

NCERT SOLUTIONS

Polynomials

<u>*Saral</u> हैं, तो सब सरल है।

Ex - 2.1

Q1. Which of the following expressions are polynomials in one variable and which are not ? State reason for your answer.

(i) $4x^2 - 3x + 7$ (ii) $y^2 + \sqrt{2}$ (iii) $3\sqrt{t} + t\sqrt{2}$ (iv) $y + \frac{2}{y}$ (v) $x^{10} + y^3 + t^{50}$

Sol. (i) $4x^2 - 3x + 7$

This expression is a polynomial in one variable x because there is only one variable (x) in the expression.

(ii) $y^2 + \sqrt{2}$

This expression is a polynomial in one variable y because there is only one variable (y) in the expression.

(iii) $3\sqrt{t} + t\sqrt{2}$

The expression is not a polynomial because in the term $3\sqrt{t}$, the exponent of t is $\frac{1}{2}$, which is not a whole number.

(iv)
$$y + \frac{2}{y} = y + 2y^{-1}$$

The expression is not a polynomial because exponent of y is (-1) in term $\frac{2}{v}$ which in

not a whole number.

(v) $x^{10} + y^3 + t^{50}$

The expression is not a polynomial in one variable, it is a polynomial in 3 variables x, y and t.

Q2. Write the coefficient of x^2 in each of the following :

(i) $2 + x^2 + x$ (ii) $2 - x^2 + x^3$ (iii) $\frac{\pi}{2}x^2 + x$ (iv) $\sqrt{2} - 1$

- Sol. (i) $2 + x^2 + x$ Coefficient of $x^2 = 1$
 - (ii) $2 x^2 + x^3$ Coefficient of $x^2 = -1$

(iii)
$$\frac{\pi}{2}x^2 + x^2$$

Coefficient of $x^2 = \frac{\pi}{2}$

(iv) $\sqrt{2} - 1$ Coefficient of $x^2 = 0$

- Q3. Give one example each of a binomial of degree 35 and of a monomial of degree 100.
- Sol. One example of a binomial of degree 35 is $3x^{35} 4$. One example of monomial of degree 100 is $5x^{100}$.
- Q4. Write the degree of each of the following polynomials : (i) $5x^3 + 4x^2 + 7x$ (ii) $4 - y^2$ (iii) $5t - \sqrt{7}$ (iv) 3 **Sol.** (i) $5x^3 + 4x^2 + 7x$ Term with the highest power of $x = 5x^3$ Exponent of x in this term = 3 \therefore Degree of this polynomial = 3. (ii) $4 - y^2$ Term with the highest power of $y = -y^2$ Exponent of y in this term = 2 \therefore Degree of this polynomial = 2. (iii) 5t – $\sqrt{7}$ Term with highest power of t = 5t. Exponent of t in this term = 1 \therefore Degree of this polynomial = 1. (iv) 3 This is a constant which is non-zero So, degree of this polynomial = 0

Q5. Classify the following as linear, quadratic and cubic polynomials :

	(i) $x^2 + x$	(ii) $x - x^3$	(iii) $y + y^2 + 4$
	(iv) $1 + x$ (v) $3t$	(vi) r^2	(vii) $7x^2$
Sol.	(i) Quadratic (iv) Linear	(ii) Cubic (v) Linear	(iii) Quadratic(vi) Quadratic

(vii) Quadratic

Ex - 2.2

Q1. Find the value of the polynomial $5x - 4x^2 + 3$ at (i) x = 0(vi) x = -1(iii) x = 2**Sol.** Let $f(x) = 5x - 4x^2 + 3$ (i) Value of f(x) at x = 0 = f(0) $= 5(0) - 4(0)^2 + 3 = 3$ (ii) Value of f(x) at x = -1 = f(-1) $= 5(-1) - 4(-1)^2 + 3 = -5 - 4 + 3 = -6$ (iii) Value of f(x) at x = 2 = f(2) $= 5(2) - 4(2)^2 + 3$ = 10 - 16 + 3 = -3Q2. Find p(0), p(1), p(2), for each of the following polynomials : (i) $p(y) = y^2 - y + 1$ (ii) $p(t) = 2 + t + 2t^2 - t^3$ (iii) $p(x) = x^3$ (iv) p(x) = (x - 1) (x + 1)**Sol.** (i) $p(y) = y^2 - y + 1$ $\therefore p(0) = (0)^2 - (0) + 1 = 1,$ $p(1) = (1)^2 - (1) + 1 = 1,$ $p(2) = (2)^2 - (2) + 1 = 4 - 2 + 1 = 3.$ (ii) $p(t) = 2 + t + 2t^2 - t^3$ $p(0) = 2 + 0 + 2(0)^2 - (0)^3 = 2$ $p(1) = 2 + 1 + 2(1)^2 - (1)^3 = 2 + 1 + 2 - 1 = 4$ $p(2) = 2 + 2 + 2(2)^2 - (2)^3 = 2 + 2 + 8 - 8 = 4$ (iii) $p(x) = x^3$ $p(0) = (0)^3 = 0$ $p(1) = (1)^3 = 1$ $p(2) = (2)^3 = 8$ (iv) p(x) = (x - 1) (x + 1)p(0) = (0 - 1) (0 + 1) = (-1)(1) = -1p(1) = (1 - 1) (1 + 1) = 0(2) = 0p(2) = (2 - 1) (2 + 1) = (1)(3) = 3

