\text { ar }(\triangle \mathrm{ABC})=0
$$

or $7(1-k)+5(k+2)+3(-2-1)=0$
$\Rightarrow 7-7 \mathrm{k}+5 \mathrm{k}+10+(-6)-3=0$
$\Rightarrow 17-9+5 \mathrm{k}-7 \mathrm{k}=0$
$\Rightarrow 8-2 \mathrm{k}=0 \Rightarrow 2 \mathrm{k}=8$
$\Rightarrow \mathrm{k}=\frac{8}{2}=4$
The required value of $k=4$.
(ii) $\mathrm{A}(8,1), \mathrm{B}(\mathrm{k},-4), \mathrm{C}(2,-5)$ are the given points.

$$
\begin{aligned}
& x_{1}=8, x_{2}=k, x_{3}=2 \\
& y_{1}=1, y_{2}=-4, y_{3}=-5
\end{aligned}
$$

the condition for the three points to be collinear is
$x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)=0$
$8 \times(-4+5)+k \times(-5-1)+2 \times(1+4)=0$
i.e. $\quad 8-6 k+10=0$, i.e., $6 k=18$, i.e., $k=3$

Q3. Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are $(0,-1),(2,1)$ and $(0,3)$. Find the ratio of this area of the area of the given triangle.
Sol. Let the vertices of the triangle be $\mathrm{A}(0,-1), \mathrm{B}(2,1)$ and $\mathrm{C}(0,3)$.
Let D, E and F be the mid-points of the sides BC, CA and AB respectively. Then :
Coordinates of D are

$$
\left(\frac{2+0}{2}, \frac{1+3}{2}\right) \text { i.e., }\left(\frac{2}{2}, \frac{4}{2}\right) \text { or }(1,2)
$$

Coordinates of E are $\left(\frac{0+0}{2}, \frac{3+(-1)}{2}\right)$ i.e., $(0,1)$
Coordinates of F are $\left(\frac{2+0}{2}, \frac{1+(-1)}{2}\right)$ i.e., (1,0)

Now, $\operatorname{ar}(\triangle \mathrm{ABC})$

$$
\begin{aligned}
& =\frac{1}{2}[0(1-3)+2\{3-(-1)\}+0(-1-1)] \\
& =\frac{1}{2}[0(-2)+8+0(-2)] \\
& =\frac{1}{2}[0+8+0]=\frac{1}{2} \times 8=4 \text { sq. units }
\end{aligned}
$$

Now, ar $(\triangle \mathrm{DEF})=\frac{1}{2}[1(1-0)+0(0-2)+1(2-1)]$

$$
=\frac{1}{2}[1(1)+0+1(1)]
$$

$=\frac{1}{2}[1+0+1]=\frac{1}{2} \times 2=1$ sq. unit
$\therefore \quad \frac{\operatorname{ar}(\triangle \mathrm{DEF})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{1}{4}$
$\therefore \operatorname{ar}(\triangle \mathrm{DEF}): \operatorname{ar}(\triangle \mathrm{ABC})=1: 4$.
Q4. Find the area of the quadrilateral whose vertices taken in order are
$(-4,-2),(-3,-5),(3,-2)$ and $(2,3)$.
Sol. Join A and C. The given points are
$\mathrm{A}(-4,-2), \mathrm{B}(-3,-5), \mathrm{C}(3,-2)$ and $\mathrm{D}(2,3)$

Area of $\triangle \mathrm{ABC}$
$=\frac{1}{2}[(-4)(-5+2)-3(-2+2)+3(-2+5)]$
$=\frac{1}{2}[12+0+9]=\frac{21}{2}=10.5$ sq. units
Area of $\triangle \mathrm{ACD}$
$=\frac{1}{2}[(-4)(-2-3)+3(3+2)+2(-2+2)]$
$=\frac{1}{2}\left[20+15 \left\lvert\,=\frac{35}{2}=17.5\right.\right.$ sq. units.
Area of quadrilateral ABCD
$=\operatorname{ar} .(\triangle \mathrm{ABC})+\operatorname{ar} .(\triangle \mathrm{ACD})$
$=(10.5+17.5)$ sq. units $=28$ sq. units

Q5. A median of a triangle divides it into two triangles of equal areas. Verify this result for $\triangle \mathrm{ABC}$ whose vertices are $\mathrm{A}(4,-6), \mathrm{B}(3,-2)$ and $\mathrm{C}(5,2)$
Sol. Here, the vertices of the triangles are $\mathrm{A}(4,-6), \mathrm{B}(3,-2)$ and $\mathrm{C}(5,2)$.
Let D be the midpoint of BC .
\therefore The coordinates of the mid point D are

$$
\left\{\frac{3+5}{2}, \frac{-2+2}{2}\right\} \text { or }(4,0) .
$$

Since, AD divides the triangle ABC into two parts i.e., $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$,

Now, ar($\triangle \mathrm{ABD})$
$=\frac{1}{2}[4\{(-2)-0\}+3(0+6)+4(-6+2)]$
$=\frac{1}{2}[(-8)+18+(-16)]=\frac{1}{2}(-6)=-3$ sq. units
$=3$ sq. units(numerically)
$\operatorname{ar}(\triangle \mathrm{ADC})=\frac{1}{2}[4(0-2)+4(2+6)+5(-6-0)]$
$=\frac{1}{2}[-8+32-30]=\frac{1}{2}[-6]=-3$ sq.units
$=3$ sq.units (numerically)
From (1) and (2)

$$
\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ADC})
$$

i.e., A median divides the triangle into two triangles of equal areas.

