Ex-6.3

Q1. In figure, sides QP and RQ of $\triangle \mathrm{PQR}$ are produced to points S and T respectively. If
$\angle \mathrm{SPR}=135^{\circ}$ and $\angle \mathrm{PQT}=110^{\circ}$, find $\angle \mathrm{PRQ}$.

Sol. $\angle \mathrm{QPR}+135^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{QPR}=45^{\circ}$
Now, $\angle \mathrm{QRP}+\angle \mathrm{QPR}=\angle \mathrm{PQT}$
$\Rightarrow \angle \mathrm{QRP}+45^{\circ}=110^{\circ}$
$\Rightarrow \angle \mathrm{QRP}=65^{\circ}$
Q2. In figure, $\angle \mathrm{X}=62^{\circ}, \angle \mathrm{XYZ}=54^{\circ}$. If YO and ZO are the bisectors of $\angle \mathrm{XYZ}$ and $\angle \mathrm{XZY}$ respectively of $\triangle \mathrm{XYZ}$, find $\angle \mathrm{OZY}$ and $\angle \mathrm{YOZ}$.

Sol. In $\triangle X Y Z$
$\angle \mathrm{XYZ}+\angle \mathrm{YZX}+\angle \mathrm{ZXY}=180^{\circ}$
$54^{\circ}+\angle \mathrm{YZX}+62^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{YZX}=64^{\circ}$
$\because \mathrm{YO}$ is bisector $\Rightarrow \angle \mathrm{XYO}=\angle \mathrm{OYZ}=\frac{54^{\circ}}{2}=27^{\circ}$
ZO is bisector $\Rightarrow \angle \mathrm{XZO}=\angle \mathrm{OZY}=\frac{64^{\circ}}{2}=32^{\circ}$
In $\triangle \mathrm{OYZ}$
$\angle \mathrm{OYZ}+\angle \mathrm{OZY}+\angle \mathrm{YOZ}=180^{\circ}$
$27^{\circ}+32^{\circ}+\angle \mathrm{YOZ}=180^{\circ}$
$\Rightarrow \angle \mathrm{YOZ}=121^{\circ}$
Q3. In figure, if $\mathrm{AB} \| \mathrm{DE}, \angle \mathrm{BAC}=35^{\circ}$ and $\angle \mathrm{CDE}=53^{\circ}$, find $\angle \mathrm{DCE}$.

Sol. $\mathrm{AB} \| \mathrm{DE}$
(given)
$\angle \mathrm{DEC}=\angle \mathrm{BAC}=35^{\circ}$ (Alternate angles)
$\angle \mathrm{CDE}=53^{\circ}$
In $\Delta \mathrm{CDE}$
$\angle \mathrm{CDE}+\angle \mathrm{DEC}+\angle \mathrm{DCE}=180^{\circ}$
$53^{\circ}+35^{\circ}+\angle \mathrm{DCE}=180^{\circ}$
$\angle \mathrm{DCE}=180^{\circ}-88^{\circ}=92^{\circ}$

Q4. In figure, if lines PQ and RS intersect at point T, such that $\angle P R T=40^{\circ}, \angle \mathrm{RPT}=95^{-}$and $\angle \mathrm{TSQ}=75^{\circ}$, find $\angle \mathrm{SQT}$.

Sol. In $\triangle \mathrm{PRT}$

$\angle \mathrm{PTR}+\angle \mathrm{PRT}+\angle \mathrm{RPT}=180^{\circ}$
$\angle \mathrm{PTR}+40^{\circ}+95^{\circ}=180^{\circ}$
$\angle \mathrm{PTR}=45^{\circ}$
$\angle \mathrm{QTS}=\angle \mathrm{PTR}=45^{\circ}$ [Vertically opposite angles]
In $\Delta \mathrm{TSQ}$
$\angle \mathrm{QTS}+\angle \mathrm{TSQ}+\angle \mathrm{SQT}=180^{\circ}$
$45^{\circ}+75^{\circ}+\angle \mathrm{SQT}=180^{\circ}$
$\angle \mathrm{SQT}=60^{\circ}$
Q5. In figure, if $\mathrm{PQ} \perp \mathrm{PS}, \mathrm{PQ} \| \mathrm{SR}, \angle \mathrm{SQR}=28^{\circ}$ and $\angle \mathrm{QRT}=65^{\circ}$, then find the value of x and y .

Sol. $\angle \mathrm{QSR}=\mathrm{x}$
(alternate angles)
Now, $\angle \mathrm{QSR}+28^{\circ}=65^{\circ}$
$\Rightarrow \mathrm{x}+28^{\circ}=65^{\circ}$
$\Rightarrow \mathrm{x}=37^{\circ}$
In $\triangle \mathrm{PQS}, 90^{\circ}+\mathrm{x}+\mathrm{y}=180^{\circ}$
$\Rightarrow 90^{\circ}+37^{\circ}+\mathrm{y}=180^{\circ}$
$\Rightarrow \mathrm{y}=53^{\circ}$

Q6. In figure, the side QR of $\triangle \mathrm{PQR}$ is produced to a point S . If the bisectors of $\angle \mathrm{PQR}$ and $\angle \mathrm{PRS}$ meet at point T , then prove that $\angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}$.

Sol. $\angle \mathrm{PRS}=\angle \mathrm{PQR}+\angle \mathrm{QPR}$
Now, $\angle \mathrm{QTR}+\angle \mathrm{TQR}=\angle \mathrm{TRS}$
$\Rightarrow \angle \mathrm{QTR}+\frac{1}{2} \times \angle \mathrm{PQR}=\frac{1}{2} \angle \mathrm{PRS}$
$\Rightarrow 2 \angle \mathrm{QTR}+\angle \mathrm{PQR}=\angle \mathrm{PRS}$
From (1) and (2),
$2 \angle \mathrm{QRT}+\angle \mathrm{PQR}=\angle \mathrm{PQR}+\angle \mathrm{QPR}$
$\Rightarrow 2 \angle \mathrm{QTR}=\angle \mathrm{QPR}$
$\Rightarrow \angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}$

