

NCERT SOLUTIONS

Constructions

Ex-11.1

Q1. Draw a line segment of length 7.6 cm and divide it in the ratio $5: 8$. Measure the two parts.
Sol. Steps of construction :

1. Draw $\mathrm{AB}=7.6 \mathrm{~cm}$.
2. $A X$ is any ray making an acute angle with $A B$ above the line AB .
3. Draw ray BY below the line AB and parallel to the ray AX by constructing $\angle \mathrm{ABY}=\angle \mathrm{BAX}$.
4. Mark points $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{5}$ on AX and $\mathrm{B}_{1}, \mathrm{~B}_{2}$, $\ldots . ., B_{8}$ on $B Y$ such that $A_{1}=A_{1} A_{2}=\ldots .=$ $\mathrm{A}_{4} \mathrm{~A}_{5}=\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\ldots .=\mathrm{B}_{7} \mathrm{~B}_{8}$.
5. Join $A_{5} B_{8}$. It intersects $A B$ at C.

Now, C divides AB in the ratio $5: 8$.
Q2. Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm and then a triangle similar to it whose sides are $2 / 3$ of the correspoding sides of the first triangle.
Sol. Steps of construction :

1. Construct $\triangle \mathrm{ABC}$, such that $\mathrm{AB}=4 \mathrm{~cm}$,
$\mathrm{BC}=5 \mathrm{~cm}$ and $\mathrm{CA}=6 \mathrm{~cm}$.
2. Draw any ray BX making an acute angle with BC (below the side BC).
3. Mark three points B_{1}, B_{2}, B_{3} on $B X$ such that $\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}$.
4. Join $\mathrm{B}_{3} \mathrm{C}$
5. Through B_{2} draw $\mathrm{B}_{2} \mathrm{C}^{\prime} \| \mathrm{B}_{3} \mathrm{C}$ and let it intersect BC at C^{\prime}.
6. Through C^{\prime} draw $\mathrm{C}^{\prime} \mathrm{A}^{\prime} \| \mathrm{CA}$ and let it intersect

BA at A^{\prime}.
$\Delta A^{\prime} B C^{\prime}$ is the required triangle similar to the given $\triangle \mathrm{ABC}$ whose side are $2 / 3$ of the corresponding sides of the $\triangle \mathrm{ABC}$.

Q3. Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

Sol. Steps of Construction :

1. Construct a $\triangle \mathrm{ABC}$ such that $\mathrm{AB}=5 \mathrm{~cm}$,
$B C=7 \mathrm{~cm}$ and $\mathrm{AC}=6 \mathrm{~cm}$.

2. Draw a ray BX such that $\angle \mathrm{CBX}$ is an acute angle.
3. Mark 7 points $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}$ and X_{7} on $B X$ such that $B X_{1}=X_{1} X_{2}=X_{2} X_{3}=X_{3} X_{4}$ $=X_{4} X_{5}=X_{5} X_{6}=X_{6} X_{7}$
4. Join X_{5} to C.
5. Draw a line through X_{7} intersecting $B C$ (produced) at $C^{\prime \prime}$ such that $X_{5} C \| X_{7} C^{\prime}$
6. Draw a line through C^{\prime} parallel to CA to intersect BA (produced) at A^{\prime}.

Thus, $\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle.

Q4. Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are $1 \frac{1}{2}$ times the corresponding sides of the isosceles triangle.

Sol. Steps of construction :

1. Construct isosceles $\triangle \mathrm{ABC}$ such that $\mathrm{BC}=8 \mathrm{~cm}$ and altitude $\mathrm{AD}=4 \mathrm{~cm}$.
2. Draw any ray $B X$ making an acute angle with $B C$
3. Take B_{1}, B_{2}, B_{3} on $B X$ such that $B_{1}=B_{1} B_{2}=B_{2} B_{3}$.
4. Join $\mathrm{B}_{2} \mathrm{C}$.
5. Through B_{3} draw $\mathrm{B}_{3} \mathrm{C}^{\prime} \| \mathrm{B}_{2} \mathrm{C}$ and let it intersect BC (produced) at C^{\prime}.
6. Through C^{\prime} draw, $\mathrm{C}^{\prime} \mathrm{A}^{\prime} \| \mathrm{CA}$ and let it intersect BA (produced) at A^{\prime}.

