

NCERT SOLUTIONS

Quadrilaterals



Quadrilaterals

<u> *Saral</u>

Ex - 8.1

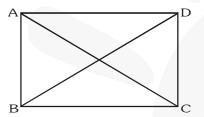
- **Q1.** The angles of quadrilateral are in the ratio 3 : 5 : 9 : 13. Find all the angles of the quadrilateral.
- **Sol.** Let the four angles of the quadrilateral be 3x, 5x, 9x and 13x.

 $\therefore 3x + 5x + 9x + 13x = 360^{\circ}$

- : [Sum of all the angles of quadrilateral is 360°]
- $\Rightarrow 30x = 360^{\circ}$
- \Rightarrow x =12°

Hence, the angles of the quadrilateral are $3 \times 12^\circ = 36^\circ$, $5 \times 12^\circ = 60^\circ$, $9 \times 12^\circ = 108^\circ$ and $13 \times 12^\circ = 156^\circ$.

- Q2. If the diagonals of a parallelogram are equal, then show that it is a rectangle.
- **Sol.** Given : ABCD is a parallelogram with diagonal AC = diagonal BD



To prove : ABCD is a rectangle.

Proof: In triangle ABC and ABD,

	AB = AB	[Common]
	AC = BD	[Given]
	AD = BC	[Opp. Sides of a gm]
<i>.</i> .	$\triangle ABC \cong BAD$	[By SSS congruency]
\Rightarrow	$\angle DAB = \angle CBA$	[By C.P.C.T.](i)

[\therefore AD||BC and AB cuts them, the sum of the interior angle of the same side of transversal is 180°]

 $\angle DAB + \angle CBA = 180^{\circ}$ (ii)

From eq. (i) and (ii), $\angle DAB = \angle CBA = 90^{\circ}$

Hence, ABCD is a rectangle

...

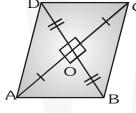
- Q3. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
- Sol. Given : ABCD is a quadrilateral where diagonals AC and BD meet at 0, such that AO = OC, OB = OD and $AC \perp BD$

To Prove : Quadrilateral ABCD is a rhombus,

i.e., AB = BC = CD = DA

Proof : In $\triangle AOB$ and $\triangle AOD$,

OB = OD	[Common]
AO = AO	[Given]
$\angle AOB = \angle AOD$	$[Each = 90^{\circ}]$
$\triangle AOB \cong \triangle AOD$	[SAS Rule]
AB = AD	[C.P.C.T.]
	D



Similarly, we can prove that

AB = BC ...(i)

BC = CD ...(ii)

CD = AD ...(iii)

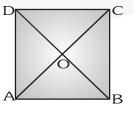
From (i), (ii), (iii) and (iv), we obtain

$$AB = BC = CD = DA$$

- ... Quadrilateral ABCD is a rhombus.
- Q4. Show that the diagonals of a square are equal and bisect each other at right angles.

Sol. Given: ABCD is a square.

To Prove : (i) AC = BD (ii) AC and BD bisect each other at right angles.



Proof: In \triangle ABC and \triangle BAD,

AB = BA	[Common]
BC = AD	[Opp. sides of square ABCD]
$\angle ABC = \angle BAD$	[Each = 90° (:: ABCD is a square]

<i>.</i> .	$\Delta ABC \cong \Delta BAD$	[SAS Rule]	
<i>.</i>	$AC = BD \dots (i)$	[C.P.C.T.]	
In ΔA	OD and $\triangle BOC$		
AD =	CB [Opp. sides of square	e ABCD]	
∠0A	D = ∠OCB		
[Alter	nate angles as AD BC and tra	insversal AC intersects them]	
∠OD.	$A = \angle OBC$	_	
[Alter	mate angles as AD BC and tra	insversal BD intersects them]	
-	$\Delta AOD \cong \Delta BOC$	[ASA Rule]	
<i>.</i>	OA = OC and $OB = OD$	(ii) [C.P.C.T.]	
	So, O is the mid point of AC	and BD.	
	Now, In $\triangle AOB$ and $\triangle COB$		
	AB = BC	[Given]	
	OA = OC	[from (ii)]	
	OB = OB	[Common]	
<i>.</i> :.	$\Delta AOB \cong \Delta COB$	[By SSS Rule]	
<i>.</i> :.	$\angle AOB = \angle BOC$	[C.P.C.T]	
But	$\angle AOB + \angle BOC = 180^{\circ}$	[Linear pair]	
	$\angle AOB + \angle AOB = 180^{\circ}$		
	[AOB = BOC proved earlier]	
\Rightarrow	$2\angle AOB = 180^{\circ}$		
\Rightarrow	$\angle AOB = \frac{180^{\circ}}{2} = 90^{\circ}$		
·.	$\angle AOB = \angle BOC = 90^{\circ}$		

- \therefore AC and BD bisect each other at right angles.
- **Q5.** Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.
- **Sol.** Given : The diagonals AC and BD of a quadrilateral ABCD are equal and bisect each other at right angles.

