Ex - 4.2

Q1. Which one of the following statements is true, and why?
$y=3 x+5$ has
(i) A unique solution
(ii) Only two solutions
(iii) Infinitely many solutions.

Sol. Option (iii) is true because a linear equation has an infinitely many solutions. Moreover when represented graphically a linear equation in two variable is a straight line which has infinite points and hence, it has infinite solutions.

Q2. Write four solutions for each of the following equations :
(i) $2 x+y=7$
(ii) $\pi x+y=9$
(iii) $x=4 y$

Sol. (i) $2 x+y=7$
For $\mathrm{x}=-1$, we get $-2+\mathrm{y}=7$, i.e., $\mathrm{y}=9$
$\therefore(-1,9)$ is a solution.
For $\mathrm{x}=0$, we get $\mathrm{y}=7$
$\therefore(0,7)$ is a solution.
For $\mathrm{x}=1$, we get $2+\mathrm{y}=7$, i.e., $\mathrm{y}=5$
$\therefore(1,5)$ is a solution.
For $\mathrm{x}=2$, we get $4+\mathrm{y}=7$, i.e., $\mathrm{y}=3$
$\therefore(2,3)$ is a solution.
Hence, we have four solutions $(-1,9),(0,7),(1,5)$ and $(2,3)$
(ii) Proceed as in (i) and we can have four solutions
as $(0,9),(1,9-\pi),(2,9-2 \pi)$ and $(3,9-3 \pi)$.
(iii) Proceed as in (i) and we can have four solutions as $(0,0),(4,1),(8,2)$ and $(12,3)$

Q3. Check which of the following are solutions of the equation $x-2 y=4$ and which are not
(i) $(0,2)$
(ii) $(2,0)$
(iii) $(4,0)$
(iv) $(\sqrt{2}, 4 \sqrt{2})$
(v) $(1,1)$

Sol. (i) Substituting $x=0, y=2$ in the equation $x-2 y=4$, we get $0-2(2)=4$, i.e., $-4=4$ but $-4 \neq 4$
$\therefore(0,2)$ is not a solution
(ii) $2-2(0) \neq 4$
$\therefore(2,0)$ is not a solution.
(iii) Substituting $x=4$ and $y=0$ in the equation
$x-2 y=4$, we get
L.H.S. $=4-2(0)=4-0=4=$ R.H.S.
\therefore L.H.S. $=$ R.H.S.
$\therefore(4,0)$ is a solution.
(iv) $\sqrt{2}-2(4 \sqrt{2})=4$, i.e., $\sqrt{2}-8 \sqrt{2}=4$,
i.e., $-7 \sqrt{2}=4$ but $-7 \sqrt{2} \neq 4$
$\therefore(\sqrt{2}, 4 \sqrt{2})$ is not a solution
(v) $1-2(1) \neq 4$
$\therefore(1,1)$ is not a solution.
Q4. Find the value of k if $x=2, y=1$ is a solution of the equation $2 x+3 y=k$.
Sol. (2) (2) $+(3)(1)=k$, i.e., $4+3=k$, i.e., $k=7$.

