

NCERT SOLUTIONS

Heron's Formula

*eSaral है, तो सब सरल है।

Ex-12.1

Q1. A traffic signal board, indicating 'SCHOOL AHEAD', is an equilateral triangle with side 'a'. Find the area of the signal board, using Heron's formula. If its perimeter is 180 cm , what will be the area of the signal board ?

Sol. The equilateral triangle each side $=\mathrm{a}$
Its semiperimeter $=\frac{a+a+a}{2}=\frac{3}{2} a$
By Heron's formula, the area of the triangle

$$
=\sqrt{\frac{3}{2} a \times\left(\frac{3}{2} a-a\right) \times\left(\frac{3}{2} a-a\right) \times\left(\frac{3}{2} a-a\right)}=\frac{\sqrt{3}}{4} a^{2}
$$

When perimeter of the triangle is 180 cm , we have $3 \mathrm{a}=180 \mathrm{~cm}$ i.e., $\mathrm{a}=60 \mathrm{~cm}$. Then the area of the triangle

$$
=\frac{\sqrt{3}}{4}(60)^{2} \mathrm{~cm}^{2}=900 \sqrt{3} \mathrm{~cm}^{2}
$$

Q2. The triangular side walls of a flyover have been used for advertisements. The sides of the walls are $122 \mathrm{~m}, 22 \mathrm{~m}$ and 120 m (see Fig.). The advertisements yield as earning of Rs. 5000 per m^{2} per year. A company hired one of its walls for 3 months. How much rent did it pay?

Sol. Sides of the two equal triangular walls below the bridge are $122 \mathrm{~m}, 22 \mathrm{~m}$ and 120 m .
$\mathrm{s}=\frac{122 \mathrm{~m}+22 \mathrm{~m}+120 \mathrm{~m}}{2}=132 \mathrm{~m}$
Area of one triangular wall

$$
\begin{aligned}
& =\sqrt{132 \times(132-122) \times(132-22) \times(132-120)} \mathrm{m}^{2} \\
& =\sqrt{132 \times 10 \times 110 \times 12} \mathrm{~m}^{2}=1320 \mathrm{~m}^{2}
\end{aligned}
$$

Company hired only one wall for 3 months. Thus, earning from advertisements for 3 months at the rate of Rs. 5000 per m^{2} per year.

$$
=\text { Rs. } 5000 \times \frac{3}{12} \times 1320=\text { Rs. } 16,500,00
$$

Q3. There is a slide in a park. One of its side walls has been painted in some colour with a message "KEEP THE PARK GREEN AND CLEAN" (see Fig.). If the sides of the wall are $15 \mathrm{~m}, 11$ m and 6 m , find the area painted in colour.

Sol. The sides of the triangular wall be $15 \mathrm{~m}, 11 \mathrm{~m}$ and 6 m .

$$
\mathrm{s}=\frac{15 \mathrm{~m}+11 \mathrm{~m}+6 \mathrm{~m}}{2}=16 \mathrm{~m}
$$

Area of the wall $=\sqrt{16 \times(16-15) \times(16-11) \times(16-6)} \mathrm{m}^{2}$

$$
=\sqrt{16 \times 1 \times 5 \times 10} \mathrm{~m}^{2}=20 \sqrt{2} \mathrm{~m}^{2}
$$

Q4. Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter is 42 cm .

Sol. $\mathrm{a}=18 \mathrm{~cm}$,
$\mathrm{b}=10 \mathrm{~cm}$
Perimeter $=42$
we have $\mathrm{a}+\mathrm{b}+\mathrm{c}=42$
$\Rightarrow \mathrm{c}=14$
$\mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}=\frac{42}{2}=21$
Area of

$$
\begin{aligned}
\Delta & =\sqrt{\mathrm{s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}=\sqrt{21(21-18)(21-10)(21-14)} \\
& =\sqrt{21(3)(11)(7)}=3.7 \sqrt{11} \\
& =21 \sqrt{11} \mathrm{~cm}^{2}
\end{aligned}
$$

Q5. Sides of a triangle are in the ratio of $12: 17: 25$ and its perimeter is 540 cm . Find its area.