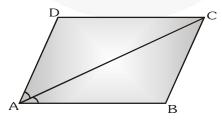
To prove : Quadrilateral ABCD is a square. **Proof :**

In $\triangle AOD$ and $\triangle BOC$, OA = OC OD = OB $\angle AOD = \angle COB$

[Given] [Given] [Vertically Opposite Angles]

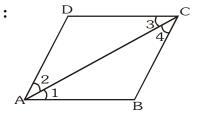
÷	$\Delta AOD \cong \Delta BOC$	[SAS Rule]
÷	AD = BC	[C.P.C.T.]
	$\angle ODA = \angle OBC$	[C.P.C.T.]
	AD BC	
	Now, $AD = CB$ and $AD \parallel CB$	
	Quadrilateral ABCD is a g	gm.
	In $\triangle AOB$ and $\triangle AOD$,	
	AO = AO	[Common]
	OB = OD	[Given]
	$\angle AOB = \angle AOD$	$[Each = 90^{\circ} (Given)]$
<i>.</i>	$\Delta AOB \cong \Delta AOD$	[SAS Rule]
<i>:</i> .	AB =AD	
	Now,	
\therefore	ABCD is a parallelogram and $AB = AD$	
	ABCD is a rhombus.	
	Again, in $\triangle ABC$ and $\triangle BAD$,
	AC = BD	[Given]
	BC = AD	
	[:: ABCD is a Rhombus]	
	AB = BA	[Common]
	ΔABC≅ ΔBAD	[SSS rule]
	∠ABC= ∠BAD	[C.P.C.T.]
	AD BC	
	[Opposite sides of gm AB0	CD 1
	and transversal AB intersect	-
•		of consecutive interior angles on the same side of the
••	transversal is 180°]	of consecutive interior angles on the same side of the
÷	$\angle ABC = \angle BAD = 90^{\circ}$	
••	Similarly, $\angle BCD = \angle ADC =$	= 90°
	Similarly, $\angle D C D = \angle M D C$	

- \therefore ABCD is a square.
- Q6. In figure, ABCD is a parallelogram. Diagonal AC bisects ∠A. Show that
 (i) it bisects ∠C also (ii) ABCD is a rhombus.



<u>*Saral</u>

Sol. Given :



Diagonal AC bisects $\angle A$ of the parallelogram ABCD.

To prove :

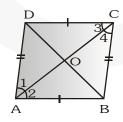
- (i) AC bisects $\angle C$
- (ii) ABCD is a rhombus

Proof:

(i) Since AB DC and AC intersects them.

$\therefore \angle 1 = \angle 3$	[Alternate angles]	(i)
Similarly $\angle 2 = \angle 4$		(ii)
But $\angle 1 = \angle 2$	[Given]	(iii)
$\therefore \angle 3 = \angle 4$	[Using eq. (i), (ii) and (iii)]	
Thus AC bisects $\angle C$.		

- (ii) $\angle 2 = \angle 3 = \angle 4 = \angle 1$ $\Rightarrow AD = CD$ [Sides opposite to equal angles] $\therefore AB = CD = AD = BC$ Hence, ABCD is a rhombus.
- **Q7.** ABCD is a rhombus. Show that diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$.
- Sol. Given : ABCD is a rhombus and AC and BD are its diagonal
 To prove : (i) Diagonal AC bisects ∠A as well as ∠C.
 (ii) Diagonal BD bisect ∠B as well as ∠D.



