<mark>∛Saral</mark>

+ 1 = 0

Ex - 2.3

- **Q1.** Find the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by :
 - (i) x + 1 (ii) $x \frac{1}{2}$ (iii) x(iv) $x + \pi$ (v) 5 + 2x

Sol. (i)
$$x + 1$$

x + 1 = 0 ⇒ x = -1
∴ Remainder = p(-1) = (-1)³ + 3(-1)² + 3(-1) + 1 = -1 + 3 - 3
(ii) x-
$$\frac{1}{2}$$

x- $\frac{1}{2}$ = 0 ⇒ x = $\frac{1}{2}$
∴ Remainder = p $(\frac{1}{2})$
= $(\frac{1}{2})^3 + 3(\frac{1}{2})^2 + 3(\frac{1}{2}) + 1 = \frac{1}{8} + \frac{3}{4} + \frac{3}{2} + 1$
= $\frac{27}{8}$

(iii) x

Remainder = p(0) = 1(0)³ + 3(0)² + 3(0) + 1 = 1 (iv) x + π x + π = 0 \Rightarrow x = - π \therefore Remainder = p(- π) = 1 (- π)³ + 3 (- π)² + 3(- π) + 1 = - π ³ + 3 π ² - 3 π + 1 (v) 5 + 2x 5 + 2x = 0 \Rightarrow x = -5/2 \therefore Remainder = p(-5/2) = $\left(\frac{-5}{2}\right)^3 + 3\left(\frac{-5}{2}\right)^2 + 3\left(\frac{-5}{2}\right) + 1$

$$= \frac{-125}{8} + \frac{75}{4} - \frac{15}{2} + 1 = -\frac{27}{8}$$

<mark>∛Saral</mark>

Q2. Find the remainder when $x^3 - ax^2 + 6x - a$ divided by x - a.

Sol. Let $p(x) = x^3 - ax^2 + 6x - a$ $x - a = 0 \implies x = a$ ∴ Remainder = $(a)^3 - a(a)^2 + 6(a) - a$ $= a^3 - a^3 + 6a - a = 5a$

Q3. Check whether 7 + 3x is a factor of $3x^3 + 7x$

Sol. 7 + 3x will be a factor of $3x^3 + 7x$ only if 7 + 3x divides $3x^3 + 7x$ leaving 0 as remainder. Let $p(x) = 3x^3 + 7x$ 7 + 3x = 0 $\Rightarrow 3x = -7 \Rightarrow x = -7/3$ \therefore Remainder $3\left(-\frac{7}{3}\right)^3 + 7\left(-\frac{7}{3}\right) = \frac{-343}{9} - \frac{49}{3} = \frac{-490}{9} \neq 0$

so, 7 + 3x is not a factor of $3x^3 + 7x$.