
Real Number

NCERT SOLUTIONS

Real Number



1

Real Number

Ex - 1.1
Q1. Use Euclid's division algorithm to find the HCF of :

(i) 135 and 225 (ii) 196 and 38220 (iii) 867 and 225.

Sol. (i) 135 and 225.
   Start with the larger integer, that is, 225. Apply the division lemma to 225 and 135, to get.
   225 = 135 × 1 + 90

Since the remainder 90  0, we apply the division lemma to 135 and 90 to get
135 = 90 × 1 + 45

We consider the new divisior 90 and the new remainder 45, and apply the division lemma
to get

90 = 45 × 2 + 0
The remainder has now become zero, so our procedure stops.
Since the divisor at this stage is 45, the HCF of 225 and 135 is 45.

(ii) 196 and 38220
Start with the larger integer, that is, 38220. Apply the division lemma to 38220 and 196, to get.
38220 = 196 × 195 + 0
Remainder at this stage is zero, so our procedure stops.
So, HCF of 196 and 38220 is 196.

(iii) 867 and 225
Start with the larger integer, that is, 867. Apply the division lemma to 867 and 225, to get.
867 = 225 × 3 + 192
Since the remainder 192  0, we apply the division lemma to 225 and 192 to get
225 = 192 × 1 + 33
Since the remainder 33  0, we apply the division lemma to 33 and 27 to get
192 = 33 ×  5 + 27
Since the remainder 27  0, we apply the division lemma to 27 and 6 to get
33 = 27 × 1 + 6
Since the remainder 6  0, we apply the division lemma to 6 and 3 to get
27 = 6 × 4 + 3
Since the remainder 3  0, we apply the division lemma to 6 and 3 to get
6 = 3 × 2 + 0
Now, remainder at this stage is zero, so our procedure stops.
So, HCF of 867 and 225 is 3.

Q2. Show that any positive odd integer is of the form 6q + 1, or 6q + 3 or 6q + 5, where q is
some integer.

Sol. Let us start with taking a, where a is any positive odd integer. We apply the division
algorithm, with a and b = 6. Since 0  r < 6, the possible remainders are 0, 1, 2, 3, 4, 5.
That is, a can be 6q or 6q + 1, or 6q + 2, or 6q + 3, or 6q + 4, or 6q + 5, where q is the
quotient. However, since a is odd, we do not consider the cases 6q, 6q + 2 and
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6q + 4 (since all the three are divisible by 2). Therefore, any positive odd integer is of the
form 6q + 1 or 6q + 3 or 6q + 5.

Q3. An army contingent of 616 members is to march behind an army band of 32 members in
a parade. The two groups are to march in the same number of columns. What is the
maximum number of columns in which they can march?

Sol. 616 and 32
616 = 32 × 19 + 8
32 = 4 × 8
HCF of (616, 32) = 8

Q4. Use Euclid's division lemma to show that the square of any positive integer is either of the
form 3m or 3m + 1 for some integer m.

Sol. Let a be any odd positive integer. We apply the division lemma with a and b = 3. Since 0  r < 3,
the possible remainders are 0, 1 and 2. That is, a can be 3q, or 3q + 1, or 3q + 2, where q is the
quotient.
Now, (3q)2 = 9q2

which can be written in the form 3m, since 9 is divisible by 3.
Again, (3q + 1)2 = 9q2 + 6q + 1 = 3 (3q2 + 2q) + 1
which can be written in the form 3m + 1 since 9q2 + 6q, i.e., 3(3q2 + 2q) is divisible by 3.
Lastly, (3q + 2)2 = 9q2 + 12q + 4

= (9q2 + 12q + 3) + 1
= 3(3q2 + 4q + 1) + 1

which can be written in the form 3m + 1, since
9q2 + 12q + 3, i.e., 3(3q2 + 4q + 1) is divisible by 3.
Therefore, the square of any positive integer is either of the form 3m or 3m + 1 for some integer
m.

Q5. Use Euclid's division lemma to show that the cube of any positive integer is of the form 9m, 9m
+ 1 or 9m + 8.

