Ex-11.1

Q1. Construct an angle of 90° at the initial point of a given ray and justify the construction.

Sol. Steps of construction :

1. Draw a ray $\overrightarrow{\mathrm{OA}}$
2. Taking O as centre and suitable radius, draw a semicircle, which cuts OA at B .
3. Keeping the radius same, divide the semicircle into three equal part such that $\overparen{B C}=\overparen{C D}=\overparen{D E}$
4. Draw $\overrightarrow{O C}$ and $\overrightarrow{O D}$.
5. Draw $\overrightarrow{\mathrm{OF}}$, the bisector of $\angle \mathrm{COD}$

Thus, $\angle \mathrm{AOF}=90^{\circ}$

Justification

$$
\begin{aligned}
& \angle \mathrm{BOC}=60^{\circ} \\
& \angle \mathrm{BOD}=120^{\circ}
\end{aligned}
$$

\therefore Bisector OF of $\angle \mathrm{COD}=90^{\circ}$

Q2. Construct an angle of 45° at the initial point of a given ray and justify the construction.

Sol. Steps of construction :

1. Draw a ray $\overline{\mathrm{OA}}$.
2. Taking O as centre and with a suitable radius, draw a semicircle such that it intersects $\overrightarrow{\mathrm{OA}}$ at B.
3. Taking B as centre and keeping the same radius, cut the semicircle at C . Now, taking C as centre and keeping the same radius, cut the semicircle at D and similarly, cut at E, such that $\widehat{B C}=\widehat{C D}=\widehat{D E}$.

Join $\overrightarrow{O C}, \overrightarrow{O D}$.
4. Draw $\overrightarrow{\mathrm{OF}}$, the angle bisector of BOC.
5. Draw $\overrightarrow{\mathrm{OG}}$, the angle bisector of $\angle \mathrm{FOC}$.

Thus, $\angle \mathrm{BOG}=45^{\circ}$

Justification

$$
\begin{aligned}
& \angle \mathrm{BOC}=60^{\circ} \\
& \angle \mathrm{BOF}=\frac{1}{2} \angle \mathrm{BOC}=30^{\circ}
\end{aligned}
$$

\therefore Bisector OG of $\angle \mathrm{FOC}=45^{\circ}$

Q3. Construct the angles of the following measurements :
(i) 30°
(ii) $22 \frac{1}{2}$ 。
(iii) 15°

Sol. (i) Steps of construction

1. Draw a ray $\overrightarrow{\mathrm{OA}}$.
2. With O as centre and having a suitable radius, draw an arc cutting $\overline{\mathrm{OA}}$ at B .
3. With centre B and the same radius as above, draw an arc to cut the previous arc at C .
4. Join $\overline{\mathrm{OC}}$, bisector of $\angle \mathrm{BOC}$, such that $\angle \mathrm{BOD}=\frac{1}{2} \angle \mathrm{BOC}=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$ Thus, $\angle \mathrm{BOD}=30^{\circ}$

(ii) $\angle \mathrm{BAX}=60^{\circ} \mathrm{AY}$ is bisector of $\angle \mathrm{BAX}$.

Now, AZ bisects $\angle \mathrm{XAY}$.

Then,

$$
\begin{aligned}
\angle \mathrm{YAZ} & =15^{\circ} \\
\Rightarrow \angle \mathrm{BAZ} & =45^{\circ}
\end{aligned}
$$

AC bisects $\angle \mathrm{BAZ}$
$\therefore \angle \mathrm{BAC}=22 \frac{1}{2}$ 。
(iii) Angle of 15°

Steps of construction :

1. Draw a ray $\overrightarrow{O A}$
2. Construct $\angle \mathrm{AOB}=60^{\circ}$.
3. Draw $\overrightarrow{\mathrm{OD}}$, the bisector of $\angle \mathrm{AOC}$, such that
$\angle \mathrm{AOD}=\frac{1}{2} \angle \mathrm{AOC}=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$
i.e. $\angle \mathrm{AOD}=30^{\circ}$
4. Draw $\overrightarrow{\mathrm{OE}}$, the bisector of $\angle \mathrm{AOD}$ such that $\angle \mathrm{AOE}=\frac{1}{2} \angle \mathrm{AOD}=\frac{1}{2}\left(30^{\circ}\right)=15^{\circ}$ Thus, $\angle \mathrm{AOE}=15^{\circ}$

Q4. Construct the following angles and verify by measuring them by a protractor:
(i) 75°
(ii) 105°
(iii) 135°

Sol. (i) $\angle \mathrm{BAC}=75^{\circ}$

(ii) $\angle \mathrm{AOQ}=105^{\circ}$

(iii) $\angle \mathrm{BAY}=120^{\circ}$
$\angle \mathrm{YAZ}=30^{\circ}$
$\angle \mathrm{YAC}=15^{\circ}$
Therefore, $\angle \mathrm{BAC}=120^{\circ}+15^{\circ}=135^{\circ}$

Q5. Construct an equilateral triangle, given its side and justify the construction.

Sol. Let each side of the equilateral triangle ABC be 7 cm

we have $\mathrm{BC}=7 \mathrm{~cm}$.
At B and C we construct 60° angles. $\angle \mathrm{CBX}=60^{\circ}$ and $\angle \mathrm{BCY}=60^{\circ}$.
Now BX and CY intersect at A.

$$
\begin{aligned}
& \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \\
\Rightarrow & \angle \mathrm{A}+60^{\circ}+60^{\circ}=180^{\circ} \\
\Rightarrow & \angle \mathrm{A}=180^{\circ} \\
\Rightarrow & \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}
\end{aligned}
$$

Therefore, $\triangle \mathrm{ABC}$ is required equilateral triangle and $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=7 \mathrm{~cm}$.