Q3. Verify whether the following are zeroes of the polynomial, indicated against them,

(i) p(x) = 3x + 1, $x = -\frac{1}{3}$ (ii) $p(x) = 5x - \pi, x = \frac{4}{\pi}$ (iii) $p(x) = x^2 - 1$, x = 1, -1(iv) p(x) = (x + 1) (x - 2), x = -1, 2(v) $p(x) = x^2, x = 0$ (vi) $p(x) = \ell x + m, x = -\frac{m}{\ell}$ (vii) $p(x) = 3x^2 - 1$, $x = -\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$ (viii) p(x) = 2x + 1, $x = \frac{1}{2}$ **Sol.** (i) p(x) = 3x + 1, $x = -\frac{1}{3}$ $p\left(-\frac{1}{3}\right) = 3\left(-\frac{1}{3}\right) + 1 = -1 + 1 = 0$ $\therefore -\frac{1}{3}$ is a zero of p(x). (ii) $p(x) = 5x - \pi, x = \frac{4}{5}$ $p\left(\frac{4}{5}\right) = 5\left(\frac{4}{5}\right) - \pi = 4 - \pi \neq 0$ $\therefore \frac{4}{5}$ is not a zero of p(x). (iii) $p(x) = x^2 - 1$, x = 1, -1 $p(1) = (1)^2 - 1 = 1 - 1 = 0$ $p(-1) = (-1)^2 - 1 = 1 - 1 = 0$ \therefore 1, -1 are zero's of p(x). (iv) $p(x) = (x + 1)(x - 2), \quad x = -1, 2$ p(-1) = (-1 + 1)(-1 - 2) = (0)(-3) = 0p(2) = (2 + 1)(2 - 2) = (3)(0) = 0 \therefore -1, 2 are zero's of p(x) (v) $p(x) = x^2$, x = 0p(0) = 0 \therefore 0 is a zero of p(x) (vi) $p(x) = \ell x = m, x = \frac{-m}{\ell}$ $p \bigg(\frac{-m}{\ell} \bigg) \, = \, \ell \bigg(\frac{-m}{\ell} \bigg) \, + \, m = -m \, + \, m = \, 0$ $\therefore \frac{-m}{\ell}$ is a zero of p(x).

<u>&Saral</u>

(vii)
$$p(x) = 3x^2 - 1$$
, $x = -\frac{1}{\sqrt{3}}$, $\frac{2}{\sqrt{3}}$
 $p\left(-\frac{1}{\sqrt{3}}\right) = 3\left(-\frac{1}{\sqrt{3}}\right)^2 - 1 = 3\left(\frac{1}{3}\right) - 1$
 $= 1 - 1 = 0$
 $p\left(\frac{2}{\sqrt{3}}\right) = 3\left(\frac{2}{\sqrt{3}}\right)^2 - 1 = 3\left(\frac{4}{3}\right) - 1$
 $= 4 - 1 = 3 \neq 0$
So, $-\frac{1}{\sqrt{3}}$ is a zero of $p(x)$ and $\frac{2}{\sqrt{3}}$ is not a zero of $p(x)$.
(viii) $p(x) = 2x + 1$, $x = \frac{1}{2}$
 $p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right) + 1 = 1 + 1 = 2 \neq 0$
 $\therefore \frac{1}{2}$ is not a zero of $p(x)$.

Q4. Find the zero of the polynomial in each of the following cases : (i) p(x) = x + 5(ii) p(x) = x - 5 (iii) p(x) = 2x + 5(iv) p(x) = 3x - 2(v) p(x) = 3x(vi) $p(x) = ax, a \neq 0$ (vii) p(x) = cx + d, $c \neq 0$, c, d are real numbers.

```
Sol
```

(i)
$$p(x) = x + 5$$

 $p(x) = 0$
⇒ $x + 5 = 0 \Rightarrow x = -5$
∴ -5 is zero of the polynomial $p(x)$.
(ii) $p(x) = x - 5$
 $p(x) = 0$
 $x - 5 = 0$
or $x = 5$
∴ 5 is zero of polynomial $p(x)$.
(iii) $p(x) = 2x + 5$
 $p(x) = 0$
 $2x + 5 = 0$
 $2x + 5 = 0$
 $2x = -5$
⇒ $x = -\frac{5}{2}$
∴ $-\frac{5}{2}$ is zero of polynomial $p(x)$.

<u>*Saral</u>

(iv) p(x) = 3x - 2 $p(x) = 0 \Rightarrow 3x - 2 = 0$ or $x = \frac{2}{3}$ $\therefore \frac{2}{3}$ is zero of polynomial p(x). (v) p(x) = 3x $p(x) = 0 \Rightarrow 3x = 0$ or x = 0 $\therefore 0$ is zero of polynomial p(x). (vi) p(x) = ax, $a \neq 0$ $\Rightarrow ax = 0$ or x = 0 $\therefore 0$ is zero of p(x)(vii) $p(x) = cx + d, c \neq 0, c, d$ are real numbers $cx + d = 0 \Rightarrow cx = -d$ $x = -\frac{d}{c}$ $\therefore -\frac{d}{c}$ is zero of polynomial p(x).