Sol. Any positive integer is of the form
3q, 3q + 1, 3q + 2

Case1: Let, n = 3q
Cube of this will be

n3 = 27q3

n3 = 9 (3q3)
So, n3 = 9m, where m = 3q3

Case2: n = 3q + 1

So, n3 = (3q + 1)3

n3 = 27q3 + 1 + 27q2 + 9q

= 9(3q3 + 3q2 + q) + 1
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n3 = 9m + 1, where m = 3q3 + 3q2 + q

Case3: n = 3q + 2

So, n3 = (3q + 2)3

= 27q3 + 54q2 + 36q + 8

= 9(3q3 + 6q2 + 4q) + 8

n3 = 9m + 8, where m = 3q3 + 6q2 +4q

So, it means cube of positive integer is of the form 9m, 9m + 1 and 9m + 8.
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Ex - 1.2
Q1. Express each number as product of its prime factors :

(i) 140 (ii) 156(iii) 3825 (iv) 5005 (v) 7429

Sol. (i) 140
140

2

2

5

70

35

7

So, 140 = 2 × 2 × 5 × 7 = 22 × 5 × 7

(ii)  156

156

2

2

3

78

39

13

So, 156 = 2 × 2 × 3 × 13 = 22 × 3 × 13

(iii) 3825

12753

3 425

5 85

175

So, 3825 = 32 × 52 × 17

(iv) 5005

3825

10015

7 143

13

So, 5005 = 5 × 7 × 11 × 13
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(v) 7429
7429

43717

19 23

So, 7429 = 17 × 19 × 23

Q2. Find the LCM and HCF of the following pairs of integers and verify that LCM × HCF =
product of two numbers.
(i) 26 and 91  (ii) 510 and 92   (iii) 336 and 54

Sol. (i)  26 and 91

26

2 13

So, 26 = 2 × 13

91

7 13

So, 91 = 7 × 13
Therefore,
LCM (26, 91) = 2 × 7 × 13 = 182
HCF (26, 91) = 13
Verification : LCM × HCF = 182 × 13 = 2366
and 26 × 91 = 2366
i.e., LCM × HCF = product of two numbers.

(ii) 510 and 92

510 92

255 462 2

3 285 23

5 17

510 = 2 × 3 × 5 × 17,92 = 22 × 23
LCM (510, 92) = 22 × 3 × 5 × 17 × 23 = 23460
HCF = (510, 92) = 2
Verification :–
LCM × HCF = 23460 × 2 = 46920
and 510 × 92 = 46920
i.e., LCM × HCF = product of two numbers.
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(iii) 336 and 54

336

1682

2 84

2 42

212

73

54

272

3 9

3

336 = 24 × 3 × 7 54 = 2 × 33

LCM = 24 × 33 × 7 = 3024
HCF = 2 × 3 = 6
Verfication,
LCM × HCF = 24 × 33 × 7 × 2 × 3 = 18144
Product of two numbers = 336 × 54 = 18144
i.e., LCM × HCF = product of two numbers.

Q3. Find the LCM and HCF of the following integers by applying the prime factorisation method.
(i) 12, 15 and 21 (ii) 17, 23 and 29 (iii) 8, 9 and 25

Sol. (i) 12, 15 and 21
So, 12 = 2 ×  2 ×  3 = 22 × 3
So, 15 = 3 ×  5
So, 21 = 3 × 7
Therefore,
HCF (12, 15, 21) = 3 ;
LCM = (12, 15, 21) = 22 × 3 × 5 × 7 = 420

(ii) 17, 23, 29
17 = 1 × 17
23 = 1 × 23
29 = 1 × 29
LCM = 1 × 17 × 23 × 29
HCF = 1

(iii) 8, 9, 25
8 = 2 × 2 × 2
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9 = 3 × 3
25 = 5 × 5
LCM = 23 × 32 × 52

HCF = 1

Q4. Given that HCF (306, 657) = 9, find LCM (306, 657).

Sol. LCM (306, 657)

= 
306× 657 306 657

HCF (306, 657) 9


 = 22338.

