<u> *Saral</u>

Ex - 1.3

- **Q1.** Prove that $\sqrt{5}$ is irrational.
- Sol. Let us assume, to the contrary, that $\sqrt{5}$ is rational. So, we can find coprime integers a and b ($\neq 0$) such that

$$\sqrt{5} = \frac{a}{b}$$

 $\Rightarrow \sqrt{5} b = a$ Squaring on both sides, we get

 $5b^2 = a^2$

Therefore, 5 divides a^2 .

Therefore, 5, divides a

So, we can write a = 5c for some integer c.

Substituting for a, we get

$$5b^2 = 25c^2$$

$$\Rightarrow$$
 b² = 5c²

This means that 5 divides b^2 , and so 5 divides b.

Therefore, a and b have at least 5 as a common factor.

But this contradicts the fact that a and b have no common factor other than 1.

This contradiction arose because of our incorrect assumption that $\sqrt{5}$ is rational.

So, we conclude that $\sqrt{5}$ is irrational.

- **Q2.** Prove that $3 + 2\sqrt{5}$ is irrational.
- Sol. Let us assume, to the contrary, that $3 + 2\sqrt{5}$ is rational. That is, we can find coprime integers a and b (b \neq 0) such that $3 + 2\sqrt{5} = \frac{a}{b}$

Therefore,
$$\frac{\mathbf{a}}{\mathbf{b}} - 3 = 2\sqrt{5}$$

 $\Rightarrow \frac{\mathbf{a} - 3\mathbf{b}}{\mathbf{b}} = 2\sqrt{5}$
 $\Rightarrow \frac{\mathbf{a} - 3\mathbf{b}}{2\mathbf{b}} = \sqrt{5} \Rightarrow \frac{\mathbf{a}}{2\mathbf{b}} - \frac{3}{2} = \sqrt{5}$

Since a and b are integers, we get $\frac{a}{2b} - \frac{3}{2}$ is rational, and so $\frac{a-3b}{2b} = \sqrt{5}$ is rational.

But this contradicts the fact that $\sqrt{5}$ is irrational. This contradiction has arisen because of our incorrect assumption that $3 + 2\sqrt{5}$ is rational.

So, we conclude that $3 + 2\sqrt{5}$ is irrational.

Q3. Prove that the following are irrationals :

(i)
$$\frac{1}{\sqrt{2}}$$
 (ii) $7\sqrt{5}$ (iii) $6 + \sqrt{2}$

<mark>∛Saral</mark>

Sol. (i) Let us assume, to the contrary, that $\frac{1}{\sqrt{2}}$ is rational. That is we can find coprime integers a and b (b \neq 0) such that

and b (b \neq 0) such that,

$$\frac{1}{\sqrt{2}} = \frac{\mathbf{p}}{\mathbf{q}}$$

Therefore, $q = \sqrt{2p}$ Squaring on both sides, we get $q^2 = 2p^2$...(i) Therefore, 2 divides q^2 so, 2 divides q so we can write q = 2r for some integer r squaring both sides, we get $q^2 = 4r^2$...(ii) From (i) & (ii), we get $2p^2 = 4r^2$ $p^2 = 2r^2$ Therefore, 2 divides p^2 So, 2 divides p So, p & q have atleast 2 as a common factor. But this contradict the fact that p & q have no common factor other than 1.

This contradict our assumption that $\frac{1}{\sqrt{2}}$ is rational. So, we condude that $\frac{1}{\sqrt{2}}$ is irrational.

(ii) Let us assume, to the contrary, that $7\sqrt{5}$ is rational.

That is, we can find coprime integers a and b (b \neq 0) such that $7\sqrt{5} = \frac{a}{b}$

Therefore, $\frac{\mathbf{a}}{\mathbf{7b}} = \sqrt{5}$

Since a and b are integers, we get $\frac{a}{7b}$ is rational, and so $\frac{a}{7b} = \sqrt{5}$ is rational. But this contradicts the fact that $\sqrt{5}$ is irrational. This contradiction has arisen because of our incorrect assumption that $7\sqrt{5}$ is rational. So, we conclude that $7\sqrt{5}$ is irrational.

(iii) Let us assume, to the contrary, that $6 + \sqrt{2}$ is rational.

That is, we can find coprime integers a and b (b \neq 0) such that 6 + $\sqrt{2}$ = $\frac{a}{b}$

Therefore,
$$\frac{\mathbf{a}}{\mathbf{b}} - 6 = \sqrt{2}$$

 $\Rightarrow \frac{\mathbf{a} - 6\mathbf{b}}{\mathbf{b}} = \sqrt{2}$

Since a and b are integers, we get $\frac{a}{b} - 6$ is rational, and so $\frac{a-6b}{b} = \sqrt{2}$ is rational.

But this contradicts the fact that $\sqrt{2}$ is irrational. This contradiction has arisen because of our incorrect assumption that

 $6 + \sqrt{2}$ is rational.

So, we conclude that $6 + \sqrt{\mathbf{z}}$ is irrational.

