<u> *Saral</u>

Ex - 2.2

Q1. Find the value of the polynomial $5x - 4x^2 + 3$ at (i) x = 0(vi) x = -1(iii) x = 2**Sol.** Let $f(x) = 5x - 4x^2 + 3$ (i) Value of f(x) at x = 0 = f(0) $= 5(0) - 4(0)^2 + 3 = 3$ (ii) Value of f(x) at x = -1 = f(-1) $= 5(-1) - 4(-1)^2 + 3 = -5 - 4 + 3 = -6$ (iii) Value of f(x) at x = 2 = f(2) $= 5(2) - 4(2)^2 + 3$ = 10 - 16 + 3 = -3Q2. Find p(0), p(1), p(2), for each of the following polynomials : (i) $p(y) = y^2 - y + 1$ (ii) $p(t) = 2 + t + 2t^2 - t^3$ (iii) $p(x) = x^3$ (iv) p(x) = (x - 1) (x + 1)**Sol.** (i) $p(y) = y^2 - y + 1$ $\therefore p(0) = (0)^2 - (0) + 1 = 1,$ $p(1) = (1)^2 - (1) + 1 = 1,$ $p(2) = (2)^2 - (2) + 1 = 4 - 2 + 1 = 3.$ (ii) $p(t) = 2 + t + 2t^2 - t^3$ $p(0) = 2 + 0 + 2(0)^2 - (0)^3 = 2$ $p(1) = 2 + 1 + 2(1)^2 - (1)^3 = 2 + 1 + 2 - 1 = 4$ $p(2) = 2 + 2 + 2(2)^2 - (2)^3 = 2 + 2 + 8 - 8 = 4$ (iii) $p(x) = x^3$ $p(0) = (0)^3 = 0$ $p(1) = (1)^3 = 1$ $p(2) = (2)^3 = 8$ (iv) p(x) = (x - 1) (x + 1)p(0) = (0 - 1) (0 + 1) = (-1)(1) = -1p(1) = (1 - 1) (1 + 1) = 0(2) = 0p(2) = (2 - 1) (2 + 1) = (1)(3) = 3

<mark>∛Saral</mark>

Q3. Verify whether the following are zeroes of the polynomial, indicated against them,

(i) p(x) = 3x + 1, $x = -\frac{1}{3}$ (ii) $p(x) = 5x - \pi, x = \frac{4}{\pi}$ (iii) $p(x) = x^2 - 1$, x = 1, -1(iv) p(x) = (x + 1) (x - 2), x = -1, 2(v) $p(x) = x^2, x = 0$ (vi) $p(x) = \ell x + m, x = -\frac{m}{\ell}$ (vii) $p(x) = 3x^2 - 1$, $x = -\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$ (viii) $p(x) = 2x + 1, x = \frac{1}{2}$ **Sol.** (i) p(x) = 3x + 1, $x = -\frac{1}{3}$ $p\left(-\frac{1}{3}\right) = 3\left(-\frac{1}{3}\right) + 1 = -1 + 1 = 0$ $\therefore -\frac{1}{3}$ is a zero of p(x). (ii) $p(x) = 5x - \pi, x = \frac{4}{5}$ $p\left(\frac{4}{5}\right) = 5\left(\frac{4}{5}\right) - \pi = 4 - \pi \neq 0$ $\therefore \frac{4}{5}$ is not a zero of p(x). (iii) $p(x) = x^2 - 1$, x = 1, -1 $p(1) = (1)^2 - 1 = 1 - 1 = 0$ $p(-1) = (-1)^2 - 1 = 1 - 1 = 0$ \therefore 1, -1 are zero's of p(x). (iv) $p(x) = (x + 1)(x - 2), \quad x = -1, 2$ p(-1) = (-1 + 1)(-1 - 2) = (0)(-3) = 0p(2) = (2 + 1)(2 - 2) = (3)(0) = 0 \therefore -1, 2 are zero's of p(x) (v) $p(x) = x^2$, x = 0p(0) = 0 \therefore 0 is a zero of p(x) (vi) $p(x) = \ell x = m, x = \frac{-m}{\ell}$ $p \bigg(\frac{-m}{\ell} \bigg) = \ell \bigg(\frac{-m}{\ell} \bigg) + m = -m + m = 0$ $\therefore \frac{-m}{\ell}$ is a zero of p(x).

<mark>∛Saral</mark>

(vii)
$$p(x) = 3x^2 - 1$$
, $x = -\frac{1}{\sqrt{3}}$, $\frac{2}{\sqrt{3}}$
 $p\left(-\frac{1}{\sqrt{3}}\right) = 3\left(-\frac{1}{\sqrt{3}}\right)^2 - 1 = 3\left(\frac{1}{3}\right) - 1$
 $= 1 - 1 = 0$
 $p\left(\frac{2}{\sqrt{3}}\right) = 3\left(\frac{2}{\sqrt{3}}\right)^2 - 1 = 3\left(\frac{4}{3}\right) - 1$
 $= 4 - 1 = 3 \neq 0$
So, $-\frac{1}{\sqrt{3}}$ is a zero of $p(x)$ and $\frac{2}{\sqrt{3}}$ is not a zero of $p(x)$.
(viii) $p(x) = 2x + 1$, $x = \frac{1}{2}$
 $p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right) + 1 = 1 + 1 = 2 \neq 0$
 $\therefore \frac{1}{2}$ is not a zero of $p(x)$.

Q4. Find the zero of the polynomial in each of the following cases : (i) p(x) = x + 5 (ii) p(x) = x - 5 (iii) p(x) = 2x + 5(iv) p(x) = 3x - 2 (v) p(x) = 3x (vi) p(x) = ax, $a \neq 0$ (vii) p(x) = cx + d, $c \neq 0$, c, d are real numbers.

Sol. (i)
$$p(x) = x + 5$$

(i)
$$p(x) = x + 5$$

 $p(x) = 0$
 $\Rightarrow x + 5 = 0 \Rightarrow x = -5$
 $\therefore -5$ is zero of the polynomial $p(x)$.
(ii) $p(x) = x - 5$
 $p(x) = 0$
 $x - 5 = 0$
or $x = 5$
 $\therefore 5$ is zero of polynomial $p(x)$.
(iii) $p(x) = 2x + 5$
 $p(x) = 0$

p(x) = 0 2x + 5 = 0 2x = -5 $\Rightarrow x = -\frac{5}{2}$ $\therefore -\frac{5}{2}$ is zero of polynomial p(x).

<u>*Saral</u>

(iv) p(x) = 3x - 2 $p(x) = 0 \Rightarrow 3x - 2 = 0$ or $x = \frac{2}{3}$ $\therefore \frac{2}{3}$ is zero of polynomial p(x). (v) p(x) = 3x $p(x) = 0 \Rightarrow 3x = 0$ or x = 0 $\therefore 0$ is zero of polynomial p(x). (vi) p(x) = ax, $a \neq 0$ $\Rightarrow ax = 0$ or x = 0 $\therefore 0$ is zero of p(x)(vii) p(x) = cx + d, $c \neq 0$, c, d are real numbers $cx + d = 0 \Rightarrow cx = -d$ $x = -\frac{d}{c}$ $\therefore -\frac{d}{c}$ is zero of polynomial p(x).