

NCERT SOLUTIONS

Probability

<u>*Saral</u> हैं, तो सब सरल है।

<u> &Saral</u>

Ex - 15.1

- **Q1.** In a cricket match, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.
- Sol. Total number of trials or chances = 30 Number of chances when the boundary is not hit = 30 - 6 = 24

P (The boundary is not hit) = $\frac{24}{30} = \frac{4}{5} = 0.8$

Q2. 1500 families with 2 children were selected randomly, and the following data were recorded:

No. of girls in a family	2	1	0
No. of families	475	814	211

Compute the probability of a family, chosen at random, having (i) 2 girls (ii) 1 girl (iii) No girl Also check whether the sum of these probabilities is 1.

- **Sol.** Total number of families = 1500
 - (i) :: No. of families having 2 girls = 475
 - :. P (family having 2 girls) = $\frac{475}{1500} = \frac{19}{60}$
 - (ii) No. of families having 1 girl = 814.
 - :. P (family having 1 girl) = $\frac{814}{1500} = \frac{407}{750}$
 - (iii) No. of families having no girl = 211
 - \therefore P(family having no girl) = $\frac{211}{1500}$

Now, the sum of the obtained probabilities

$$= \frac{19}{60} + \frac{407}{750} + \frac{211}{1500} = \frac{1500}{1500} = 1$$

i.e., sum of the above probabilities is 1.

Q3. Refer to Example 5, Section 14.4, Chapter 14 of NCERT. Find the probability that a student of the class was born in August. The statement of the data in the example is stated as below :In a particular section of class IX, 40 students were asked about the months of their birth and the following graph was prepared to represent the data :

Sol. Total number of students = 40 (In the particular section of class IX) Number of students born in August = 6

P (A student of the class was born in August) = $\frac{6}{40} = \frac{3}{20}$

Q4. Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:

Outcome	3 heads	2 heads	1 head	No head
Frequency	23	72	77	28

If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up.

Sol. Total number of trials = 200

Number of chances favouring 2 heads = 72.

P (2 heads) =
$$\frac{72}{200} = \frac{9}{25}$$

Q5. An organisation selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:

Monthly income	Vehicles per family			
(in Rs.)	0	1	2	Above 2
Less than 7000	10	160	25	0
7000-10000	0	305	27	2
10000-13000	1	535	29	1
13000-16000	2	469	59	25
16000 or more	1	579	82	88

Suppose a family is chosen. Find the probability that the family chosen is

- (i) earning Rs. 10000 13000 per month and owning exactly 2 vehicles.
- (ii) earning Rs. 16000 or more per month and owning exactly 1 vehicle.
- (iii) earning less than Rs. 7000 per month and does not own any vehicle.
- (iv) earning Rs. 13000 16000 per month and owning more than 2 vehicles.
- (v) owning not more than 1 vehicle.

Sol. Here, total no. of families = 2400.

- (i) Number of families earning `10,000 `13,000 per month and owning exactly 2 vehicles = 29.
 - \therefore P(owning exactly 2 vehicles) = $\frac{29}{2400}$
- (ii) Number of families earning `16000 or more per month and owning exactly 1 vehicle = 579.
 - \therefore P(owning exactly 1 vehicles) = $\frac{579}{2400}$
- (iii) Number of families earning less than `7000 per month and does not own any vehicle = 10.

:. P(no vehicle) =
$$\frac{10}{2400} = \frac{1}{240}$$

(iv) P(more than 2 vehicles) =
$$\frac{25}{2400} = \frac{1}{96}$$

(v) Number of families owning not more than 1 vehicles

[Number of families having no vehicle] + [Number of families having only 1 vehicle] $\Rightarrow [10 + 1 + 2 + 1] + [160 + 305 + 535 + 469 + 579]$ $\Rightarrow 14 + 2048 = 2062.$

 $\therefore P \text{ (owning not more than 1 vehicle)} = \frac{2062}{2400} = \frac{1031}{1200}$

Q6. Refer to chapter 14 (NCERT), the table below:

Marks	No. of
(out of	students
0-20	7
20-30	10
30-40	10
40-50	20
50-60	20
60-70	15
70 above	8
Total	90

- (i) Find the probability that a student obtained less than 20% in the mathematics test.
- (ii) Find the probability that a student obtained marks 60 or above.

