<mark>∛Saral</mark>

Ex - 11.1

- Q1. Construct an angle of 90° at the initial point of a given ray and justify the construction.
- **Sol.** Steps of construction :
 - 1. Draw a ray \overrightarrow{OA}
 - 2. Taking O as centre and suitable radius, draw a semicircle, which cuts OA at B.
 - 3. Keeping the radius same, divide the semicircle into three equal part such that $\widehat{BC} = \widehat{CD} = \widehat{DE}$
 - 4. Draw \overrightarrow{OC} and \overrightarrow{OD} .
 - 5. Draw \overrightarrow{OF} , the bisector of $\angle COD$

Thus, $\angle AOF = 90^{\circ}$

Justification

 $\angle BOC = 60^{\circ}$

 $\angle BOD = 120^{\circ}$

- \therefore Bisector OF of \angle COD = 90°
- Q2. Construct an angle of 45° at the initial point of a given ray and justify the construction.
- **Sol.** Steps of construction :
 - 1. Draw a ray \overrightarrow{OA} .
 - 2. Taking O as centre and with a suitable radius, draw a semicircle such that it intersects \overline{OA} at B.
 - 3. Taking B as centre and keeping the same radius, cut the semicircle at C. Now, taking C as centre and keeping the same radius, cut the semicircle at D and similarly, cut at E, such that $\widehat{BC} = \widehat{CD} = \widehat{DE}$.

Join $\overrightarrow{OC}, \overrightarrow{OD}$.

- 4. Draw \overrightarrow{OF} , the angle bisector of BOC.
- 5. Draw \overline{OG} , the angle bisector of $\angle FOC$.

Thus, $\angle BOG = 45^{\circ}$

Justification

 $\angle BOC = 60^{\circ}$

$$\angle BOF = \frac{1}{2} \angle BOC = 30^{\circ}$$

- \therefore Bisector OG of \angle FOC = 45°
- Q3. Construct the angles of the following measurements :
 - (i) 30° (ii) $22\frac{1}{2}^{\circ}$ (iii) 15°
- Sol. (i) Steps of construction
 - 1. Draw a ray \overrightarrow{OA} .
 - 2. With O as centre and having a suitable radius, draw an arc cutting \overrightarrow{OA} at B.
 - 3. With centre B and the same radius as above, draw an arc to cut the previous arc at C.

4. Join \overrightarrow{OC} , bisector of $\angle BOC$, such that $\angle BOD = \frac{1}{2} \angle BOC = \frac{1}{2} (60^\circ) = 30^\circ$

Thus, $\angle BOD = 30^{\circ}$

(ii) $\angle BAX = 60^{\circ} AY$ is bisector of $\angle BAX$.

Now, AZ bisects $\angle XAY$.

Then,

$$\angle YAZ = 15^{\circ}$$

 $\Rightarrow \angle BAZ = 45^{\circ}$

AC bisects ∠BAZ

$$\therefore \ \angle BAC = 22\frac{1}{2}^{\circ}$$

(iii) Angle of 15°

Steps of construction :

- 1. Draw a ray \overrightarrow{OA}
- 2. Construct $\angle AOB = 60^{\circ}$.
- 3. Draw \overrightarrow{OD} , the bisector of $\angle AOC$, such that

$$\angle AOD = \frac{1}{2} \angle AOC = \frac{1}{2} (60^\circ) = 30^\circ$$

i.e. $\angle AOD = 30^\circ$

4. Draw \overline{OE} , the bisector of $\angle AOD$ such that $\angle AOE = \frac{1}{2} \angle AOD = \frac{1}{2} (30^\circ) = 15^\circ$

Thus, $\angle AOE = 15^{\circ}$

Q4. Construct the following angles and verify by measuring them by a protractor:

(i) 75° (ii) 105° (iii) 135°

Sol. (i) $\angle BAC = 75^{\circ}$

(ii) $\angle AOQ = 105^{\circ}$

(iii) $\angle BAY = 120^{\circ}$ $\angle YAZ = 30^{\circ}$ $\angle YAC = 15^{\circ}$ Therefore, $\angle BAC = 120^{\circ} + 15^{\circ} = 135^{\circ}$

- Q5. Construct an equilateral triangle, given its side and justify the construction.
- Sol. Let each side of the equilateral triangle ABC be 7 cm

we have BC = 7 cm.

At B and C we construct 60° angles. $\angle CBX = 60^{\circ}$ and $\angle BCY = 60^{\circ}$.

Now BX and CY intersect at A.

 $\angle A + \angle B + \angle C = 180^{\circ}$

$$\Rightarrow \angle A + 60^\circ + 60^\circ = 180^\circ$$

$$\Rightarrow \angle A = 180^{\circ}$$

$$\Rightarrow \angle A = \angle B = \angle C = 60^{\circ}$$

Therefore, $\triangle ABC$ is required equilateral triangle and AB = BC = CA = 7 cm.