+ 1 = 0

Ex - 2.3

- **Q1.** Find the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by :
 - (i) x + 1 (ii) $x \frac{1}{2}$ (iii) x(iv) $x + \pi$ (v) 5 + 2x

Sol. (i)
$$x + 1$$

x + 1 = 0 ⇒ x = -1
∴ Remainder = p(-1) = (-1)³ + 3(-1)² + 3(-1) + 1 = -1 + 3 - 3
(ii) x -
$$\frac{1}{2}$$

x - $\frac{1}{2}$ = 0 ⇒ x = $\frac{1}{2}$
∴ Remainder = p $(\frac{1}{2})$
= $(\frac{1}{2})^3 + 3(\frac{1}{2})^2 + 3(\frac{1}{2}) + 1 = \frac{1}{8} + \frac{3}{4} + \frac{3}{2} + 1$
= $\frac{27}{8}$

(iii) x

Remainder = p(0) = 1(0)³ + 3(0)² + 3(0) + 1 = 1 (iv) x + π x + π = 0 \Rightarrow x = - π \therefore Remainder = p(- π) = 1 (- π)³ + 3 (- π)² + 3(- π) + 1 = - π ³ + 3 π ² - 3 π + 1 (v) 5 + 2x 5 + 2x = 0 \Rightarrow x = -5/2 \therefore Remainder = p(-5/2) = $\left(\frac{-5}{2}\right)^3 + 3\left(\frac{-5}{2}\right)^2 + 3\left(\frac{-5}{2}\right) + 1$

$$= \frac{-125}{8} + \frac{75}{4} - \frac{15}{2} + 1 = -\frac{27}{8}$$

Q2. Find the remainder when $x^3 - ax^2 + 6x - a$ divided by x - a.

Sol. Let $p(x) = x^3 - ax^2 + 6x - a$ $x - a = 0 \implies x = a$ ∴ Remainder = $(a)^3 - a(a)^2 + 6(a) - a$ $= a^3 - a^3 + 6a - a = 5a$

Q3. Check whether 7 + 3x is a factor of $3x^3 + 7x$

Sol. 7 + 3x will be a factor of $3x^3 + 7x$ only if 7 + 3x divides $3x^3 + 7x$ leaving 0 as remainder. Let $p(x) = 3x^3 + 7x$ 7 + 3x = 0 \Rightarrow 3x = -7 \Rightarrow x = -7/3 \therefore Remainder $3\left(-\frac{7}{3}\right)^3 + 7\left(-\frac{7}{3}\right) = \frac{-343}{9} - \frac{49}{3} = \frac{-490}{9} \neq 0$

so, 7 + 3x is not a factor of $3x^3 + 7x$.

Ex - 2.4

Q1.	Determine which of the following polynomials, $(x + 1)$ is a factor of :
	(i) $x^3 + x^2 + x + 1$
	(ii) $x^4 + x^3 + x^2 + x + 1$
	(iii) $x^4 + 3x^3 + 3x^2 + x + 1$
	(iv) $x^3 - x^2 - (2 + \sqrt{2}) x + \sqrt{2}$
Sol.	(i) $x^3 + x^2 + x + 1$
	Let $p(x) = x^3 + x^2 + x + 1$
	The zero of $x + 1$ is -1
	$p(-1) = (-1)^3 + (-1)^2 + (-1) + 1$ = -1 + 1 - 1 + 1 = 0
	By Factor theorem $x + 1$ is a factor of $p(x)$. (ii) $x^4 + x^3 + x^2 + x + 1$
	(ii) $x + x + x + x + 1$ Let $p(x) = x^4 + x^3 + x^2 + x + 1$
	The zero of $x + 1$ is -1
	$p(-1) = (-1)^4 + (-1)^3 + (-1)^2 + (-1) + 1 = 1 \neq 0$
	By Factor theorem $x + 1$ is not a factor of $p(x)$
	(iii) $x^4 + 3x^3 + 3x^2 + x + 1$
	Let $p(x) = x^4 + 3x^3 + 3x^2 + x + 1$
	Zero of $x + 1$ is -1
	$p(-1) = (-1)^4 + 3 (-1)^3 + 3(-1)^2 + (-1) + 1$
	$= 1 - 3 + 3 - 1 + 1 = 1 \neq 0$
	By Factor theorem $x + 1$ is not a factor of $p(x)$
	(iv) Let $p(x) = x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$
	zero of $x + 1$ is -1
	$p(-1) = (-1)^3 - (-1)^2 - (2 + \sqrt{2})(-1) + \sqrt{2}$
	$= -1 - 1 + 2 + \sqrt{2} + \sqrt{2} = 2\sqrt{2} \neq 0$
	By Factor theorem, $x + 1$ is not a factor of $p(x)$.
Q2.	Use the factor theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases :
	(i) $p(x) = 2x^3 + x^2 - 2x - 1$, $g(x) = x + 1$.
	(ii) $p(x) = x^3 + 3x^2 + 3x + 1$, $g(x) = x + 2$.
	(iii) $p(x) = x^3 - 4x^2 + x + 6$; $g(x) = x - 3$
Sol.	(i) $p(x) = 2x^3 + x^2 - 2x - 1$, $g(x) = x + 1$.
	$g(x) = 0 \Rightarrow x + 1 = 0 \Rightarrow x = -1$
	\therefore Zero of g(x) is -1
	Now, $p(-1) = 2(-1)^3 + (-1)^2 - 2(-1) - 1$
	= -2 + 1 + 2 - 1 = 0
	\therefore By factor theorem, g(x) is a factor of p(x).