- **Sol.** Total number of students = 90.
 - (i) Number of students getting less than 20% marks, i.e., less than 20 marks out of 100 = 7.

The probability that a student, selected at random obtained less than 20% marks = $\frac{7}{90}$

(ii) Number of students getting marks 60 or above 15 + 8 = 23

 \therefore The required probability = $\frac{23}{90}$

Q7. To know the opinion of the student about the subject statistics, a survey of 200 students was conducted.

The data is recorded in the following table.

Opinion	Like	Dislike
No. of Students	135	65

Find the probability that a student chosen at random

(i) likes statistics, (ii) does not like it.

Sol. Total number of students = 200

- (i) Number of students who like the subject of statistics = 135
 - The probability that a student likes that subject = $\frac{135}{200} = \frac{27}{40}$
- (ii) Number of students who dislike the subject of statistics = 65.

The probability that a student dislikes the subject =
$$\frac{65}{200} = \frac{13}{40}$$

Q8. Refer to Q.2, Exercise 14.2 (NCERT). What is the empirical probability that an engineer lives:(i) less than 7 km from her place of work ?

(ii) more than or equal to 7 km from her place of work ?

(iii) within $\frac{1}{2}$ km from her place of work?

Sol. Total number of Engineers = 40

(i) \therefore Probability of an engineer (living within 7 km from work place) = $\frac{9}{40}$.

- (ii) : Probability of an engineer (living at distances more than or equal to 7 km) = $\frac{31}{40}$
- (iii) : Probability of an engineer who is living within $\frac{1}{2}$ km from work place = $\frac{0}{40} = 0$

<mark>∛Saral</mark>

- **Q9.** Activity : Note the frequency of two-wheelers, three-wheelers and four-wheelers going past during a time interval, in front of your school gate. Find the probability that any one vehicle out of the total vehicles you have observed is a two-wheeler.
- Sol. It is an activity. Students can do it themselves.
- Q10. Activity: Ask all the students in your class to write a 3-digit number. Choose any student from the room at random. What is the probability that the number written by her/him is divisible by 3 ? Remember that a number is divisible by 3, if the sum of its digits is divisible by 3.
- Sol. A class room activity for students.
- Q11. Eleven bags of wheat flour, each marked 5 kg, actually contained the following weights of flour (in kg):
 4.97 5.05 5.08 5.03 5.00 5.06 5.08 4.98 5.04 5.07 5.00

Find the probability that any of these bags chosen at random contains more than 5 kg of flour.

Sol. Total number of bags = 11. Number of bags containing more than 5 kg of flour = 7

The probability that a bag, selected at random, has more than 5 kg of flour = $\frac{7}{11}$

- Q12. In Q. 5, Exercise 14.2 (NCERT), you were asked to prepare a frequency distribution table, regarding the concentration of sulphur dioxide in the air in parts per million of a certain city for 30 days. Using this table, find the probability of the concentration of sulphur dioxide in the interval 0.12 0.16 on any of these days.
- Sol. Total number of days = 30. The number of days (on which the sulphur dioxide concentration is in the interval 0.12 - 0.16) = 2
 - $\therefore \quad \text{Probability} = \frac{2}{30} = \frac{1}{15}$
- **Q13.** In Q.1, Exercise 14.2 (NCERT), you were asked to prepare a frequency distribution table regarding the blood groups of 30 students of a class. Use this table to determine the probability that a student of this class, selected at random, has blood group AB.

Blood	Tally	Frequency or	
group	Marks	Number of sutdents	
А	₩1	9	
В	J## I	6	
О	########	12	
AB		3	
Total number		30	
of students			

Sol. From the given data, the frequency distribution table is as below :

The number of students having their blood group AB = 3.

The probability that a student, selected at random, has his blood group $AB = \frac{3}{30} = \frac{1}{10}$