Sol. Let the sides of triangle be $12 \mathrm{k}, 17 \mathrm{k}, 25 \mathrm{k}$
Perimeter $=12 \mathrm{k}+17 \mathrm{k}+25 \mathrm{k}=54 \mathrm{k}$.
$\Rightarrow 54 \mathrm{k}=540$
$\mathrm{k}=10$
$\Rightarrow \mathrm{a}=12 \times \mathrm{k}=12 \times 10=120$
$\mathrm{b}=17 \times \mathrm{k}=17 \times 10=170$
c $=25 \times \mathrm{k}=25 \times 10=250$

$$
\begin{aligned}
& \mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2} \\
& =\begin{aligned}
\therefore \quad \text { Area } & =\sqrt{\mathrm{s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})} \\
& =\sqrt{270(270-120)(270-170)(270-250)} \\
& =\sqrt{270(150)(100)(20)} \\
& =3 \times 30 \times 5 \times 20 \mathrm{~cm}^{2}=9000 \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$

Q6. An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm . Find the area of triangle.
Sol. $\mathrm{a}=12 \mathrm{~cm}$
$\mathrm{b}=12 \mathrm{~cm}$
Perimeter $=30 \mathrm{~cm}$
$\Rightarrow \mathrm{c}=30-24=6 \mathrm{~cm}$
$\mathrm{s}=\frac{30}{2}=15 \mathrm{~cm}$

$\therefore \quad$ Area $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{15(15-12)(15-12)(15-6)}$
$=\sqrt{15.3 .3 .9}=9 \sqrt{15} \mathrm{~cm}^{2}$

Ex-12.2

Q1. A park, in the shape of a quadrilateral ABCD has $\angle \mathrm{C}=90^{\circ}, \mathrm{AB}=9 \mathrm{~m}, \mathrm{BC}=12 \mathrm{~m}$, $\mathrm{CD}=5 \mathrm{~m}, \mathrm{AD}=8 \mathrm{~m}$. How much area does it occupy?

Sol. Join the diagonal $A D$ of the quadrilateral $A B C D$.

$\mathrm{BD}^{2}=\mathrm{BC}^{2}+\mathrm{CD}^{2}=(12)^{2}+(5)^{2}=169$
$\Rightarrow \mathrm{BD}=\sqrt{169}=13 \mathrm{~m}$
Area of right angle $\triangle \mathrm{BCD}$

$$
=\frac{1}{2} \times \mathrm{BC} \times \mathrm{CD}=\frac{1}{2} \times 12 \times 5 \mathrm{~m}^{2}=30 \mathrm{~m}^{2}
$$

Now, the sides of the $\triangle \mathrm{ABD}$ are 9 m in, 13 m and 8 m .
Semiperimeter of $\triangle \mathrm{ABD}$
$S=\frac{9 \mathrm{~m}+13 \mathrm{~m}+8 \mathrm{~m}}{2}=15 \mathrm{~m}$.
The area of the $\triangle \mathrm{ABD}=\sqrt{15 \times(15-9) \times(15-13) \times(15-8)} \mathrm{m}^{2}$

$$
\begin{aligned}
& \Rightarrow \quad \sqrt{15 \times 6 \times 2 \times 7} \mathrm{~m}^{2}=\sqrt{5 \times 3 \times 3 \times 2 \times 2 \times 7} \\
& \Rightarrow 6 \times 5.916 \mathrm{~m}^{2} \text { (approx.) }=35.495 \mathrm{~m}^{2} \text { (approx.) } \\
& \quad=35.5 \text { (approx.) }
\end{aligned}
$$

Thus area of the quadrilateral ABCD

$$
\begin{aligned}
& =\operatorname{ar}(\triangle \mathrm{BCD})+\operatorname{ar}(\triangle \mathrm{ABD}) \\
& \left.=30 \mathrm{~m}^{2}+35.5 \mathrm{~m}^{2} \text { (approx. }\right)=65.5 \mathrm{~m}^{2} \text { (approx.) }
\end{aligned}
$$

Q2. Find the area of quadrilateral ABCD in which $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm}$, $\mathrm{DA}=5 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$.

