<u> *Saral</u>

EX-2.2

Q1. Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients.

(i) $x^2 - 2x - 8$	(ii) $4s^2 - 4s + 1$
(iii) $6x^2 - 3 - 7x$	(iv) $4u^2 + 8u$
(v) $t^2 - 15$	(vi) $3x^2 - x - 4$

Sol. (i) $x^2 - 2x - 8 = x^2 - 4x + 2x - 8$ = x (x - 4) + 2(x - 4) = (x + 2) (x - 4)Zeroes are -2 and 4. Sum of the zeros

 $= (-2) + (4) = 2 = \frac{-(-2)}{1} = \frac{-(Coefficient of x)}{(Coefficient of x^2)}$ Product of the zeros

$$= (-2) (4) = -8 = \frac{(-8)}{1} = \frac{(\text{Constant term})}{(\text{Coefficient of } x^2)}$$

(ii) $4s^2 - 4s + 1 = (2s - 1)^2$ The two zeros are $\frac{1}{2}, \frac{1}{2}$

Sum of the two zeros

 $= \frac{1}{2} + \frac{1}{2} = 1 = \frac{-(-4)}{4} = \frac{-(Coefficient of x)}{(Coefficient of x^2)}$ Product of two zeros

$$= \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) = \frac{1}{4} = \frac{\text{(Constant term)}}{\text{(Coefficient of } x^2)}$$

(iii)
$$6x^2 - 7x - 3$$

= $6x^2 - 9x + 2x - 3$
= $3x(2x - 3) + 1(2x - 3)$
= $(2x - 3)(3x + 1)$
zeros are $\frac{3}{2}, \frac{-1}{3}$

Sum of zeros =
$$\frac{3}{2} + \left(\frac{-1}{3}\right)$$

=	9 - 2	7	<u>-(-7)</u> 6	-	-(coefficient of x)
	6	= — =		= 7	(coefficient of x ²)

Product of zeros

$$= \frac{3}{2} \times \left(\frac{-1}{3}\right) = \frac{-1}{2} = \frac{-(3)}{6}$$
$$= \frac{\text{(constant term)}}{\text{(coefficient of } x^2)}$$

<u> ∦Saral</u>

(iv) $4u^2 + 8u = 4u (u + 2)$ zeros are 0, -2 Sum of zeros

 $= 0 + (-2) = -2 = \frac{-(8)}{4}$ (coefficient of u)

$= -\frac{1}{(\text{coefficient of } u^2)}$

Product of zeros

$$= 0 \times (-2) = 0 = \frac{0}{4}$$

 $= \frac{\text{constant term}}{\text{coefficient of } u^2}$

(v)
$$t^2 - 15 = (t - \sqrt{15})(t + \sqrt{15})$$

zeros are $\sqrt{15}$, $-\sqrt{15}$ sum of zeros

$$=\sqrt{15} + (-\sqrt{15}) = 0 = \frac{0}{1}$$

 $= \frac{\text{(coefficient of t)}}{\text{(coefficient of t}^2)}$

Product of zeros

$$= (\sqrt{15})(-\sqrt{15}) = -15 = \frac{-15}{1}$$

constant term coefficient of t²

(vi)
$$3x^2 - x - 4$$

= $3x^2 - 4x + 3x - 4$
= $x(3x - 4) + 1(3x - 4)$
= $(3x - 4)(x + 1)$
zeros are $\frac{4}{3}$, -1
Sum of zeros
= $\frac{4}{3} - 1 = \frac{1}{3} = -\frac{(-1)}{3}$
= $-\frac{(coefficient of x)}{coefficient of x^2}$

Product of zeros =
$$\frac{4}{3} \times (-1) = -\frac{4}{3}$$

(constant term)

$$\overline{\mathbf{coefficient} \text{ of } \mathbf{x}^2}$$

<u> *Saral</u>

Q2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeros respectively.

(i) 1 ,-1	(ii) √ 2 , <mark>1</mark> 3
(iii) 0,√5	(iv) 1, 1

(v) $-\frac{1}{4}, \frac{1}{4}$ (vi) 4, 1 Sol. (i) Required polynomial = $x^2 - (\text{sum of zeros}) x + \text{product of zeros}$

$$= x^{2} - \frac{1}{4}x - 1$$
$$= \frac{1}{4} (4x^{2} - x - 1)$$

(ii) Required polynomial =
$$x^2 - (\text{sum of zeros}) x + \text{product of zeros}$$

$$= x^{2} - \sqrt{2} x + \frac{1}{3}$$
$$= \frac{1}{3} (3x^{2} - 3\sqrt{2} x + 1)$$

- (iii) Required polynomial = $x^2 - (\text{sum of zeros}) x + \text{product of zeros}$ $= x^2 - 0 x + \sqrt{5}$ $= x^2 + \sqrt{5}$.
- (iv) Required polynomial = $x^2 - (\text{sum of zeros}) x + \text{product of zeros}$ $= x^2 - 1 x + 1$ $= x^2 - x + 1.$
- (v) Required polynomial = $x^2 - (\text{sum of zeros}) x + \text{product of zeros}$

$$= x^{2} - \left(-\frac{1}{4}\right) x + \frac{1}{4}$$
$$= x^{2} + \frac{1}{4}x + \frac{1}{4}$$
$$= \frac{1}{4}(4x^{2} + x + 1).$$

(vi) Required polynomial = $x^2 - (\text{sum of zeros}) x + \text{product of zeros} = x^2 - 4x + 1.$