Now, $\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle whose side are $1 \frac{1}{2}$ times the corresponding sides of the $\triangle \mathrm{ABC}$.

Q5. Draw a triangle ABC with side $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\angle \mathrm{ABC}=60^{\circ}$.
Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the triangle ABC.
Sol. Steps of construction :

1. Draw a $\triangle \mathrm{ABC}$ with side $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\angle \mathrm{ABC}=60^{\circ}$.
2. Draw a ray BX making an acute angle with BC on the opposite side of vertex A .
3. Mark 4 points (as 4 is greater in 3 and 4), $B_{1}, B_{2}, B_{3}, B_{4}$, on line segment $B X$ such that $\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}=\mathrm{B}_{3} \mathrm{~B}_{4}$.
4. Join $\mathrm{B}_{4} \mathrm{C}$ and draw a line through B_{3}, parallel to $\mathrm{B}_{4} \mathrm{C}$ intersecting BC at C^{\prime}.
5. Draw a line through C^{\prime} parallel to $A C$ intersecting $A B$ at $A^{\prime} . \Delta A^{\prime} B C^{\prime}$ is the required triangle.

Q6. Draw a triangle ABC with side $\mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}, \angle \mathrm{A}=105^{\circ}$. Then construct a triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle \mathrm{ABC}$.
Sol. Steps of construction :

1. Construction $\triangle \mathrm{ABC}$ such that $\mathrm{BC}=7 \mathrm{~cm}$,
$\angle \mathrm{ABC}=45^{\circ}$ and $\angle \mathrm{ACB}=30^{\circ}$ (i.e., $\angle \mathrm{BAC}=105^{\circ}$).
2. Draw any ray BX making an acute angle with BC .
3. Take points $B_{1}, B_{2}, B_{3}, B_{4}$ on $B X$ such that

$$
\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}, \mathrm{~B}_{2} \mathrm{~B}_{3}=\mathrm{B}_{3} \mathrm{~B}_{4} .
$$

4. Join $B_{3} C$.
5. Through B_{4} draw $\mathrm{B}_{4} \mathrm{C}^{\prime}| | \mathrm{B}_{3} \mathrm{C}$ and let it intersect BC (produced) at C^{\prime}.
6. Through C^{\prime} draw, $\mathrm{C}^{\prime} \mathrm{A}^{\prime} \| \mathrm{CA}$ and let it intersect BA (produced) at A^{\prime}.

Now, $\triangle \mathrm{A}^{\prime} \mathrm{BC}$ ' is the required triangle whose sides are $\frac{4}{3}$ times the corresponding sides of the $\triangle \mathrm{ABC}$.

Q7. Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm .
Then construct another triangle whose sides are $\frac{5}{3}$ times the corresponding sides of the given triangle.
Sol. Steps of construction :

1. Draw a line segment $\mathrm{AB}=4 \mathrm{~cm}$. Draw a ray SA making 90° with it.
2. Draw an arc of 3 cm radius while taking A as its centre to intersect $S A$ at C. Join $B C$.
$\triangle \mathrm{ABC}$ is the required triangle.
3. Draw a ray AX making an acute angle with AB , opposite to vertex C .
4. Mark 5 points (as 5 is greater in 5 and 3), $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}, \mathrm{~A}_{5}$, on line segment AX such that $\mathrm{AA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}=\mathrm{A}_{3} \mathrm{~A}_{4}=\mathrm{A}_{4} \mathrm{~A}_{5}$.
5. Join $A_{3} B$. Draw a line through A_{5} parallel to $A_{3} B$ intersecting extended line segment $A B$ at B^{\prime}.
6. Through B^{\prime}, draw a line parallel to BC intersecting extended line segment AC at C^{\prime}. $\Delta A B^{\prime} C^{\prime}$ is the required triangle.