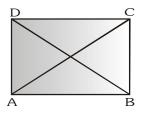
Proof:

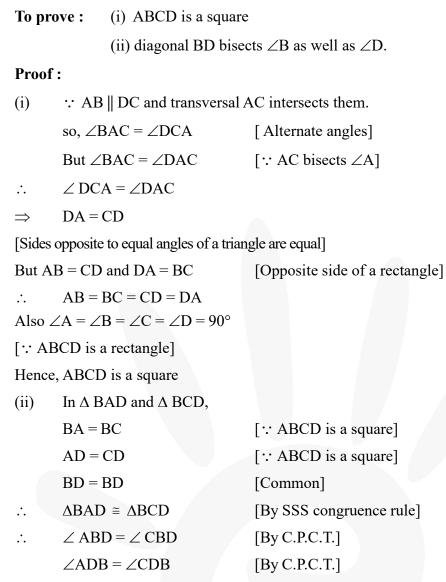
(i) :.	In $\triangle ABC$	
	AB = BC	(sides of Rhombus)
	so, $\angle 2 = \angle 4$	(Angle opposite to
		equal sides are equal)

But	$\angle 2 = \angle 3$	(Alternate angles as AB CD)
so,	$\angle 2 = \angle 3 = \angle 4$	
But	$\angle 1 = \angle 4$	(Alternate angles as AD \parallel BC)
so,	$\angle 1 = \angle 2 = \angle 3 = \angle 4$	(1)
	$\angle 1 = \angle 2$ by (1)	
so, AC	C bisect ∠A	
	$\angle 3 = \angle 4$ by (1)	
so, AC	C bisect ∠C	
(ii) In	ΔABD	
	AB = AD	(Sides of Rhombus)
so,	$\angle 5 = \angle 7$	(Angle opposite to
		equal sides are equal)
	$\angle 7 = \angle 6$	(Alternate angle as AD BC)
so,	$\angle 5 = \angle 6 = \angle 7$	
	$\angle 5 = \angle 8$	(Alternate angle as AB CD)
so,	$\angle 5 = \angle 6 = \angle 7 = \angle 8$	(2)
	$\angle 5 = \angle 6$ by (2)	
so,	BD bisect ∠B	
	$\angle 7 = \angle 8$ by (2)	
so,	BD bisect $\angle D$	

Q8. ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C. Show that
(i) ABCD is a square
(ii) diagonal BD bisects ∠B as well as ∠D.

Sol. Given : ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$.

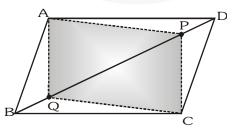




Hence, diagonal BD bisect $\angle B$ as well as $\angle D$

- **Q9.** In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ. Show that :
 - (i) $\triangle APD \cong \triangle CQB$ (ii) AP = CQ
 - (iii) $\triangle AQB \cong \triangle CPD$ (iv) AQ = CP
 - (v) APCQ is a parallelogram

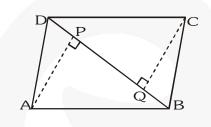
<u>&Saral</u>



Quadrilaterals

<mark>∛Saral</mark>

- Sol. (i) In \triangle APD and \triangle CQB, we have [Given] DP = BQAD = CB[Opposite sides of parallelogram ABCD] $\angle ADP = \angle CBQ$ [Pair of alternate angles] $\triangle APD \cong \triangle CQB$ [SAS congruence criteria] \Rightarrow Then, by CPCT, we have AP = CQ(ii) (iii) We can prove $\triangle AQB \cong \triangle CPD$ [as we have done in (i)] By CPCT, we have AQ = CP(iv)
 - (v) Now, we have AP = CQ and AQ = CPHence, APCQ is a parallelogram.
- **Q10.** ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD. Show that
 - (i) $\triangle APB \cong \triangle CQD$ (ii) AP = CQ



Sol. Given : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD respectively.

To prove : (i) $\triangle APB \cong \triangle CQD$ (ii) AP = CQ

Proof :

(i) In $\triangle APB$ and $\triangle CQD$,

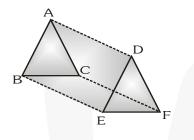
	AB = CD	[Opp. side of gm ABCD]
	$\angle ABP = \angle CDQ$	[\therefore AB DC and transversal BD intersect them]
	$\angle APB = \angle CQD$	$[Each = 90^{\circ}]$
	$\therefore \Delta APB \cong \Delta CQD$	[AAS Rule]
(ii)	$\therefore AP = CQ$	[C.P.C.T.]