(ii) Let $p(x) = x^3 + 3x^2 + 3x + 1$, g(x) = x + 2 $g(x) = 0 \implies x + 2 = 0$ $\Rightarrow x = -2$ \therefore Zero of g(x) is -2 Now, $p(-2) = (-2)^3 + 3(-2)^2 + 3(-2) + 1$ = -8 + 12 - 6 + 1 = -1 \therefore By Factor theorem, g(x) is not a factor of p(x) (iii) $p(x) = x^3 - 4x^2 + x + 6$, g(x) = x - 3g(x) = 0 \Rightarrow x - 3 = 0 \Rightarrow x = 3 \therefore Zero of g(x) = 3 Now $p(3) = 3^3 - 4(3)^2 + 3 + 6$ = 27 - 36 + 3 + 6 = 0 \therefore By Factor theorem, g(x) is a factor of p(x). Q3. Find the value of k, if x - 1 is a factor of p(x) in each of the following cases : (i) $p(x) = x^2 + x + k$ (ii) $p(x) = 2x^2 + kx + \sqrt{2}$ (iii) $p(x) = kx^2 - \sqrt{2}x + 1$ (iv) $p(x) = kx^2 - 3x + k$ **Sol.** (i) $p(x) = x^2 + x + k$ If x - 1 is a factor of p(x), then p(1) = 0 $\Rightarrow (1)^2 + (1) + k = 0$ $\Rightarrow 1 + 1 + k = 0$ $\Rightarrow 2 + k = 0$ $\Rightarrow k = -2$ (ii) $p(x) = 2x^2 + kx + \sqrt{2}$ If (x - 1) is a factor of p(x) then p(1) = 0 $\Rightarrow 2(1)^2 + k(1) + \sqrt{2} = 0$ $\Rightarrow 2 + k + \sqrt{2} = 0$ $k = -(2 + \sqrt{2})$ (iii) $p(x) = kx^2 - \sqrt{2}x + 1$ If (x - 1) is a factor of p(x) then p(1) = 0 $k(1)^2 - \sqrt{2}(1) + 1 = 0$ \Rightarrow k - $\sqrt{2}$ + 1 = 0 $k = \sqrt{2} - 1$

 $(iv) p(x) = kx^2 - 3x + k$ If (x-1) is a factor of p(x) then p(1) = 0 $\Rightarrow k(1)^2 - 3(1) + k = 0$ 2k = 3k = 3/2Q4. Factorise : (i) $12x^2 - 7x + 1$ (ii) $2x^2 + 7x + 3$ (iii) $6x^2 + 5x - 6$ (iv) $3x^2 - x - 4$ **Sol.** (i) $12x^2 - 7x + 1$ $= 12x^2 - 4x - 3x + 1$ = 4x(3x - 1) - 1(3x - 1)= (3x - 1) (4x - 1)(ii) $2x^2 + 7x + 3$ $=2x^{2}+6x+x+3$ =2x (x + 3) + 1 (x + 3)=(x + 3) (2x + 1)(iii) $6x^2 + 5x - 6 = 6x^2 + 9x - 4x - 6$ = 3x (2x + 3) - 2(2x + 3)= (3x - 2) (2x + 3)(iv) $3x^2 - x - 4 = 3x^2 - 4x + 3x - 4$ = x (3x - 4) + 1 (3x - 4)= (x + 1) (3x - 4)**Q5.** Factorise : (ii) $x^3 - 3x^2 - 9x - 5$ (i) $x^3 - 2x^2 - x + 2$ (iii) $x^3 + 13x^2 + 32x + 20$ (iv) $2y^3 + y^2 - 2y - 1$ **Sol.** (i) $x^3 - 2x^2 - x + 2$ Let $p(x) = x^3 - 2x^2 - x + 2$ By trial, we find that $p(1) = (1)^3 - 2(1)^2 - (1) + 2$ = 1 - 2 - 1 + 2 = 0 \therefore By factor Theorem, (x - 1) is a factor of p(x). Now, $x^3 - 2x^2 - x + 2$ $= x^{2}(x - 1) - x(x - 1) - 2(x - 1)$ $= (x - 1) (x^2 - x - 2)$ $= (x - 1) (x^2 - 2x + x - 2)$ $= (x - 1) \{x (x - 2) + 1 (x - 2)\}$ = (x - 1) (x - 2) (x + 1)