Ex-11.2

Q1. Draw a circle of radius 6 cm . From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.
Sol. Steps of construction :

1. Taking any point O of the given plane as centre, draw a circle of 6 cm radius. Locate a point $\mathrm{P}, 10 \mathrm{~cm}$ away from O. Join OP.
2. Bisect OP. Let M be the mid-point of PO.
3. Taking M as centre and MO as radius, draw a circle.
4. Let this circle intersect the previous circle at point Q and R .
5. Join $P Q$ and $P R$. $P Q$ and $P R$ are the required tangents.

The lengths of tangents PQ and PR are 8 cm each.

Q2. Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length. Also verify the measurement by actual calculation.
Sol. Steps of construction :

1. Draw two concentric circles having radii 4 cm and 6 cm . O is the centre of the circles.
2. Take any point P on the larger circle.
3. Join OP and mark mid-point M of OP .
4. Taking M as centre and radius $=\mathrm{MP}=\mathrm{MO}$, draw circle which intersects the smaller circle in two points Q and R .
5. Join PQ and PR.

Now PQ and PR are the required tangents.
By measurement, we have length of the tangents $=4.4 \mathrm{~cm}$ (approx.).
By calculation, we have length of the tangents
$=\sqrt{O P^{2}-O Q^{2}}=\sqrt{36-16}=\sqrt{20}=2 \sqrt{5} \mathrm{~cm}$

Q3. Draw a circle of radius 3 cm . Take two points P and Q on one of its extended diameter each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q .
Sol. Steps of construction :

1. Taking any point O on the given plane as centre, draw a circle of 3 cm radius.
2. Take one of its diameters, RS, and extend it on both sides. Locate two points on this diameter such that $\mathrm{OP}=\mathrm{OQ}=7 \mathrm{~cm}$
3. Bisect OP and OQ . Let T and U be the mid-points of OP and OQ respectively.
4. Taking T and U as its centre and with TO and UO as radius, draw two circles. These two circles will intersect the circle at point V, W, X, Y respectively. Join PV, PW, QX, and QY. These are the required tangents.

Q4. Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°.
Sol. Steps of construction :

1. Draw circle with centre at O and radius 5 cm .
2. Construct radii OA and OB such that $\angle \mathrm{AOB}=120^{\circ}$.
3. Draw perpendiculars to $O A$ and $O B$ at A and
B respectively and let they intersect at P.
Now, PA and PB is a pair of tangents inclined to each other at an angle of 60°.

Q5. Draw a line segment $A B$ of length 8 cm . Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm . Constuct tangents to each circle from the centre of the other circle.
Sol. Steps of construction :

1. Draw a line segment $A B$ of 8 cm . Taking A and B as centre, draw two circles of 4 cm and 3 cm radius.
2. Bisect the line AB . Let the mid-point of AB be C . Taking C as centre, draw a circle of AC radius which will intersect the circles at points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$, and S . Join $\mathrm{BP}, \mathrm{BQ}, \mathrm{AS}$, and AR . These are the required tangents.

Q6. Let ABC be a right triangle in which $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\angle \mathrm{B}=90^{\circ}$. BD is the perpendicular from B on $A C$. The circle through B, C, D is drawn. Construct the tangents from A to this circle.
Sol. Consider the following situation. If a circle is drawn through B, D, and $C, B C$ will be its diameter as $\angle \mathrm{BDC}$ is of measure 90°. The centre E of this circle will be the midpoint of BC .

The required tangents can be constructed on the given circle as follows.
Steps of construction :

1. Join AE and bisect it. Let F be the mid-point of AE .
2. Taking F as centre and FE as its radius, draw a circle which will intersect the circle at point B and G. Join AG.
$A B$ and $A G$ are the required tangents.

Q7. Draw a circle with the help of a bangle. Take a point outside the circle. Construct the pair of tangents from this point to the circle.
Sol. Steps of construction :

1. Locate the centre O of the circle by drawing right bisectors of two non-parallel chords of the circle. These right bisectors intersect each other at the centre of the circle. (i.e., at O).
2. Take point P outside the circle and join OP .
3. Locate mid-point M of OP .
4. Taking M as centre and radius equal to MP, draw circle. It intersects the given circle at A and B.
5. Joint PA and PB.

Now, PA and PB are the required tangents drawn from P to the circle.