Sol. $\quad \mathrm{a}=4$
$\mathrm{b}=5$
$\mathrm{c}=3$
$\mathrm{a}^{2}+\mathrm{c}^{2}=\mathrm{b}^{2}$

Area of $\triangle \mathrm{ABC}$
$=\frac{1}{2} \times$ Base \times Height. $=\frac{1}{2} \times 3 \times 4=6 \mathrm{~cm}^{2}$

For $\triangle \mathrm{ACD} \quad \mathrm{a}=4, \mathrm{~b}=5, \mathrm{c}=5$

$$
\mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}=\frac{14}{2}=7 \mathrm{~cm}
$$

$\therefore \quad$ Area of $\triangle \mathrm{ACD}$

$$
\begin{aligned}
& =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{7(7-4)(7-5)(7-5)} \\
& =\sqrt{7 \times 3 \times 2 \times 2} \\
& =2 \sqrt{21} \mathrm{~cm}^{2}
\end{aligned}
$$

area of quadrilateral $\mathrm{ABCD}=6+2 \sqrt{21}$

$$
\cong 15.2 \mathrm{~cm}^{2}
$$

Q3. Radha made a picture of an aeroplane with coloured paper as shown in Fig. find the total area of the paper used.

Sol. It is triangular part and its sides are $5 \mathrm{~cm}, 5 \mathrm{~cm}, 1 \mathrm{~cm}$. Here, semiperimeter of the triangle

$$
\mathrm{s}=\frac{5 \mathrm{~cm}+5 \mathrm{~cm}+1 \mathrm{~cm}}{2}=\frac{11}{2} \mathrm{~cm}
$$

Area of part I in figure

$$
\begin{aligned}
& =\sqrt{\mathrm{s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})} \\
& =\sqrt{\frac{11}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{9}{2}} \mathrm{~cm}^{2} \\
& =\frac{3}{4} \sqrt{11} \mathrm{~cm}^{2}=\frac{3}{4} \times 3.31 \mathrm{~cm}^{2}=2.482 \text { (approx.) }
\end{aligned}
$$

Area of part II in figure

$$
=6.5 \times 1 \mathrm{~cm}^{2}=6.5 \mathrm{~cm}^{2}
$$

Area of part III in figure

Area of $\triangle \mathrm{BEC}=\frac{\sqrt{3}}{4}(1)^{2} \mathrm{~cm}^{2}=\frac{\sqrt{3}}{4} \mathrm{~cm}^{2}$
Let h be the height of the $\triangle \mathrm{BEC}$ i.e., height of the trapezium.
$\frac{1}{2} \times \mathrm{BE} \times \mathrm{h}=\frac{\sqrt{3}}{4}$
$\Rightarrow \frac{1}{2} \times 1 \times \mathrm{h}=\frac{\sqrt{3}}{4} \Rightarrow \mathrm{~h}=\frac{\sqrt{3}}{2} \mathrm{~cm}$
Area of Trapezium ABCD

$$
\begin{aligned}
& =\frac{1}{2}(\text { sum of parallel sides }) \text { (height) } \\
& =\frac{1}{2}(1+2)\left(\frac{\sqrt{3}}{2}\right) \mathrm{cm}^{2} \\
& =\frac{3}{4} \sqrt{3} \mathrm{~cm}^{2}=\frac{3}{4} \times 1.732 \text { (approx.) } \\
& =1.299 \text { (approx.) }=1.3 \text { (approx.) }
\end{aligned}
$$