(ii) $x^3 - 3x^2 - 9x - 5$ Let $p(x) = x^3 - 3x^2 - 9x - 5$ By trial, we find $p(-1) = (-1)^3 - 3 (-1)^2 - 9(-1) - 5$ = -1 - 3 + 9 - 5 = 0 \therefore By Factor Theorem, x - (-1) or x + 1 is factor of p(x)Now, $x^3 - 3x^2 - 9x - 5$ $= x^{2} (x + 1) - 4x (x + 1) - 5 (x + 1)$ $= (x + 1) (x^2 - 4x - 5)$ $= (x + 1) (x^2 - 5x + x - 5)$ $= (x + 1) \{x (x - 5) + 1 (x - 5)\}$ $= (x + 1)^2 (x - 5)$ (iii) $x^3 + 13x^2 + 32x + 20$ Let $p(x) = x^3 + 13x^2 + 32x + 20$ By trial, we find $p(-1) = (-1)^3 + 13(-1)^2 + 32(-1) + 20$ = -1 + 13 - 32 + 20 = 0: By Factor theorem, x - (-1), x + 1 is a factor of p(x) $x^3 + 13x^2 + 32x + 20$ $= x^{2}(x + 1) + 12(x) (x + 1) + 20 (x + 1)$ $=(x + 1) (x^{2} + 12x + 20)$ $= (x + 1) (x^{2} + 2x + 10x + 20)$ $=(x + 1) \{x (x + 2) + 10 (x + 2)\}$ =(x + 1) (x + 2) (x + 10)(iv) $2y^3 + y^2 - 2y - 1$ $p(y) = 2y^3 + y^2 - 2y - 1$ By trial, we find that $p(1) = 2 (1)^3 + (1)^2 - 2(1) - 1 = 0$ \therefore By Factor theorem, (y - 1) is a factor of p(y) $2y^3 + y^2 - 2y - 1$ $= 2y^{2}(y-1) + 3y(y-1) + 1(y-1)$ $=(y-1)(2y^2+3y+1)$ $= (y - 1) (2y^{2} + 2y + y + 1)$ $=(y-1) \{2y (y+1) + 1 (y+1)\}$ =(y-1)(2y+1)(y+1)

Ex - 2.5

Q1. Use suitable identities to find the following products : (i) (x + 4) (x + 10)(ii) (x + 8) (x - 10)(iii) (3x + 4) (3x - 5)(iv) $\left(y^2 + \frac{3}{2}\right)\left(y^2 - \frac{3}{2}\right)$ (v) (3 - 2x) (3 + 2x)**Sol.** (i) (x + 4) (x + 10) $= x^{2} + (4 + 10) x + (4) (10) = x^{2} + 14x + 40$ (ii) (x + 8) (x - 10) $= (x + 8) \{x + (-10)\}$ $= x^{2} + \{8 + (-10)\}x + 8(-10)$ $=x^{2}-2x-80$ (iii)(3x + 4)(3x - 5)=(3x + 4) (3x - 5) = (3x + 4) (3x + (-5)) $=(3x)^{2} + \{4 + (-5)\} (3x) + 4 (-5)\}$ $= 9x^2 - 3x - 20$ $(iv)\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)$ Let, $y^2 = x$ $\Rightarrow \left(y^2 + \frac{3}{2}\right) \left(y^2 - \frac{3}{2}\right) = \left(x + \frac{3}{2}\right) \left(x - \frac{3}{2}\right)$ $= x^2 - \frac{9}{4}$ (using idenity) $(a + b) (a - b) = a^2 - b^2$ $\Rightarrow (y^2)^2 - \frac{9}{4}$ $\Rightarrow y^4 - \frac{9}{4}$ (v) (3-2x)(3+2x) $(3)^2 - (2x)^2 = 9 - 4x^2$ (using idenity) $(a + b) (a - b) = a^2 - b^2$

Q2. Evaluate the following product without multiplying directly :

(i) 103×107 (ii) 95×96 (iii) 104×96

Sol. (i)
$$103 \times 107 = (100 + 3) \times (100 + 7)$$

 $= (100)^{2} + (3 + 7) (100) + (3) (7)$
 $= 10000 + 1000 + 21 = 11021$
Alternate solution :
 $103 \times 107 = (105 - 2) \times (105 + 2)$
 $= (105)^{2} - (2)^{2} = (100 + 5)^{2} - 4$
 $= (100)^{2} + 2(100) (5) + (5)^{2} - 4$
 $= 10000 + 1000 + 25 - 4$
 $= 11021.$
(ii) 95×96
 $= (90 + 5) \times (90 + 6)$
 $= (90)^{2} + (5 + 6) 90 + (5) (6)$
 $= 8100 + 990 + 30 = 9120$
(iii) 104×96
 $= (100 + 4) \times (100 - 4)$
(using idenity) (a + b) (a - b) = a^{2} - b^{2}
 $= (100)^{2} - (4)^{2} = 10000 - 16$
 $= 9984$

Q3. Factorise the following using appropriate identities :

