

NCERT SOLUTIONS

Polynomial

*eSaral है, तो सब सरल है।

EX-2.1

Q1. The graph of $y=p(x)$ are given in fig below, for some polynomials $p(x)$. Find the number of zeros of $p(x)$, in each case.

(vi)

Sol. (i) Graph of $y=p(x)$ does not intersect the x -axis. Hence, polynomial $\mathrm{p}(\mathrm{x})$ has no zero.
(ii) Graph of $\mathrm{y}=\mathrm{p}(\mathrm{x})$ intersects the x -axis at one and only one point.
Hence, polynomial $p(x)$ has one and only one real zero.
(iii) Graph of $y=p(x)$ intersects the x-axis at 3 points. Hence, polynomial $p(x)$ has 3 zeros.
(iv) Graph of $\mathrm{y}=\mathrm{p}(\mathrm{x})$ intersects the x -axis at 2 points. Hence, polynomial $\mathrm{p}(\mathrm{x})$ has 2 zeros.
(v) Graph of $y=p(x)$ intersects the x-axis at 4 points. Hence, polynomial $p(x)$ has 4 zeros.
(vi) Graph of $y=p(x)$ intersects the x-axis at 1 points and touch x-axis at 2 points. Hence, $p(x)$ has 3 zeros.

EX-2.2

Q1. Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients.
(i) $\mathrm{x}^{2}-2 \mathrm{x}-8$
(ii) $4 \mathrm{~s}^{2}-4 \mathrm{~s}+1$
(iii) $6 x^{2}-3-7 x$
(iv) $4 u^{2}+8 u$
(v) $\mathrm{t}^{2}-15$
(vi) $3 x^{2}-x-4$

Sol. (i) $x^{2}-2 x-8=x^{2}-4 x+2 x-8$
$=x(x-4)+2(x-4)=(x+2)(x-4)$
Zeroes are -2 and 4 .
Sum of the zeros
$=(-2)+(4)=2=\frac{-(-2)}{1}=\frac{-(\text { Coefficient of } x)}{\left(\text { Coefficient of } x^{2}\right)}$
Product of the zeros
$=(-2)(4)=-8=\frac{(-8)}{1}=\frac{(\text { Constant term })}{\left(\text { Coefficient of } \mathrm{x}^{2}\right)}$
(ii) $4 s^{2}-4 \mathrm{~s}+1=(2 \mathrm{~s}-1)^{2}$

The two zeros are $\frac{1}{2}, \frac{1}{2}$
Sum of the two zeros
$=\frac{1}{2}+\frac{1}{2}=1=\frac{-(-4)}{4}=\frac{-(\text { Coefficient of } \mathrm{x})}{\left(\text { Coefficient of } \mathrm{x}^{2}\right)}$
Product of two zeros
$=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{4}=\frac{(\text { Constant term) }}{\left(\text { Coefficient of } \mathrm{x}^{2}\right)}$
(iii) $6 x^{2}-7 x-3$
$=6 x^{2}-9 x+2 x-3$
$=3 \mathrm{x}(2 \mathrm{x}-3)+1(2 \mathrm{x}-3)$
$=(2 x-3)(3 x+1)$
zeros are $\frac{3}{2}, \frac{-1}{3}$
Sum of zeros $=\frac{3}{2}+\left(\frac{-1}{3}\right)$
$=\frac{9-2}{6}=\frac{7}{6}=\frac{-(-7)}{6}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of zeros
$=\frac{3}{2} \times\left(\frac{-1}{3}\right)=\frac{-1}{2}=\frac{-(3)}{6}$
$=\frac{(\text { constant term })}{\left(\text { coefficient of } \mathrm{x}^{2}\right)}$
(iv) $4 u^{2}+8 u=4 u(u+2)$
zeros are $0,-2$
Sum of zeros
$=0+(-2)=-2=\frac{-(8)}{4}$
$=-\frac{(\text { coefficient of } u)}{\left(\text { coefficient of } u^{2}\right)}$
Product of zeros
$=0 \times(-2)=0=\frac{0}{4}$
$=\frac{\text { constant term }}{\text { coefficient of } \mathrm{u}^{2}}$
(v) $\mathrm{t}^{2}-15=(\mathrm{t}-\sqrt{15})(\mathrm{t}+\sqrt{15})$
zeros are $\sqrt{15},-\sqrt{15}$
sum of zeros
$=\sqrt{15}+(-\sqrt{15})=0=\frac{0}{1}$
$=-\frac{(\text { coefficient of } \mathrm{t})}{\left(\text { coefficient of } \mathrm{t}^{2}\right)}$
Product of zeros
$=(\sqrt{15})(-\sqrt{15})=-15=\frac{-15}{1}$
$=\frac{\text { constant term }}{\text { coefficient of } \mathrm{t}^{2}}$
(vi) $3 x^{2}-x-4$
$=3 \mathrm{x}^{2}-4 \mathrm{x}+3 \mathrm{x}-4$
$=x(3 x-4)+1(3 x-4)$
$=(3 x-4)(x+1)$
zeros are $\frac{4}{3},-1$
Sum of zeros
$=\frac{4}{3}-1=\frac{1}{3}=-\frac{(-1)}{3}$
$=-\frac{(\text { coefficient of } x)}{\text { coefficient of } x^{2}}$
Product of zeros $=\frac{4}{3} \times(-1)=-\frac{4}{3}$
$=\frac{(\text { constant term })}{\text { coefficient of } \mathrm{x}^{2}}$