Area of part IV in figure

$$
=\frac{1}{2} \times 1.5 \times 6 \mathrm{~cm}^{2}=4.5 \mathrm{~cm}^{2}
$$

Area of part V in figure

$$
=\frac{1}{2} \times 1.5 \times 6 \mathrm{~cm}^{2}=4.5 \mathrm{~cm}^{2}
$$

Total area of the paper used

$$
\begin{aligned}
& =\text { part }(\mathrm{I}+\mathrm{II}+\mathrm{III}+\mathrm{IV}+\mathrm{V}) \\
& =2.482 \mathrm{~cm}^{2}+6.5 \mathrm{~cm}^{2}+1.3 \mathrm{~cm}^{2}+4.5 \mathrm{~cm}^{2}+4.5 \mathrm{~cm}^{2} \\
& =(10.282+9) \mathrm{cm}^{2} \text { (approx.) } \\
& =19.282 \mathrm{~cm}^{2} \text { (approx.) } \\
& =19.3 \mathrm{~cm}^{2} \text { (approx.) }
\end{aligned}
$$

Q4. A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are $26 \mathrm{~cm}, 28 \mathrm{~cm}$ and 30 cm , and the parallelogram stands on the base 28 cm , find the height of the parallelogram.

Sol. Semiperimeter of $\triangle \mathrm{ABC}$
$\mathrm{s}=\frac{26+28+30}{2}=42 \mathrm{~cm}$
$\mathrm{s}-\mathrm{a}=42-26=16 \mathrm{~cm}$
$\mathrm{s}-\mathrm{b}=42-28=14 \mathrm{~cm}$
$\mathrm{s}-\mathrm{c}=42-30=12 \mathrm{~cm}$
Area of $\triangle \mathrm{ABC}=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{42 \times 16 \times 14 \times 12} \mathrm{~cm}^{2}=\sqrt{14 \times 3 \times 4 \times 4 \times 14 \times 4 \times 3}$ ch
$=14 \times 4 \times 3 \times 2 \mathrm{~cm}^{2}=336 \mathrm{~cm}^{2}$
\therefore Area of parallelogram $=$ Area of triangle [Given]
$h \times A B=336$
$\mathrm{h} \times 28=336 \mathrm{~cm}^{2}$
$\mathrm{h}=\frac{336}{28}=12 \mathrm{~cm}$

Q5. A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 cm and its longer diagonal is 48 cm , how much area of grass field will each cow be getting?

Sol. Since the diagonals of a Rhombus bisect each other at right angles

$\therefore \quad \mathrm{OB}=\sqrt{(30)^{2}-(24)^{2}}=\sqrt{324}=18 \mathrm{~cm}$
\Rightarrow diagonal of $\mathrm{d}_{2}=2 \times \mathrm{OB}=2 \times 18=36 \mathrm{~cm}$
$\therefore \quad$ Area of a Rhombus $=\frac{1}{2} \times \mathrm{d}_{1} \times \mathrm{d}_{2}=\frac{1}{2} \times 48 \times 36=864 \mathrm{~cm}^{2}\left[\mathrm{~d}_{1}=48 \mathrm{~cm}\right.$ (given)]
Total area of grass field for 18 cows $=864 \mathrm{~cm}^{2}$
Area of grass grazed by each cow $=\frac{864}{18}=48 \mathrm{~cm}^{2}$.

Q6. An umbrella is made by stitching 10 triangular pieces of cloth of two different colours (see Fig.) each piece measuring $20 \mathrm{~cm}, 50 \mathrm{~cm}$ and 50 cm . How much cloth of each colour is required for the umbrella?

Sol. Sides of a triangular piece of coloured cloth are $20 \mathrm{~cm}, 50 \mathrm{~cm}$ and 50 cm .
Its semiperimeter $=\frac{20 \mathrm{~cm}+50 \mathrm{~cm}+50 \mathrm{~cm}}{2}=60 \mathrm{~cm}$
Then, the area of one triangular piece $=\sqrt{60 \times 10 \times 10 \times 40} \mathrm{~cm}^{2}=200 \sqrt{6} \mathrm{~cm}^{2}$
There are 5 triangular pieces one colour and 5 of the other colour.
Then total area of cloth of each colour (two colours) $=5 \times 200 \sqrt{6} \mathrm{~cm}^{2}=1000 \sqrt{6} \mathrm{~cm}^{2}$

Q7. A kite in the shape of a square with a diagonal 32 cm and an isosceles triangle of base 8 cm and sides 6 cm each is to be made of three different shades as shown in Fig. How much paper of each shade has been used in it ?