(i) $9x^2 + 6xy + y^2$ (ii) $4y^2 - 4y + 1$ (iii) $x^2 - \frac{y^2}{100}$

Sol. (i)
$$9x^2 + 6xy + y^2 = (3x)^2 + 2(3x)(y) + (y)^2$$

 $= (3x + y)^2$
 $= (3x + y) (3x + y)$
(ii) $4y^2 - 4y + 1$
 $= (2y)^2 - 2 (2y) (1) + (1)^2$
 $= (2y - 1)^2 = (2y - 1) (2y - 1)$

 $(iii) x^2 - \frac{y^2}{100}$

(using idenity) $a^2 - b^2 = (a + b) (a - b)$

$$\mathbf{x}^2 - \left(\frac{\mathbf{y}}{10}\right)^2 = \left(\mathbf{x} + \frac{\mathbf{y}}{10}\right) \left(\mathbf{x} - \frac{\mathbf{y}}{10}\right)$$

Q4. Expand each of the following using suitable identities : (i) $(x + 2y + 4z)^2$ (ii) $(2x - y + z)^2$ (iii) $(-2x + 3y + 2z)^2$ (iv) $(3a - 7b - c)^2$ $(v) (-2x + 5y - 3z)^2$ $(vi) \left[\frac{1}{4}a - \frac{1}{2}b + 1\right]^2$ **Sol.** (i) $(x + 2y + 4z)^2 = (x)^2 + (2y)^2 + (4z)^2 + 2(x)(2y)$ 2(2y)(4z) + 2(4z)(x) $= x^{2} + 4y^{2} + 16z^{2} + 4xy + 16yz + 8zx$ (ii) $(2x - y + z)^2$ =(2x - y + z)(2x - y + z) $=(2x)^{2} + (-y)^{2} + (z)^{2} + 2(2x)(-y) + 2(-y)(z) + 2(z)(2x)$ $=4x^{2} + y^{2} + z^{2} - 4xy - 2yz + 4zx$ $(iii)(-2x + 3y + 2z)^2$ $=(-2x)^{2} + (3y)^{2} + (2z)^{2} + 2(-2x)(3y) + 2(-2x)(2z) + 2(3y)(2z)$ $=4x^{2} + 9y^{2} + 4z^{2} - 12xy - 8xz + 12yz$ $(iv) (3a - 7b - c)^2 = (3a - 7b - c) (3a - 7b - c)$ $=(3a)^{2} + (-7b)^{2} + (-c)^{2} + 2(3a)(-7b) +$ 2(3a) (-c) + 2(-7b) (-c) $=9a^2 + 49b^2 + c^2 - 42ab - 6ac + 14bc$ (v) $(-2x + 5y - 3z)^2$ =(-2x + 5y - 3z)(-2x + 5y - 3z) $=(-2x)^{2} + (5y)^{2} + (-3z)^{2} + 2(-2x)(5y) +$ 2(-2x)(-3z) + 2(-3z)(5y) $=4x^{2} + 25y^{2} + 9z^{2} - 20xy + 12xz - 30 yz$ $(vi)\left[\frac{1}{4}a - \frac{1}{2}b + 1\right]^2$ $= \left(\frac{1}{4}a - \frac{1}{2}b + 1\right) \left(\frac{1}{4}a - \frac{1}{2}b + 1\right)$ $=\left(\frac{1}{4}a\right)^{2} + \left(-\frac{1}{2}b\right)^{2} + (1)^{2} + 2\left(\frac{1}{4}a\right)\left(-\frac{1}{2}b\right) + 2\left(\frac{1}{4}a\right)(1)^{2} + 2\left(-\frac{1}{2}b\right)(1)$

$$=\frac{1}{16}a^{2}+\frac{1}{4}b^{2}+1-\frac{1}{4}ab-b+\frac{1}{2}a$$

Q5. Factorise :
(i)
$$4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16xz$$

(ii) $2x^2 + y^2 + 8z^2 - 2\sqrt{2}xy + 4\sqrt{2}yz - 8zx$

Sol. (i)
$$4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16xz$$

$$= (2x)^2 + (3y)^2 + (-4z)^2 + 2(2x)(3y) + 2(3y)(-4z) + 2(-4z)(-2x)$$

$$= \{2x + 3y + (-4z)\}^2 = (2x + 3y - 4z)^2$$

$$= (2x + 3y - 4z) (2x + 3y - 4z)$$
(ii) $2x^2 + y^2 + 8z^2 - 2\sqrt{2}xy + 4\sqrt{2}yz - 8zx$

$$= (-\sqrt{2}x)^2 + y^2 + (2\sqrt{2}z)^2 + 2(-\sqrt{2}x)y + 2y(2\sqrt{2}z) + 2(2\sqrt{2}z)(-\sqrt{2}x)$$

$$= (-\sqrt{2}x + y + 2\sqrt{2}z)^2$$

Q6. Write the following cubes in expanded form :

(i)
$$(2x + 1)^3$$
 (ii) $(2a - 3b)^3$
(iii) $\left[\frac{3}{2}x + 1\right]^3$ (iv) $\left[x - \frac{2}{3}y\right]^3$