Q5. Check whether 6n can end with the digit 0 for any natural number n.
Sol. If the number 6n, for any natural number n, ends with digit 0, then it would be divisible by 5.

That is, the prime factorisation of 6n would contain the prime number 5. This is not possible
because 6n =  (2 × 3)n = 2n × 3n ; so the only primes in the factorisation of 6n are 2 and 3 and
the uniqueness of the Fundamental Theorem of Arithmetic guarantees that there are no other
primes in the factorisation of 6n. So, there is no natural number n for which 6n ends with the
digit zero.

Q6. Explain why 7 × 11 × 13 + 13 and 7 × 6 × 5 × 4
× 3 × 2 × 1 + 5 are composite numbers.

Sol. (i) 7 × 11 × 13 + 13 = (7 × 11 + 1) × 13
= (77 + 1) × 13
 = 78 × 13 = (2 × 3 × 13) × 13
 So,   78 = 2 × 3 × 13
 78 × 13 = 2 × 3 × 132

78

2

3

39

13

Since, 7 × 11 × 13 + 13 can be expressed as a product of primes, therefore, it is a composite
number.

(ii) 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5
= (7 × 6 × 4 × 3 × 2 × 1 + 1) × 5
= 1009 × 5
Since, 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5 can be expressed as a product of primes, therfore it is a
composite number.
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Q7. There is a circular path around a sports field. Sonia takes 18 minutes to drive one round of the
field, while Ravi takes 12 minutes for the same. Suppose they both start at the same point and
at the same time, and go in the same direction. After how many minutes will they meet again
at the starting point?

Sol. LCM of 18 & 12.

18

92

3 3

12

62

2 3

18 = 2 × 32 12 = 22 × 3
LCM (18, 12) = 22 × 32 = 36
Thus, after 36 minutes they will meet again at the starting point.
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Ex - 1.3
Q1. Prove that 5  is irrational.

Sol. Let us assume, to the contrary, that 5  is rational.
So, we can find coprime integers a and b ( 0) such that

5  = 
a
b

 5 b = a
Squaring on both sides, we get

5b2 = a2

Therefore, 5 divides a2.
Therefore, 5, divides a
So, we can write a = 5c for some integer c.
Substituting for a, we get

5b2 = 25c2

 b2 = 5c2

This means that 5 divides b2, and so 5 divides b.
Therefore, a and b have at least 5 as a common factor.
But this contradicts the fact that a and b have no common factor other than 1.

This contradiction arose because of our incorrect assumption that 5  is rational.

So, we conclude that 5  is irrational.

Q2. Prove that 3 + 2 5  is irrational.

Sol. Let us assume, to the contrary, that  3 + 2 5  is rational. That is, we can find coprime integers

a and b (b  0) such that 3 + 2 5 = 
a
b

Therefore, 
a
b

 –  3 = 2 5


a – 3b

b
 = 2 5


a – 3b

5
2b

   
a 3

–
2b 2

 = 5

Since a and b are integers, we get 
a 3

–
2b 2

 is rational, and so 
a – 3b

5
2b

  is rational.

But this contradicts the fact that 5 is irrational. This contradiction has arisen because of our
incorrect assumption that 3 + 2 5 is rational.
So, we conclude that 3 + 2 5 is irrational.

Q3. Prove that the following are irrationals :

(i) 
1

2
(ii) 7 5 (iii) 6 2
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Sol. (i) Let us assume, to the contrary, that 1

2
 is rational. That is we can find coprime integers a

and b (b  0) such that,
1 p

q2


Therefore, q = 2p

Squaring on both sides, we get
q2 = 2p2 ...(i)
Therefore, 2 divides q2

so, 2 divides q
so we can write q = 2r for some integer r
squaring both sides, we get
q2 = 4r2 ...(ii)
From (i) & (ii), we get
2p2 = 4r2

p2 = 2r2

Therefore, 2 divides p2

So,  2 divides p
So, p & q have atleast 2 as a common factor.
But this contradict the fact that p & q have no common factor other than 1.

This contradict our assumption that 
1

2
 is rational. So, we condude that 

1

2
 is irrational.