Q11. In ΔABC and ΔDEF, AB = DE, AB || DE, BC = EF and BC || EF. Vertices A, B and C are joined to vertices D, E and F respectively. Show that :

(i) quadrilateral ABED is a parallelogram

(ii) quadrilateral BEFC is a parallelogram

- (iii) AD \parallel CF and AD = CF
- (iv) quadrilateral ACFD is a parallelogram
- (v) AC = DF
- (vi) $\triangle ABC \cong \triangle DEF$



Sol.	Given	n : $AB = DE$, $AB \parallel DE$, $BC = EF \& BC \parallel EF$		
	To Prove			
	(i) AB	ED is a parallelogram.		
	(ii) BE	EFC is parallelogram.		
	(iii) A	$D \parallel CF \text{ and } AD = CF$		
	(iv) A	CFD is a parallelogram		
	(v) AC = DF			
	(vi) Δ.	$ABC \cong \Delta DEF$		
	Proof			
	(i) In \triangle ABC and \triangle DEF			
	$AB = DE$ [Given]and $AB \parallel DE$ [Given]		[Given]	
			[Given]	
	<i>.</i>	ABED is a parallelogram		
	(ii)	In \triangle ABC and \triangle DEF		
		BC = EF	[Given]	
		and BC = EF	[Given]	
		BEFC is a parallelogram.		
	(iii)	As ABED is a parallelogram.		
	÷	$AD \parallel BE \text{ and } AD = BE \qquad \dots(i)$		
		Also, BEFC is a parallelogram		
	<i>.</i>	$CF \parallel BE and CF = BE$	(ii)	
		From (i) and (ii), we get		

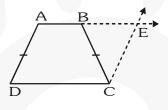
- \therefore AD || CF and AD = CF
- (iv) As $AD \parallel CF$ and AD = CF
- \Rightarrow ACFD is a parallelogram.
- (v) As ACFD is a parallelogram.
- \therefore AC = DF
- (vi) In \triangle ABC and \triangle DEF,

AB = DE	[Given]
BC = EF	[Given]
AC = DF	[Proved]
$\triangle ABC \cong \triangle DEF$	[By SSS congruency]

- **Q12.** ABCD is a trapezium in which $AB \| CD$ and AD = BC. Show that (fig)
 - (i) $\angle A = \angle B$

...

- (ii) $\angle C = \angle D$
- (iii) $\triangle ABC \cong \triangle BAD$
- (iv) diagonal AC = diagonal BD



Sol. Given : ABCD is a trapezium.

AB || CD and AD = BC To Prove :

- (i) $\angle A = \angle B$
- (ii) $\angle C = \angle D$
- (iii) $\triangle ABC \cong \triangle BAD$
- (iv) Diagonal AC = Diagonal BD

Construction : Draw CE || AD and extend AB to intersect CE at E.

Proof :

- (i) As AECD is a parallelogram.[By construction]
- \therefore AD = EC

But AD = BC [Given]

 \therefore BC = EC

\Rightarrow	$\angle 3 = \angle 4$ Now, $\angle 1 + \angle 4 = 18$	[Angles opposite to equal sides are equal] 0° [Interior angles]
	and $\angle 2 + \angle 3 = 1$	
\Rightarrow	$\angle 1 + \angle 4 = \angle 2 + \angle 3$	
\Rightarrow	$\angle 1 = \angle 2$	$[\because \angle 3 = \angle 4]$
\Rightarrow	$\angle A = \angle B$	
(ii)	$\angle 3 = \angle BCD$	[Alternate interior angles]
	$\angle D = \angle 4$	[Opposite angles of a parallelogram]
	But $\angle 3 = \angle 4$	$[\Delta BCE \text{ is an isosceles triangle}]$
<i>.</i> .	$\angle BCD = \angle ADC$	
	$\angle C = \angle D$	
(iii)	In $\triangle ABC$ and $\triangle BAD$),
	AB = AB	[Common]
	$\angle 1 = \angle 2$	[Proved]
	AD = BC	[Given]
<i>.</i> .	$\Delta ABC \cong \Delta BAD$	[By SAS congruency]
\Rightarrow	AC = BD	[By C.P.C.T.]

Ex - 8.2

- **Q1.** ABCD is a quadrilateral in which P, Q, R and S are mid points of the sides AB, BC, CD and DA (fig.) AC is a diagonal. Show that
 - (i) SR \parallel AC and SR = 1/2 C
 - (ii) PQ = SR
 - (iii) PQRS is a parallelogram.
- **Sol.** Given : ABCD is a quadrilateral in which P, Q, R and S are mid-points of AB, BC, CD and DA. AC is a diagonal.

To prove : (i) SR || AC and SR = $\frac{1}{2}$ AC (ii) PQ = SR (iii) PQRS is a parallelogram.

