

Ex - 2.1

Q1. Which of the following expressions are polynomials in one variable and which are not? State reason for your answer.

(i)
$$4x^2 - 3x + 7$$

(ii)
$$y^2 + \sqrt{2}$$

(iii)
$$3\sqrt{t} + t\sqrt{2}$$

(iv)
$$y + \frac{2}{y}$$

(v)
$$x^{10} + y^3 + t^{50}$$

(i) $4x^2 - 3x + 7$ Sol.

> This expression is a polynomial in one variable x because there is only one variable (x) in the expression.

(ii) $y^2 + \sqrt{2}$

This expression is a polynomial in one variable y because there is only one variable (y) in the expression.

(iii) $3\sqrt{t} + t\sqrt{2}$

The expression is not a polynomial because in the term $3\sqrt{t}$, the exponent of t is $\frac{1}{2}$, which is not a whole number.

(iv)
$$y + \frac{2}{y} = y + 2y^{-1}$$

The expression is not a polynomial because exponent of y is (-1) in term $\frac{2}{v}$ which in not a whole number.

(v) $x^{10} + y^3 + t^{50}$

The expression is not a polynomial in one variable, it is a polynomial in 3 variables x, y and t.

Q2. Write the coefficient of x^2 in each of the following:

(i)
$$2 + x^2 + x$$

(ii)
$$2 - x^2 + x^3$$

(ii)
$$2 - x^2 + x^3$$
 (iii) $\frac{\pi}{2}x^2 + x$

(iv)
$$\sqrt{2} - 1$$

Sol. (i) $2 + x^2 + x$

Coefficient of $x^2 = 1$

(ii) $2 - x^2 + x^3$

Coefficient of $x^2 = -1$

(iii)
$$\frac{\pi}{2}x^2 + x$$

Coefficient of $x^2 = \frac{\pi}{2}$

(iv) $\sqrt{2} - 1$

Coefficient of $x^2 = 0$

- Q3. Give one example each of a binomial of degree 35 and of a monomial of degree 100.
- **Sol.** One example of a binomial of degree 35 is $3x^{35} 4$. One example of monomial of degree 100 is $5x^{100}$.
- Q4. Write the degree of each of the following polynomials:
 - (i) $5x^3 + 4x^2 + 7x$
- (ii) $4 y^2$
- (iii) $5t \sqrt{7}$
- (iv) 3

Sol. (i) $5x^3 + 4x^2 + 7x$

Term with the highest power of $x = 5x^3$ Exponent of x in this term = 3

- \therefore Degree of this polynomial = 3.
- (ii) $4 y^2$

Term with the highest power of $y = -y^2$

Exponent of y in this term = 2

- \therefore Degree of this polynomial = 2.
- (iii) $5t \sqrt{7}$

Term with highest power of t = 5t.

Exponent of t in this term = 1

- \therefore Degree of this polynomial = 1.
- (iv) 3

This is a constant which is non-zero

So, degree of this polynomial = 0

- Q5. Classify the following as linear, quadratic and cubic polynomials:
 - (i) $x^2 + x$
- (ii) $x x^3$
- (iii) $y + y^2 + 4$

- (iv) 1 + x (v) 3t
- $(vi) r^2$
- (vii) $7x^2$

- Sol. (i) Quadratic
- (ii) Cubic
- (iii) Quadratic

- (iv) Linear
- (v) Linear
- (vi) Quadratic

(vii) Quadratic