Q2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeros respectively.
(i) $\frac{1}{4},-1$
(ii) $\sqrt{2}, \frac{1}{3}$
(iii) $0, \sqrt{5}$
(iv) 1,1
(v) $-\frac{1}{4}, \frac{1}{4}$
(vi) 4,1

Sol. (i) Required polynomial $=$
$x^{2}-$ (sum of zeros) $x+$ product of zeros
$=x^{2}-\frac{1}{4} x-1$
$=\frac{1}{4}\left(4 \mathrm{x}^{2}-\mathrm{x}-1\right)$.
(ii) Required polynomial $=$
$x^{2}-$ (sum of zeros) $x+$ product of zeros
$=x^{2}-\sqrt{2} x+\frac{1}{3}$
$=\frac{1}{3}\left(3 x^{2}-3 \sqrt{2} x+1\right)$.
(iii) Required polynomial $=$
$x^{2}-$ (sum of zeros) $x+$ product of zeros
$=\mathrm{x}^{2}-0 \mathrm{x}+\sqrt{5}$
$=\mathrm{x}^{2}+\sqrt{5}$.
(iv) Required polynomial $=$
$x^{2}-$ (sum of zeros) $x+$ product of zeros
$=x^{2}-1 x+1$
$=x^{2}-x+1$.
(v) Required polynomial $=$
$x^{2}-$ (sum of zeros) $x+$ product of zeros
$=x^{2}-\left(-\frac{1}{4}\right) x+\frac{1}{4}$
$=x^{2}+\frac{1}{4} x+\frac{1}{4}$
$=\frac{1}{4}\left(4 x^{2}+x+1\right)$.
(vi) Required polynomial $=$
$x^{2}-($ sum of zeros $) x+$ product of zeros $=x^{2}-4 x+1$.

EX-2.3

Q1. Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in each of the following :
(i) $p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$
(ii) $p(x)=x^{4}-3 x^{2}+4 x+5, g(x)=x^{2}+1-x$
(iii) $p(x)=x^{4}-5 x+6, g(x)=2-x^{2}$.

Sol. (i) $x ^ { 2 } - 2 \longdiv { x ^ { 3 } - 3 x ^ { 2 } + 5 x - 3 } (q (x) = (x - 3)$

$$
\begin{aligned}
& \frac{-x^{3}+2 x}{-3 x^{2}+7 x-3} \\
& \begin{array}{r}
-3 x^{2} \quad+6 \\
+\quad- \\
\hline r(x)=(7 x-9)
\end{array}
\end{aligned}
$$

Hence, Quotient $\mathrm{q}(\mathrm{x})=\mathrm{x}-3$ and Remainder $\mathrm{r}(\mathrm{x})=7 \mathrm{x}-9$
(ii) $\quad x ^ { 2 } - x + 1 \longdiv { x ^ { 4 } - 3 x ^ { 2 } + 4 x + 5 }$

$$
\begin{gathered}
\frac{x^{4} \pm x^{2}}{x^{3}-4 x^{2}+4 x+5} \\
\frac{x^{3}-x^{2} \pm x}{+3 x^{2}+3 x+5} \\
\hline-3 x^{2} \pm 3 x-3 \\
r(x)=8
\end{gathered}
$$

Hence, Quotient, $\mathrm{q}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}-3$ and remainder, $r(x)=8$
(iii) $\quad - x ^ { 2 } + 2 \longdiv { x ^ { 4 } (x) = - x ^ { 2 } - 2 } \begin{array} { l } { x ^ { 4 } - 5 x + 6 } \end{array}$

$$
\begin{array}{r}
\frac{-x^{4}}{2 x^{2}-5 x+6}{ }^{2 x^{2}} \\
-2 x^{2} \quad \mp 4 \\
\hline r(x)=-5 x+10
\end{array}
$$

Hence, Quotient, $\mathrm{q}(\mathrm{x})=-\mathrm{x}^{2}-2$
Remainder, $\mathrm{r}(\mathrm{x})=-5 \mathrm{x}+10$

Q2. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial.
(i) $t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$
(ii) $\mathrm{x}^{2}+3 \mathrm{x}+1,3 \mathrm{x}^{4}+5 \mathrm{x}^{3}-7 \mathrm{x}^{2}+2 \mathrm{x}+2$
(iii) $x^{3}-3 x+1, x^{5}-4 x^{3}+x^{2}+3 x+1$