Proof : (i) In \triangle DAC,

- : S is the mid-point of DA and R is the mid-point of DC
- \therefore SR || AC and SR = $\frac{1}{2}$ AC [By Mid-point theorem]
- (ii) In ΔBAC ,
- : P is the mid-point of AB and Q is the mid-point of BC
- $\therefore \qquad PQ \parallel AC \text{ and } PQ = \frac{1}{2} AC$ [By Mid-point theorem]

But from (i) SR =
$$\frac{1}{2}$$
 AC & (ii) PQ = $\frac{1}{2}$ AC

\Rightarrow	PQ = SR	
(iii)	PQ AC	[From (ii)]
	SR AC	[From (i)]

 \therefore PQ || SR

[Two lines parallel to the same line are parallel to each other]

Also, PQ = SR

[From (ii)]

 \therefore PQRS is a parallelogram.

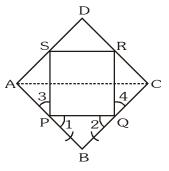
[A quadrilateral is a parallelogram if a pair of opposite sides is parallel and is of equal length]

- **Q2.** ABCD is a rhombus and P, Q, R and S are the mid points of sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.
- **Sol.** Given : P, Q, R and S are the mid-points of respective sides AB, BC, CD and DA of rhombus. PQ, QR, RS and SP are joined.

To prove : PQRS is a rectangle.

Construction : Join A and C.

∛Saral



Proof : In $\triangle ABC$, P is the mid-point of AB and Q is the mid-point of BC.

 $\therefore \qquad PQ \parallel AC \text{ and } PQ = \frac{1}{2}AC \qquad \dots (i)$

In \triangle ADC, R is the mid-point of CD and S is the mid-point of AD.

$$\therefore$$
 SR || AC and SR = $\frac{1}{2}$ AC(ii)

From eq. (i) and (ii), $PQ \parallel SR$ and PQ = SR

 \therefore PQRS is a parallelogram.

Now ABCD is a rhombus [Given]

 \therefore AB = BC

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}BC \Rightarrow PB = BQ$$

 \therefore $\angle 1 = \angle 2$ [Angles opposite to equal sides are equal] Now in triangles APS and CQR, we have,

AP = CQ [P and Q are the mid-points of AB and BC and AB = BC]

Similarly, AS = CR and PS = QR

[Opposite sides of a parallelogram]

 $\Delta APS \cong \Delta CQR$ [By SSS congruency] $\angle 3 = \angle 4$ \Rightarrow [By C.P.C.T.]Now, we have $\angle 1 + \angle SPQ + \angle 3 = 180^{\circ}$ $\angle 2 + \angle PQR + \angle 4 = 180^{\circ}$ and *.*. $\angle 1 + \angle SPQ + \angle 3 = \angle 2 + \angle PQR + \angle 4$ Since $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$ [Proved above] \angle SPQ = \angle PQR(iii) Now PQRS is a parallelogram [Proved above] \angle SPQ + \angle PQR = 180°(iv) [Interior angles]

Using eq. (iii) and (iv),

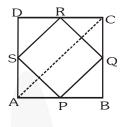
 \Rightarrow

 $\angle SPQ + \angle SPQ = 180^{\circ}$ $2\angle SPQ = 180^{\circ} \Rightarrow \angle SPQ = 90^{\circ}$

Hence, PQRS is a rectangle.

- **Q3.** ABCD is a rectangle and P,Q,R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.
- **Sol.** Given : A rectangle ABCD in which P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. PQ, QR, RS and SP are joinned.

To prove : PQRS is a rhombus.



Construction : Join AC.

Proof : In \triangle ABC, P and Q are the mid-points of sides AB, BC respectively.

$$\therefore \qquad PQ \parallel AC \text{ and } PQ = \frac{1}{2} AC \qquad \dots (i)$$

In \triangle ADC, R and S are the mid-points of sides CD, AD respectively.

$$\therefore \qquad \text{SR} \parallel \text{AC and SR} = \frac{1}{2} \text{AC} \qquad \dots \text{(ii)}$$

From eq.(i) and (ii), PQ || SR and PQ=SR ...(iii)

 \therefore PQRS is a parallelogram.

Now ABCD is a rectangle. [Given]

 \therefore AD = BC

$$\Rightarrow \frac{1}{2} AD = \frac{1}{2} BC \Rightarrow AS = BQ \dots (iv)$$

In triangles APS and BPQ,

	AP = BP	[P is the mid-point of AB]
	$\angle PAS = \angle PBQ$	[Each 90°]
and	AS = BQ	[From eq. (iv)]
<i>.</i> .	$\Delta APS \cong \Delta BPQ$	[By SAS congruency]
\Rightarrow	PS = PQ	[By C.P.C.T.](v)

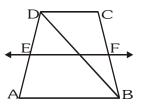
From eq.(iii) and (v), we get that PQRS is a parallelogram.

