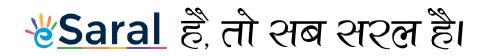


NCERT SOLUTIONS

Number Systems



Ex - 1.1

- **Q1.** Is zero a rational number? Can you write it in the form p/q, where p and q are integers and $q \neq 0$?
- Sol. Yes, zero is a rational number. We can write zero in the form p/q whose p and q are integers and $q \neq 0$.

so, 0 can be written as $\frac{0}{1} = \frac{0}{2} = \frac{0}{3}$ etc.

- **Q2.** Find six rational numbers between 3 and 4.
- **Sol.** First rational number between 3 and 4 is $=\frac{3+4}{2}=\frac{7}{2}$ Similarly other numbers

$$\frac{3+\frac{7}{2}}{2} = \frac{13}{4}$$
$$\frac{3+\frac{13}{4}}{2} = \frac{25}{8}$$
$$\frac{3+\frac{25}{8}}{2} = \frac{49}{16}$$
$$\frac{3+\frac{49}{16}}{2} = \frac{97}{32}$$
$$\frac{\frac{97}{32}+3}{2} = \frac{193}{64}$$
So, numbers are

 $\frac{7}{2}, \frac{13}{4}, \frac{25}{8}, \frac{49}{16}, \frac{97}{32}, \frac{193}{64}$

Q3. Find five rational numbers between 3/5 and 4/5.

Sol. Let
$$a = \frac{3}{5} b = \frac{4}{5} n = 5$$

then, $d = \frac{b-a}{n+1} = \frac{\frac{4}{5} - \frac{3}{5}}{5+1} = \frac{1}{30}$
So, rational numbers are

 $\frac{3}{5} + \frac{1}{30} = \frac{19}{30}$ $\frac{3}{5} + \frac{2}{30} = \frac{20}{30}$ $\frac{3}{5} + \frac{3}{30} = \frac{21}{30}$ $\frac{3}{5} + \frac{4}{30} = \frac{22}{30}$ $\frac{3}{5} + \frac{5}{30} = \frac{23}{30}$

Thus, numbers are

 $\frac{19}{30}, \frac{20}{30}, \frac{21}{30}, \frac{22}{30}, \frac{23}{30}$

- Q4. State whether the following statements are true or false? Give reasons for your answers.(i) Every natural number is a whole number.
 - (ii) Every integer is a whole number.
 - (iii) Every rational number is a whole number.
- Sol. (i) True, the collection of whole numbers contains all natural numbers.(ii) False, -2 is not a whole number
 - (iii) False, $\frac{1}{2}$ is a rational number but not a whole number.

Ex - 1.2

- Q1. State whether the following statements are true or false ? Justify your answers.
 - (i) Every irrational number is a real number.
 - (ii) Every point on the number line is of the form \sqrt{m} , where m is a natural number.
 - (iii) Every real number is an irrational number.
- Sol. (i) True, since collection of real numbers consists of rationals and irrationals.
 (ii) False, because no negative number can be the square root of any natural number.
 (iii) False, 2 is real but not irrational.
- **Q2.** Are the square roots of all positive integers irrational ? If not, give an example of the square root of a number that is a rational number.
- **Sol.** No, $\sqrt{4} = 2$ is a rational number.
- **Q3.** Show how $\sqrt{5}$ can be represented on the number line.
- Sol. $\sqrt{5}$ on Number line. OABC is unit square So, $OB = \sqrt{1^2 + 1^2} = \sqrt{2}$ $OD = \sqrt{(\sqrt{2})^2 + 1} = \sqrt{3}$ $OE = \sqrt{(\sqrt{3})^2 + 1} = 2$ $OF = \sqrt{(2)^2 + 1} = \sqrt{5}$ F $\sqrt{2}$ $\sqrt{3}$ $\sqrt{1}$ B 1 $O = \sqrt{(2)^2 + 1} = \sqrt{3}$

Using compass we can cut arc with centre O and radius = OF on number line. ON is required result.