Sol. (i)
$$(2x + 1)^3 = (2x)^3 + (1)^3 + 3(2x)(1)(2x + 1)$$

 $= 8x^3 + 1 + 6x(2x + 1)$
 $= 8x^3 + 1 + 12x^2 + 6x$
 $= 8x^3 + 12x^2 + 6x + 1$
(ii) $(2a - 3b)^3 = (2a)^3 - (3b)^3 - 3(2a)(3b)$ (2a-3b)
 $= 8a^3 - 27b^3 - 18ab$ (2a - 3b)
 $= 8a^3 - 27b^3 - 36a^2b + 54ab^2$
(iii) $\left[\frac{3}{2}x + 1\right]^3 = \left(\frac{3}{2}x\right)^3 + (1)^3 + 3\left(\frac{3}{2}x\right)(1)\left(\frac{3}{2}x + 1\right)$
 $= \frac{27}{8}x^3 + 1 + \frac{27}{4}x^2 + \frac{9}{2}x$
 $= \frac{27}{8}x^3 + \frac{27}{4}x^2 + \frac{9}{2}x + 1$
(iv) $\left(x - \frac{2}{3}y\right)^3 = x^3 - \left(\frac{2}{3}y\right)^3 - 3x\left(\frac{2}{3}y\right)\left(x - \frac{2}{3}y\right)$
 $= x^3 - \frac{8}{27}y^3 - 2xy\left(x - \frac{2}{3}y\right)$

$$= x^3 - \frac{8}{27}y^3 - 2x^2y + \frac{4}{3}xy^2$$

Q7.	Evaluate the following using suitable identities :					
	(i) (99) ³	(ii) (102) ³	(iii) (998) ³			
Sol.	(i) $(99)^3 = (100 - 1)^3$					
	$= (100)^3 - (1)^3 - 3(100)(1)(100 - 1)$					
	= 1000000 - 1 - 300(100 - 1)					
	= 1000000 - 1 - 30000 + 300					
	= 970299					
	(ii) $(102)^3 = (100 + 2)^3$					
	$= (100)^3 + (2)^3 + 3(100) (2) (100 + 2)$					
	=1000000 + 8 + 600 (100 + 2)					
	=1000000 + 8 + 60000 + 1200					
	=1061208.					
	$(iii)(998)^3 = (1000-2)^3$					
	$=(1000)^{3} - (2)^{3} - 3 (1000)(2)(1000-2)$					
	=100000000 - 8 - 6000 (1000 - 2)					
	=994011992					
Q8.	Factorise each of the following : (i) $8a^3 + b^3 + 12a^2b + 6ab^2$					
	(ii) $8a^3 - b^3 - 12a^2b + 6ab^2$					
	(iii) $27 - 125a^3 - 135a + 225a^2$					
	(iv) $64a^3 - 27b^3 - 144a^2b + 108ab^2$					
	(v) $27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4}p$					
	$216 2^{P} 4^{P}$					
Sol.	(i) $8a^3 + b^3 + 12a^2b + 6ab^2$					
	$= (2a)^3 + (b)^3 + 3(2a)(b)(2a + b)$					
	$= (2a + b)^3 = (2a + b)(2a + b)(2a + b)$					
	(ii) $8a^3 - b^3 - 12a^2b + 6ab^2$					
	$= (2a)^3 + (-b)^3 + 3(2a)^2 (-b) + 3(2a)(-b)^2$					
	$= (2a - b)^3$					
	$(iii) 27 - 125a^3 - 135a + 225a^2$					
	$=3^{3}-(5a)^{3}-3$ (3)(5a) (3–5a)					
	$=(3-5a)^{3}$					

(iv) $64a^3 - 27b^3 - 144a^2b + 180ab^2$ = $(4a)^3 - (3b)^3 - 3(4a)$ (3b) (4a - 3b)= $(4a - 3b)^3$

(v)
$$27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4p}$$

= $(3p)^3 - \left(\frac{1}{6}\right)^3 - 3(3p)\left(\frac{1}{6}\right)\left(3p - \frac{1}{6}\right)$
= $\left(3p - \frac{1}{6}\right)^3 = \left(3p - \frac{1}{6}\right)\left(3p - \frac{1}{6}\right)\left(3p - \frac{1}{6}\right)\left(3p - \frac{1}{6}\right)$

Q9. Verify: (i)
$$x^3 + y^3 = (x + y) (x^2 - xy + y^2)$$

(ii) $x^3 - y^3 = (x - y) (x^2 + xy + y^2)$

Sol. (i)
$$(x + y)^3 = x^3 + y^3 + 3xy(x + y)$$

 $\Rightarrow x^3 + y^3 = (x + y)^3 - 3xy(x + y)$
 $\Rightarrow x^3 + y^3 = (x + y) \{(x + y)^2 - 3xy\}$
 $\Rightarrow x^3 + y^3 = (x + y) (x^2 + 2xy + y^2 - 3xy)$
 $\Rightarrow x^3 + y^3 = (x + y) (x^2 - xy + y^2)$