Sol. (i) $\quad q(t)=2 t^{2}+3 t+4$

$$
\begin{array}{r}
t ^ { 2 } - 3 \longdiv { 2 t ^ { 4 } + 3 t ^ { 3 } - 2 t ^ { 2 } - 9 t - 1 2 } \\
\frac{2 t^{4} \quad-6 t^{2}}{}+\begin{array}{c}
3 t^{3}+4 t^{2}-9 t-12 \\
3 t^{3} \quad-9 t
\end{array} \\
-\quad \begin{array}{c}
4 t^{2}-12 \\
4 t^{2}-12
\end{array} \\
\hline \text { Remainder }=0
\end{array}
$$

Hence, $t^{2}-3$ is a factor of $2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$
(ii) $\quad x ^ { 2 } + 3 x + 1 \longdiv { } \begin{array} { l } { q (x) = 3 x ^ { 2 } - 4 x + 2 } \\ { 3 x ^ { 4 } + 5 x ^ { 3 } - 7 x ^ { 2 } + 2 x + 2 } \end{array}$

$$
\begin{array}{r}
\frac{3 x^{4} \pm 9 x^{3} \pm 3 x^{2}}{-4 x^{3}-10 x^{2}+2 x+2} \\
\mp 4 x^{3}+12 x^{2}-4 x \\
\hline 2 x^{2}+6 x+2 \\
-2 x^{2} \pm 6 x \pm 2 \\
\text { Remainder }=0
\end{array}
$$

Hence, $x^{2}+3 x+1$ is a factor of

$$
3 x^{4}+5 x^{3}-7 x^{2}+2 x+2
$$

(iii) $\begin{gathered}q(x)=x^{2}-1 \\ x^{3}-3 x+1 \begin{array}{l}x^{5}-4 x^{3}+x^{2}+3 x+1 \\ \frac{-x^{5}+3 x^{3}+x^{2}}{-x^{3}+3 x+1}\end{array}\end{gathered}$
${ }_{+} x^{3}+3 x-1$

$$
\text { Remainder }=2
$$

Hence, $x^{2}-3 x+1$ is not a factor of
$x^{5}-4 x^{3}+x^{2}+3 x+1$

Q3. Obtain all other zeros of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeros are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.
Sol. Two of the zeros of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$ are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.
$\Rightarrow\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)$
is a factor of the polynomial.
i.e., $x^{2}-\frac{5}{3}$ is a factor.
i.e., $\left(3 x^{2}-5\right)$ is a factor of the polynomial. Then we apply the division algorithm as below :

$$
\begin{gathered}
q(x)=x^{2}+2 x+1 \\
3 x ^ { 2 } - 5 \longdiv { 3 x ^ { 4 } + 6 x ^ { 3 } - 2 x ^ { 2 } - 1 0 x - 5 } \\
\frac{3 x^{4} \quad-5 x^{2}}{+}+ \\
\frac{6 x^{3}+3 x^{2}-10 x-5}{6 x^{3}-10 x} \\
-\begin{array}{c}
3 x^{2}-5 \\
3 x^{2}-5 \\
-
\end{array} \\
\hline x
\end{gathered}
$$

The other two zeros will be obtained from the quadratic polynomial $\mathrm{q}(\mathrm{x})=\mathrm{x}^{2}+2 \mathrm{x}+1$
Now $\mathrm{x}^{2}+2 \mathrm{x}+1=(\mathrm{x}+1)^{2}$.
Its zeros are $-1,-1$.
Hence, all other zeros are $-1,-1$.

Q4. On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were x -2 and $-2 x+4$, respectively. Find $g(x)$.

Sol. $\left(x^{3}-3 x^{2}+x+2\right)=g(x) \times(x-2)+(-2 x+4)$
$\Rightarrow \mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+2+2 \mathrm{x}+-4=\mathrm{g}(\mathrm{x}) \times(\mathrm{x}-2)$
$\Rightarrow \mathrm{x}^{3}-3 \mathrm{x}^{2}+3 \mathrm{x}-2=\mathrm{g}(\mathrm{x}) \times(\mathrm{x}-2)$
$g(x)=\frac{x^{3}-3 x^{2}+3 x-2}{x-2}$
$x^{2}-x+1$
$-3 x^{2}+3 x-2$
$\frac{-x^{3}+2 x^{2}}{-x^{2}+3 x-2}$
$\frac{-x^{2} \pm 2 x}{x-2}$

So, $g(x)=x^{2}-x+1$

Q5. Give examples of polynomials $p(x), g(x), q(x)$ and $r(x)$, which satisfy the division algorithm and
(i) $\operatorname{deg} p(x)=\operatorname{deg} q(x)$
(ii) $\operatorname{deg} q(x)=\operatorname{deg} r(x)$
(iii) $\operatorname{deg} r(x)=0$.

Sol. (i) $p(x)=2 x^{2}+2 x+8, g(x)=2 x^{0}=2$;
$q(x)=x^{2}+x+4 ; r(x)=0$
(ii) $\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{2}+2 \mathrm{x}+8 ; \mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+9$;
$q(x)=2 ; r(x)=-10$
(iii) $p(x)=x^{3}+x+5 ; g(x)=x^{2}+1$;
$\mathrm{q}(\mathrm{x})=\mathrm{x} ; \mathrm{r}(\mathrm{x})=5$.