Ex - 1.3

- Q1. Write the following in decimal form and say what kind of decimal expansion each has :
 - (i) $\frac{36}{100}$ (ii) $\frac{1}{11}$ (iii) $4\frac{1}{8}$ (iv) $\frac{3}{13}$ (v) $\frac{2}{11}$ (vi) $\frac{329}{400}$
 - 26

<u> *Saral</u>

- **Sol.** (i) $\frac{36}{100} = 0.36$ (Terminating)
 - (ii) $\frac{1}{11} = 0.090909....$ (Non terminating Repeating)

$$\begin{array}{c}
19 \\
-99 \\
100 \\
99 \\
100 \\
99 \\
100 \\
99 \\
1
\end{array}$$

- (iii) $4\frac{1}{8} = \frac{33}{8} = 4.125$ (Terminating decimal)
- (iv) $\frac{3}{13} = 0.230769230769.....$ = $0.\overline{230769}$ (Non Terminating repeating) (v) $\frac{2}{11} = 0.1818..... = 0.\overline{18}$ (Non Terminating repeating) (vi) $\frac{329}{400}$ $400\overline{)329.0000}(0.8225$ $\underline{3200}$ $\underline{900}$ $\underline{800}$ 1000 $\underline{800}$ 2000

$$\frac{329}{400} = 0.8225 \Longrightarrow (\text{Terminating})$$

- **Q2.** You know that $\frac{1}{7} = 0.\overline{142857}$. Can you predict what the decimal expansion of $\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}$ are, without actually doing the long division ? If so, how ?
- Sol. Yes, we can predict decimal explain without actually doing long division method as

$$\frac{2}{7} = 2 \times \frac{1}{7} = 2 \times 0.\overline{142857} = 0.\overline{285714}$$

Number Systems

 $\frac{3}{7} = 3 \times \frac{1}{7} = 3 \times .\overline{142857} = .\overline{428571}$ $\frac{4}{7} = 4 \times \frac{1}{7} = 4 \times .\overline{142857} = .\overline{571428}$ $\frac{5}{7} = 5 \times \frac{1}{7} = 5 \times .\overline{142857} = .\overline{714285}$ $\frac{6}{7} = 6 \times \frac{1}{7} = 6 \times .\overline{142857} = .\overline{857142}$

<u> *Saral</u>

Q3. Express the following in the form p/q, where p and q are integers and $q \neq 0$.

(i) 0.6 (ii) $0.4\overline{7}$ (iii) $0.\overline{001}$ **Sol.** (i) Let x = 0.6666...(1)Multiplying both the sides by 10. 10 x = 6.666....(2)Subtract (1) from (2)10x - x = (6.6666....) - (0.6666...) \Rightarrow 9x = 6 \Rightarrow x = $\frac{6}{9} = \frac{2}{3}$ (ii) Let $x = 0.4\overline{7} = .4777...$ Multiply both sides by 10 $10x = 4.\overline{7}$...(1) Multiply both sides by 10 $100 \text{ x} = 47.\overline{7}$...(2) Subtract (1) from (2) 90x = 43 $x = \frac{43}{90}$ (iii) Let x = 0.001 = 0.001001001......(1) Multiply both sides by 1000 $1000x = 1.\overline{001}$...(2) Subtract (1) from (2) 999x = 1 $x = \frac{1}{999}$

Q4. Express 0.99999 in the form p/q. Are you surprised by your answer ? With your teacher and classmates discuss why the answer makes sense.

Number Systems

<mark>∛Saral</mark>

Sol. Let x = 0.999....(1) Multiply both sides by 10 we get 10x = 9.99....(2) Subtract (1) from (2) 9x = 9 ⇒ x = 1(2) 9y999.... = 1 = $\frac{1}{1}$ ∴ p = 1, q = 1

- **Q5.** What can the maximum number of digits be in the repeating block of digits in the decimal expansion of 1/17 ? Perform the division to check your answer.
- Sol. Maximum no. of digits in the repeating block of digits in decimal expansion of $\frac{1}{17}$ can be 16.

0e 10.
0.058823529411764705
17/1.00000000000000000000000000000000000
85
150 136
140
136
40
$\frac{-34}{-60}$
51
90
<u>85</u> 50
34
160
153
70 68
20
17
30 17
130
119
110 102
<u>-102</u> 80
68
120 119
100
85
150 136
4
.0588235294117647

Ans. .0588235294117647

- Q6. Look at several examples of rational numbers in the form p/q ($q \neq 0$), where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy ?
- **Sol.** There is a property that q must satisfy rational no. of form $\frac{p}{q}$ (q \neq 0) where p, q are integers with no common factors other than 1 having terminating decimal representation (expansions) is that the prime factorization of q has only powers of 2 or powers of 5 or both [i.e., q must be of the form $2^m \times 5^n$]. Here m,n are whole numbers.
- Q7. Write three numbers whose decimal expansion are non-terminating non-recurring.
- Sol. 0.01001000100001... 0.202002000200002... 0.003000300003...
- Q8. Find three different irrational numbers between the rational numbers 5/7 and 9/11.

