

NCERT SOLUTIONS

Probability

*eSaral है, तो सब सरल है।

Ex-15.1

Q1. In a cricket match, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.

Sol. Total number of trials or chances $=30$
Number of chances when the boundary is not hit $=30-6=24$
$\mathrm{P}($ The boundary is not hit $)=\frac{24}{30}=\frac{4}{5}=0.8$

Q2. 1500 families with 2 children were selected randomly, and the following data were recorded:

No. of girls in a family	2	1	0
No. of families	475	814	211

Compute the probability of a family, chosen at random, having (i) 2 girls (ii) 1 girl (iii) No girl Also check whether the sum of these probabilities is 1 .

Sol. Total number of families $=1500$
(i) \because No. of families having 2 girls $=475$
$\therefore \mathrm{P}($ family having 2 girls $)=\frac{475}{1500}=\frac{19}{60}$
(ii) No. of families having 1 girl $=814$.
$\therefore \mathrm{P}($ family having 1 girl$)=\frac{814}{1500}=\frac{407}{750}$
(iii) No. of families having no girl $=211$
$\therefore \mathrm{P}($ family having no girl $)=\frac{211}{1500}$
Now, the sum of the obtained probabilities

$$
=\frac{19}{60}+\frac{407}{750}+\frac{211}{1500}=\frac{1500}{1500}=1
$$

i.e., sum of the above probabilities is 1 .

Q3. Refer to Example 5, Section 14.4, Chapter 14 of NCERT. Find the probability that a student of the class was born in August. The statement of the data in the example is stated as below :
In a particular section of class IX, 40 students were asked about the months of their birth and the following graph was prepared to represent the data :

Sol. Total number of students $=40$
(In the particular section of class IX)
Number of students born in August $=6$
P $($ A student of the class was born in August $)=\frac{6}{40}=\frac{3}{20}$

Q4. Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:

Outcome	3 heads	2 heads	1 head	No head
Frequency	23	72	77	28

If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up.

Sol. Total number of trials $=200$
Number of chances favouring 2 heads $=72$.
$P(2$ heads $)=\frac{72}{200}=\frac{9}{25}$

Q5. An organisation selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:

Monthly in come	Vehicles per family			
(in Rs.)	0	1	2	Above 2
Less than 7000	10	160	25	0
$7000-10000$	0	305	27	2
$10000-13000$	1	535	29	1
$13000-16000$	2	469	59	25
16000 or more	1	579	82	88

Suppose a family is chosen. Find the probability that the family chosen is
(i) earning Rs. $10000-13000$ per month and owning exactly 2 vehicles.
(ii) earning Rs. 16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than Rs. 7000 per month and does not own any vehicle.
(iv) earning Rs. $13000-16000$ per month and owning more than 2 vehicles.
(v) owning not more than 1 vehicle.

Sol. Here, total no. of families $=2400$.
(i) Number of families earning `10,000 -` 13,000 per month and owning exactly 2 vehicles $=29$.
$\therefore \mathrm{P}($ owning exactly 2 vehicles $)=\frac{29}{2400}$
(ii) Number of families earning ` 16000 or more per month and owning exactly

1 vehicle $=579$.
$\therefore \mathrm{P}($ owning exactly 1 vehicles $)=\frac{579}{2400}$
(iii) Number of families earning less than ${ }^{`} 7000$ per month and does not own any vehicle $=10$.
$\therefore \mathrm{P}($ no vehicle $)=\frac{10}{2400}=\frac{1}{240}$
(iv) $\mathrm{P}($ more than 2 vehicles $)=\frac{25}{2400}=\frac{1}{96}$
(v) Number of families owning not more than 1 vehicles
[Number of families having no vehicle] + [Number of families having only 1 vehicle]
$\Rightarrow[10+1+2+1]+[160+305+535+469+579]$
$\Rightarrow 14+2048=2062$.
$\therefore \mathrm{P}($ owning not more than 1 vehicle $)=\frac{2062}{2400}=\frac{1031}{1200}$

Q6. Refer to chapter 14 (NCERT), the table below:

Marks (out of	No. of students
$0-20$	7
$20-30$	10
$30-40$	10
$40-50$	20
$50-60$	20
$60-70$	15
70 above	8
Total	90

(i) Find the probability that a student obtained less than 20% in the mathematics test.
(ii) Find the probability that a student obtained marks 60 or above.