 \Rightarrow PS = PQ

 \Rightarrow Two adjacent sides are equal.

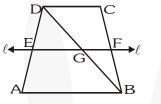
Hence, PQRS is a rhombus.

Q4. ABCD is a trapezium in which AB||DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (fig.). Show that F is the mid-point of BC.



Sol. Line $\ell \parallel AB$ and passes through E.

Sara



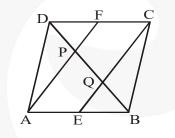
Line ℓ meets BC in F and BD in G.

In $\triangle ABD$, E is mid-point of AD and EG || AB.

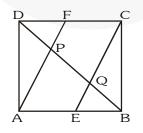
 \Rightarrow G is mid-point of BD.

Also, $\ell \parallel AB$ and $AB \parallel CD \Rightarrow \ell \parallel CD$

- \Rightarrow F is mid-point of BC. [:: G is mid-point of BD]
- **Q5.** In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (fig.). Show that the line segments AF and EC trisect the diagonal BD.



Sol. Since E and F are the mid-points of AB and CD respectively.Given : ABCD is a parallelogram. E and F are midpoints of AB and AC respectively.



To prove : DP = PQ = QB

Proof : -

<u> *Saral</u>

$$\therefore AE = \frac{1}{2} AB \text{ and } CF = \frac{1}{2} CD \qquad \dots(i)$$

But ABCD is a parallelogram.
$$\therefore AB = CD \text{ and } AB \parallel DC$$

$$\Rightarrow \frac{1}{2} AB = \frac{1}{2} CD \text{ and } AB \parallel DC$$

$$\Rightarrow AE = FC \text{ and } AE \parallel FC \qquad [From eq. (i)]$$

$$\therefore AECF \text{ is a parallelogram.}$$

$$\Rightarrow FA \parallel CE \qquad \Rightarrow FP \parallel CQ$$

[FP is a part of FA and CQ is a part of CE] (ii)
Since the line segment drawn through the mid-point of one side of a triangle and parallel to
the other side bisects the third side.
In ΔDCQ , F is the mid-point of CD and
$$\Rightarrow FP \parallel CQ$$

$$\therefore P \text{ is the is mid-point of DQ.}$$

$$\Rightarrow DP = PQ \qquad \dots(iii)$$

Similarly, In ΔABP , E is the mid-point of AB and
$$\Rightarrow EQ \parallel AP$$

$$\therefore Q \text{ is the mid-point of BP.}$$

$$\Rightarrow BQ = PQ \qquad \dots(iv)$$

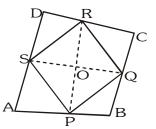
From eq.(iii) and (iv),
 $DP = PQ = BQ \qquad \dots(v)$
Now, BD = BQ + PQ + DP = BQ + BQ + BQ = 3BQ
$$\Rightarrow BQ = \frac{1}{3} BD \qquad \dots(vi)$$

From eq (v) and (vi), $DP = PQ = BQ = \frac{1}{3}BD$

 \Rightarrow Points P and Q trisects BD. So AF and CE trisects BD.

Q6. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Sol. P,Q,R and S are the mid-points of the sides AB, BC, CD and AD of the quadrilateral ABCD.

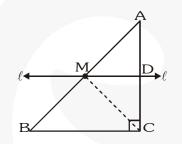


We have to prove that, PR and QS bisects each other. Now, join PQ, QR, RS and PS. Here, we can prove that PQRS is a parallelogram (as in solution). Now, PR and QS are the diagonals of the parallelogram PQRS. Hence, PR and QS bisect each other at O.

- **Q7.** ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that
 - (i) D is the mid-point of AC
 - (ii) MD \perp AC

Saral

- (iii) CM = MA = 1/2 AB
- Sol. (i) Through M, we draw line $\ell \parallel BC$. ℓ intersects AC at D.
 - \Rightarrow D is mid-point of AC.



(ii) $\angle ADM = \angle ACB = 90^{\circ}$

[Corresponding angles]

- $\Rightarrow \angle ADM = 90^\circ \Rightarrow MD \perp AC.$
- (iii) In \triangle CMD and \triangle AMD; CD = AD, MD = MD and \angle CDM = \angle ADM [Each = 90°] Therefore, \triangle CMD $\cong \triangle$ AMD
- \Rightarrow CM = AM; Also AM = 1/2 AB.