(ii)
$$(x - y)^3 = x^3 - y^3 - 3xy (x - y)$$

 $\Rightarrow x^3 - y^3 = (x - y)^3 + 3xy (x - y)$
 $\Rightarrow x^3 - y^3 = (x - y) [(x - y)^2 + 3xy]$
 $\Rightarrow x^3 - y^3 = (x - y) [x^2 + y^2 - 2xy + 3xy]$
 $\Rightarrow x^3 - y^3 = (x - y) [x^2 + y^2 + xy]$

Q10. Factorise each of the following :

(i) $27y^3 + 125 z^3$ (ii) $64m^3 - 343n^3$

Sol. (i)
$$27y^3 + 125 z^3 = (3y)^3 + (5z)^3$$

= $(3y + 5z) \{(3y)^2 - (3y)(5z) + (5z)^2\}$
= $(3y + 5z) (9y^2 - 15yz + 25z^2)$
(ii) $64m^3 - 343n^3$
= $(4m)^3 - (7n)^3$
= $[4m - 7n] [16m^2 + 4m.7n + (7n)^2]$
= $(4m - 7n) [16m^2 + 28mn + 49n^2]$

Q11. Factorise : $27x^3 + y^3 + z^3 - 9xyz$

Sol. $27x^3 + y^3 + z^3 - 9xyz$

$$\underbrace{\text{Saral}}_{= (3x)^3 + (y)^3 + (z)^3 - 3(3x) (y) (z)}_{= (3x + y + z) ((3x)^2 + (y)^2 + (z)^2 - (3x) (y) - (y) (z) - (z) (3x))}_{= (3x + y + z) (9x^2 + y^2 + z^2 - 3xy - yz - 3zx)}$$

Q12. Verify that $x^3 + y^3 + z^3 - 3xyz = \frac{1}{2} (x + y + z) [(x - y)^2 + (y - z)^2 + (z - x)^2]$

Sol.
$$\frac{1}{2} (x + y + z) [(x - y)^2 + (y - z)^2 + (z - x)^2]$$

$$= \frac{1}{2} (x + y + z) [(x^2 - 2xy + y^2) + (y^2 - 2yz + z^2) + (z^2 - 2zx + x^2)]$$

$$= \frac{1}{2} (x + y + z) [2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2zx]$$

$$= \frac{1}{2} (x + y + z) 2(x^2 + y^2 + z^2 - xy - yz - zx]$$

$$= (x + y + z) (x^2 + y^2 + z^2 - xy - yz - zx]$$

$$= x^3 + y^3 + z^3 - 3xyz$$

Q13. If x + y + z = 0, show that $x^3 + y^3 + z^3 = 3xyz$

 $x^{3} + y^{3} + z^{3} - 3xyz$ = (x + y + z) (x² + y² + z² - xy - yz - zx) x + y + z = 0 [given] \Rightarrow (0) (x² + y² + z² - xy - yz - zx) = 0 or x³ + y³ + z³ = 3xyz

Q14. Without actually calculating the cubes, find the value of each of the following :

(i)
$$(-12)^3 + (7)^3 + (5)^3$$

(ii) $(28)^3 + (-15)^3 + (-13)^3$

Sol. (i) $(-12)^3 + (7)^3 + (5)^3$ = $\{(-12)^3 + (7)^3 + (5)^3 - 3 (-12) (7) (5)\} + 3 (-12) (7) (5)$ = $(-12 + 7 + 5) \{(-12)^2 + (7)^2 + (5)^2 - (-12) (7) - (7) (5) - (5) (-12)\} + 3(-12) (7) (5)$ = 0 + 3(-12) (7) (5) = -1260(ii) $(28)^3 + (-15)^3 + (-13)^3$ $\therefore 28 - 15 - 13 = 0$ (28)³ + (-15)³ + (-13)³ = 3(28) (-15) (-13) = 16380

Polynomials

(using identity) if a + b + c = 0 $\Rightarrow a^3 + b^3 + c^3 = 3abc$

- **Q15.** Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given :
 - (i) Area : $25a^2 35a + 12$
 - (i) Area : $35y^2 + 13y 12$
- Sol. (i) Area = $25a^2 35a + 12$ = $25a^2 - 20a - 15a + 12$ = 5a(5a - 4) - 3(5a - 4)= (5a - 3) (5a - 4)Here, Length = 5a - 3, Breadth = 5a - 4(ii) $35y^2 + 13y - 12$ = $35y^2 + 28y - 15y - 12$ = 7y (5y + 4) - 3(5y + 4)= (5y + 4) (7y - 3)Here, Length = 5y + 4, Breadth = 7y - 3.
- **Q16.** What are the possible expressions for the dimensions of the cuboids whose volumes are given below?
 - (i) Volume : $3x^2 12x$
 - (ii) Volume : $12ky^2 + 8ky 20k$
- Sol. (i) Volume = $3x^2 12x$ = $3x (x - 4) = 3 \times x (x - 4)$
 - \therefore Dimensions are 3 units, x-units and (x 4) units
 - (ii) $12ky^2 + 8ky 20k$
 - $= 4k (3y^2 + 2y 5) = 4k (3y^2 + 5y 3y 5)$
 - $= 4k\{y(3y + 5) 1 (3y + 5)\}$
 - = 4k (3y + 5) (y 1)
 - \therefore Dimensions of cuboid are 4k, 3y + 5, y -1