Sol. Total number of students $=90$.
(i) Number of students getting less than 20% marks, i.e., less than 20 marks out of $100=7$. The probability that a student, selected at random obtained less than 20% marks $=\frac{7}{90}$
(ii) Number of students getting marks 60 or above $15+8=23$
\therefore The required probability $=\frac{23}{90}$

Q7. To know the opinion of the student about the subject statistics, a survey of 200 students was conducted.
The data is recorded in the following table.

Opinion	Like	Dislike
No. of Students	135	65

Find the probability that a student chosen at random
(i) likes statistics,
(ii) does not like it.

Sol. Total nummber of students $=200$
(i) Number of students who like the subject of statistics $=135$

The probability that a student likes that subject $=\frac{135}{200}=\frac{27}{40}$
(ii) Number of students who dislike the subject of statistics $=65$.

The probability that a student dislikes the subject $=\frac{65}{200}=\frac{13}{40}$

Q8. Refer to Q.2, Exercise 14.2 (NCERT). What is the empirical probability that an engineer lives:
(i) less than 7 km from her place of work ?
(ii) more than or equal to 7 km from her place of work?
(iii) within $\frac{1}{2} \mathrm{~km}$ from her place of work?

Sol. Total number of Engineers $=40$
(i) \therefore Probability of an engineer (living within 7 km from work place) $=\frac{9}{40}$.
(ii) \therefore Probability of an engineer (living at distances more than or equal to 7 km) $=\frac{31}{40}$
(iii) \therefore Probability of an engineer who is living within $\frac{1}{2} \mathrm{~km}$ from work place $=\frac{0}{40}=0$

Q9. Activity : Note the frequency of two-wheelers, three-wheelers and four-wheelers going past during a time interval, in front of your school gate. Find the probability that any one vehicle out of the total vehicles you have observed is a two-wheeler.

Sol. It is an activity. Students can do it themselves.

Q10. Activity: Ask all the students in your class to write a 3-digit number. Choose any student from the room at random. What is the probability that the number written by her/him is divisible by 3 ? Remember that a number is divisible by 3 , if the sum of its digits is divisible by 3 .

Sol. A class room activity for students.

Q11. Eleven bags of wheat flour, each marked 5 kg , actually contained the following weights of flour (in kg) :
$\begin{array}{lllllllllll}4.97 & 5.05 & 5.08 & 5.03 & 5.00 & 5.06 & 5.08 & 4.98 & 5.04 & 5.07 & 5.00\end{array}$
Find the probability that any of these bags chosen at random contains more than 5 kg of flour.

Sol. Total number of bags $=11$.
Number of bags containing more than 5 kg of flour $=7$
The probability that a bag, selected at random, has more than 5 kg of flour $=\frac{7}{11}$

Q12. In Q. 5, Exercise 14.2 (NCERT), you were asked to prepare a frequency distribution table, regarding the concentration of sulphur dioxide in the air in parts per million of a certain city for 30 days. Using this table, find the probability of the concentration of sulphur dioxide in the interval $0 \cdot 12-0 \cdot 16$ on any of these days.

Sol. Total number of days $=30$.
The number of days (on which the sulphur dioxide concentration is in the interval $0.12-0.16)=2$
$\therefore \quad$ Probability $=\frac{2}{30}=\frac{1}{15}$

Q13. In Q.1, Exercise 14.2 (NCERT), you were asked to prepare a frequency distribution table regarding the blood groups of 30 students of a class. Use this table to determine the probability that a student of this class, selected at random, has blood group AB.

Sol. From the given data, the frequency distribution table is as below :

Blood group	Tally Marks	Frequency or Number of sutdents
A	\#	9
B	\# I	6
O	册册II	12
AB	III	3
Total number of students		30

The number of students having their blood group $\mathrm{AB}=3$.
The probability that a student, selected at random, has his blood group $\mathrm{AB}=\frac{3}{30}=\frac{1}{10}$