Sol.	7)5.000000(0.714285
	$ \begin{array}{r} $
	7
	28
	20 14
	60 56
	40
	<u>35</u> 5
	Thus, $\frac{5}{7} = 0.\overline{714285}$
	$\frac{9}{11} = 11) 9.0000 (0.8181)$ $\frac{88}{20}$ $\frac{11}{90}$ $\frac{88}{20}$ $\frac{11}{90}$ $\frac{88}{20}$ $\frac{11}{9}$
	<u></u> <u>88</u> 20
	$\frac{11}{90}$
	<u>88</u> <u>20</u>
	<u>11</u>
	9
	Thus, $\frac{9}{11} = 0.\overline{81}$

Three different irrational numbers between

Q9. Classify the following numbers as rational or irrational :

(i) $\sqrt{23}$ (ii) $\sqrt{225}$ (iii) 0.3796 (iv) 7.478478 (v) 1.10100100010001.....

- **Sol.** (i) $\sqrt{23}$ = irrational number
 - (ii) $\sqrt{225}$ = 15 = Rational number
 - (iii) 0.3796 decimal expansion is terminating $\Rightarrow .3796 =$ Rational number.
 - (iv) 7.478478...
 - = $7.\overline{478}$ which is non terminating recurring.
 - = Rational number.
 - (v) 1.101001000100001.....

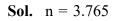
decimal expansion is non terminating and non repeating.

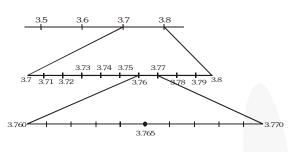
= Irrational number

<u> *Saral</u>

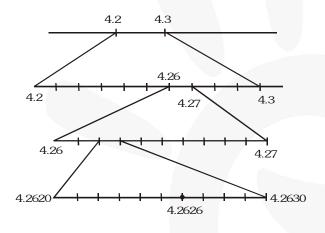
Ex - 1.4

Q1. Visualise on the number line, using successive magnification.





- Q2. Visualize $4.\overline{26}$ on the number line, upto 4 decimal places.
- **Sol.** $n = 4.\overline{26}$



<u> *Saral</u>

Ex - 1.5

- Q1. Classify the following numbers as rational or irrational :
 - (i) $2 \sqrt{5}$ (ii) $(3 + \sqrt{23}) \sqrt{23}$ (iii) $\frac{2\sqrt{7}}{7\sqrt{7}}$ (iv) $\frac{1}{\sqrt{2}}$ (v) 2π

Sol. (i) ∵ 2 is a rational number and √5 is an irrational number.
∴ 2 - √5 is an irrational number.
(ii) (3 + √23) - √23 ⇒ (3 + √23) - √23 = 3 is a rational number.

(iii)
$$\frac{2\sqrt{7}}{7\sqrt{7}} = \frac{2}{7}$$
 Rational number.

(iv) $\frac{1}{\sqrt{2}}$

: 1 is a rational number and $\sqrt{2}$ is an irrational number.

So,
$$\frac{1}{\sqrt{2}}$$
 is irrational number.

(v) 2π

 \therefore 2 is a rational number and π is an irrational number So, 2π is irrational number.

Q2. Simplify each of the following expressions :

(i)
$$(3 + \sqrt{3})(2 + \sqrt{2})$$

(ii) $(3 + \sqrt{3})(3 - \sqrt{3})$
(iii) $(\sqrt{5} + \sqrt{2})^2$
(iv) $(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2})$

Sol. (i) $(3 + \sqrt{3})(2 + \sqrt{2}) = 3(2 + \sqrt{2}) + \sqrt{3}(2 + \sqrt{2})$ $= 6 + 3\sqrt{2} + 2\sqrt{3} + \sqrt{6}$ (ii) $(3 + \sqrt{3})(3 - \sqrt{3}) = (3)^2 - (\sqrt{3})^2 = 9 - 3 = 6$ (iii) $(\sqrt{5} + \sqrt{2})^2$ $= (\sqrt{5})^2 + 2\sqrt{10} + (\sqrt{2})^2$ $= 7 + 2\sqrt{10}$ (iv) $(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2}) = 5 - 2 = 3$

- Q3. Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is, $\pi = c/d$. This seems to contradict the fact that π is irrational. How will you resolve this contradiction ?
- **Sol.** There is no contradiction. When we measure a length with a scale or any other device, we only get an approximate rational value. Therefore, we may not realise that c or d is irrational.
- Q4. Represent $\sqrt{9.3}$ on the number line.