Sol. Area of paper shade I

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{1}{2} \times 32 \times 32\right] \\
& =256 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of paper shade II $=256 \mathrm{~cm}^{2}$
Area of paper of shade III
$\mathrm{a}=8 \mathrm{~cm}$
$\mathrm{b}=6 \mathrm{~cm}$
$\mathrm{c}=6 \mathrm{~cm}$
$\mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}=\frac{8+6+6}{2}=10 \mathrm{~cm}$
$\therefore \quad$ Area of paper of shade III

$$
\begin{aligned}
& =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{10(10-8)(10-6)(10-6)} \\
& =\sqrt{10.2 .4 .4}=8 \sqrt{5} \\
& =17.85 \mathrm{~cm}^{2}
\end{aligned}
$$

Q8. A floral design on a floor is made up of 16 tiles which are triangular, the sides of the triangle being $9 \mathrm{~cm}, 28 \mathrm{~cm}$ and 35 cm (See Fig.). Find the cost of polishing the tiles at the rate of 50 p per cm^{2}.

Sol. Sides of a triangular tile are $9 \mathrm{~cm}, 28 \mathrm{~cm}$ and 35 cm .
Its semiperimeter $=\frac{9 \mathrm{~cm}+28 \mathrm{~cm}+35 \mathrm{~cm}}{2}=36 \mathrm{~cm}$
Area of one tile $=\sqrt{36 \times 27 \times 8 \times 1} \mathrm{~cm}^{2}=36 \sqrt{6} \mathrm{~cm}^{2}$
Total area of 16 tiles

$$
\begin{aligned}
& =576 \sqrt{6} \mathrm{~cm}^{2} \\
& =576 \times 2.45 \mathrm{~cm}^{2} \text { (approx.) } \\
& =1411.20 \mathrm{~cm}^{2} \text { (approx.) }
\end{aligned}
$$

Total cost of polishing at the rate of 50 p per cm^{2}

$$
=\text { Rs. } 1411.20 \times \mathrm{cm}^{2}=\text { Rs. } 705.60
$$

Q9. A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m . The non-parallel sides are 14 m and 13 m . Find the area of the field.
Sol. Through C draw CE || DA

Draw $C F \perp A B$
In $\triangle \mathrm{BCE}$, we have
$\mathrm{s}=\frac{15+14+13}{2}=21 \mathrm{~m}$
$\mathrm{s}-\mathrm{a}=21-15=6 \mathrm{~m}$
$\mathrm{s}-\mathrm{b}=21-14=7 \mathrm{~m}$
$\mathrm{s}-\mathrm{c}=21-13=8 \mathrm{~m}$

Area of $\triangle \mathrm{BCE}=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{21 \times 6 \times 7 \times 8} \mathrm{~m}^{2} \\
& =7 \times 4 \times 3=84 \mathrm{~m}^{2}
\end{aligned}
$$

Now, area of $\triangle B C E=84 \mathrm{~m}^{2}$
$\Rightarrow \frac{1}{2} \times$ Base \times Altitude $=84 \mathrm{~m}^{2}$
$\Rightarrow \frac{1}{2} \times 15 \times \mathrm{h}=84$
$\Rightarrow \mathrm{h}=\frac{84 \times 2}{15} \mathrm{~m}$
$\Rightarrow \mathrm{h}=$ Distance between parallel sides of trapezium $=\frac{168}{15} \mathrm{~m}$
Area of parallelogram, $\mathrm{AECD}=$ base \times height

$$
=10 \times \frac{168}{15}=56 \times 2=112 \mathrm{~m}^{2}
$$

\therefore Area of trapezium $\mathrm{ABCD}=$ Area of parallelogram $\mathrm{AECD}+$ Area of $\triangle \mathrm{BCE}$

$$
=112+84=196 \mathrm{~m}^{2}
$$

