Ex-2.3

Q1. Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by :
(i) $\mathrm{x}+1$
(ii) $\mathrm{x}-\frac{1}{2}$
(iii) x
(iv) $x+\pi$
(v) $5+2 \mathrm{x}$

Sol. (i) $\mathrm{x}+1$
$\mathrm{x}+1=0 \Rightarrow \mathrm{x}=-1$
\therefore Remainder $=\mathrm{p}(-1)=(-1)^{3}+3(-1)^{2}+3(-1)+1=-1+3-3+1=0$
(ii) $\mathrm{x}-\frac{1}{2}$
$\mathrm{x}-\frac{1}{2}=0 \Rightarrow \mathrm{x}=\frac{1}{2}$
\therefore Remainder $=\mathrm{p}\left(\frac{1}{2}\right)$
$=\left(\frac{1}{2}\right)^{3}+3\left(\frac{1}{2}\right)^{2}+3\left(\frac{1}{2}\right)+1=\frac{1}{8}+\frac{3}{4}+\frac{3}{2}+1$
$=\frac{27}{8}$
(iii) x

$$
\text { Remainder }=p(0)
$$

$$
=1(0)^{3}+3(0)^{2}+3(0)+1=1
$$

(iv) $x+\pi$
$x+\pi=0 \Rightarrow x=-\pi$
\therefore Remainder $=\mathrm{p}(-\pi)$
$=1(-\pi)^{3}+3(-\pi)^{2}+3(-\pi)+1$
$=-\pi^{3}+3 \pi^{2}-3 \pi+1$
(v) $5+2 \mathrm{x}$
$5+2 \mathrm{x}=0 \quad \Rightarrow \mathrm{x}=-5 / 2$
\therefore Remainder $=\mathrm{p}(-5 / 2)$
$=\left(\frac{-5}{2}\right)^{3}+3\left(\frac{-5}{2}\right)^{2}+3\left(\frac{-5}{2}\right)+1$
$=\frac{-125}{8}+\frac{75}{4}-\frac{15}{2}+1=-\frac{27}{8}$

e"Saral

Q2. Find the remainder when $x^{3}-a x^{2}+6 x-a$ divided by $x-a$.
Sol. Let $p(x)=x^{3}-a x^{2}+6 x-a$
$\mathrm{x}-\mathrm{a}=0 \Rightarrow \mathrm{x}=\mathrm{a}$
\therefore Remainder $=(a)^{3}-a(a)^{2}+6(a)-a$
$=a^{3}-a^{3}+6 a-a=5 a$

Q3. Check whether $7+3 \mathrm{x}$ is a factor of $3 \mathrm{x}^{3}+7 \mathrm{x}$

Sol. $7+3 x$ will be a factor of $3 x^{3}+7 x$ only if
$7+3 x$ divides $3 x^{3}+7 x$ leaving 0 as remainder.
Let $\mathrm{p}(\mathrm{x})=3 \mathrm{x}^{3}+7 \mathrm{x}$
$7+3 \mathrm{x}=0 \Rightarrow 3 \mathrm{x}=-7 \Rightarrow \mathrm{x}=-7 / 3$
\therefore Remainder
$3\left(-\frac{7}{3}\right)^{3}+7\left(-\frac{7}{3}\right)=\frac{-343}{9}-\frac{49}{3}=\frac{-490}{9} \neq 0$
so, $7+3 x$ is not a factor of $3 x^{3}+7 x$.