Sol.
$$A = 9.3$$
 units $B = C$ P

Let *l* be the number line.

Draw a line segment AB = 9.3 units and BC = 1 unit. Find the mid point O of AC.

Draw a semicircle with centre O and radius OA or OC.

Draw BD \perp AC intersecting the semicircle at D. Then, BD = $\sqrt{9.3}$ units. Now, with centre B and radius BD, draw an arc intersecting the number line ℓ at P.

Hence, $BD = BP = \sqrt{9.3}$

Q5. Rationalise the denominators of the following :

(i)
$$\frac{1}{\sqrt{7}}$$
 (ii) $\frac{1}{\sqrt{7} - \sqrt{6}}$ (iii) $\frac{1}{\sqrt{5} + \sqrt{2}}$ (iv) $\frac{1}{\sqrt{7} - 2}$
Sol. (i) $\frac{1}{\sqrt{7}} = \frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{\sqrt{7}}{7}$
(ii) $\frac{1}{\sqrt{7} - \sqrt{6}} = \frac{1}{\sqrt{7} - \sqrt{6}} \times \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} + \sqrt{6}}$
 $= \frac{\sqrt{7} + \sqrt{6}}{7 - 6} = \frac{\sqrt{7} + \sqrt{6}}{1} = \sqrt{7} + \sqrt{6}$
(iii) $\frac{1}{\sqrt{5} + \sqrt{2}}$
 $\frac{1}{\sqrt{5} + \sqrt{2}} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}} = \frac{\sqrt{5} - \sqrt{2}}{3}$
(iv) $\frac{1}{\sqrt{7} - 2} = \frac{1}{\sqrt{7} - 2} \times \frac{\sqrt{7} + 2}{\sqrt{7} + 2}$
 $= \frac{\sqrt{7} + 2}{7 - 4} = \frac{\sqrt{7} + 2}{3}$

<u> *Saral</u>

Ex - 1.6

(ii) $32^{1/5}$ (iii) $125^{1/3}$ **Q1.** Find : (i) $(64)^{1/2}$ **Sol.** (i) $(64)^{1/2} = (8^2)^{1/2} = (8^{2\times\frac{1}{2}}) = 8^1 = 8$ (ii) $32^{1/5} = (2^5)^{1/5} = (2^{5 \times \frac{1}{5}}) = 2^1 = 2$ (iii) $(125)^{\frac{1}{3}} = (5^3)^{\frac{1}{3}} = 5^{3\times\frac{1}{3}} = 5$ **Q2.** Find : (i) $9^{3/2}$ (ii) $32^{2/5}$ (iii) $16^{3/4}$ (iv) 125^{1/3} **Sol.** (i) $9^{\frac{3}{2}} = (9^{\frac{1}{2}})^3 = (3)^3 = 27$ (ii) $32^{\frac{2}{5}} = (2^5)^{\frac{2}{5}} = 2^{5 \times \frac{2}{5}} = 2^2 = 4$ (iii) $16^{3/4} = (2^4)^{3/4} = 2^3 = 8$ (iv) $125^{1/3} = (5^3)^{1/3} = 5$ **Q3.** Simplify : (i) $2^{2/3} \cdot 2^{1/5}$ (ii) $\left(\frac{1}{3^3}\right)^7$ (iii) $\frac{11^{1/2}}{11^{1/4}}$ (iv) 7^{1/2} . 8^{1/2} **Sol.** (i) $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} = 2^{\frac{2}{3} + \frac{1}{5}} = 2^{\frac{10+3}{15}} = 2^{\frac{13}{15}}$ (ii) $\left(\frac{1}{3^3}\right)^7 = \frac{1^7}{(3^3)^7} = \frac{1}{3^{21}} = 3^{-21}$ (iii) $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} = \frac{11^{\frac{1}{2}-\frac{1}{4}}}{11^{\frac{1}{2}-\frac{1}{4}}}$ $= 11^{\frac{1}{4}} = \sqrt[4]{11}$ (iv) $7^{\frac{1}{2}} 8^{\frac{1}{2}}$ $= (7 \times 8)^{1/2} = (56)^{1/2}$