(ii) Let us assume, to the contrary, that 7 5  is rational.

That is, we can find coprime integers a and b (b  0) such that 7 5 = 
a
b

Therefore, 
a

7b
 = 5

Since a and b are integers, we get 
a

7b
 is rational, and so 

a
7b

 = 5 is rational.

But this contradicts the fact that 5 is irrational. This contradiction has arisen because of
our incorrect assumption that 7 5 is rational.
So, we conclude that 7 5 is irrational.

(iii) Let us assume, to the contrary, that  6 + 2  is rational.

That is, we can find coprime integers a and b (b  0) such that 6 + 2  = 
a
b

Therefore, 
a
b

 –  6 = 2


a – 6b

b
 = 2

Since a and b are integers, we get 
a
b

– 6 is rational, and so 
a – 6b

b
 = 2  is rational.

But this contradicts the fact that 2  is irrational. This contradiction has arisen because of
our incorrect assumption that
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6 + 2  is rational.
So, we conclude that 6 + 2  is irrational.
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Ex - 1.4
Q1. Without actually performing the long division, state whether the following rational numbers

will have a terminating decimal expansion or a non-terminating repeating decimal
expansion.

(i) 
13

3125
(ii) 

17
8

(iii) 
64

455
(iv) 

15
1600

(v) 
29

343
(vi) 3 2

23
2 5  (vii) 2 7 5

129
2 5 7 (viii) 

6
15

(ix) 
35
50

(x) 
77

210

Sol. (i) 
13

3125
= 5

13

5

Hence, q = 55, which is of the form 2n 5m (n = 0, m = 5). So, the rational number 
13

3125
has a terminating decimal expansion.

(ii)
17
8

= 3

17

2

Hence, q = 23, which is of the form 2n 5m (n = 3, m = 0). So, the rational number 
17
8

has a
terminating decimal expansion.

(iii)
64

455
= 

64
5 7 13 

Hence, q = 5 × 7 × 13, which is not of the form 2n 5m. So, the rational number 
64

455
 has a non-

terminating repeating decimal expansion.

(iv) 6 2 6 2

15 15 3 5
1600 2 5 2 5


 

 

Hence, q = 26 × 5, which is of the form 2n × 5m (n = 6, m = 1). So, the rational number 
15

1600

has a terminating decimal expansion.

(v) 3

29 29
343 7



Hence, q = 73, which is not of the form 2m × 5n. So, rational number 3

29
7

 has a non-terminating

repeating decimal expansion.

(vi) 3 2

23
2 5
Hence, q = 23 × 52,
which is of the form 2n × 5m (n = 3, m = 2). So, the rational number has a terminating decimal



13

Real Number

expansion.

(vii) 2 7 5

129
2 5 7 

Hence, q = 22 × 57 × 75, which is not of the form 2m × 5n. So, rational number 2 7 5

129
2 5 7 

has a non-terminating repeating decimal expansion.

(viii)
6 2 3 2

15 3 5 5


 


Hence, q = 5, which is of the form 2m × 5n (m = 0, n = 1). So, the rational no 
2
5

 has a

terminating decimal expansion.

(ix) 2

35 5 7 7
50 2 52 5


 



Hence, q = 2 × 51, which is of the form 2m × 5n (m = 1, n = 1). So, the rational number
35
50

has a terminating decimal expansion.

(x)
77 7 11 11

210 2 3 5 7 2 3 5


 
    

Hence, q = 2 ×  3 × 5, which is not of the form 2m × 5n. So, the rational number 
77

210
 has

a
non-terminating repeating decimal expansion.

Q2. Write down the decimal expansions of those rational numbers in Question 1 above which
have terminating decimal expansions.

Sol. (i) 13
3125

 = 




5

5 5 5

13 13 2
5 5 2

 = 5

416
10

0.00416

(ii)  3

17 17
8 2

=  




3 3

3 3 3

17 5 17 5
2 5 10

= 3

2125
10

 = 2.125

(iv) 6 2 6 2

15 15 3 5
1600 2 5 2 5


 

 
= 6

3
2 5

= 0.009375

(vi) 3 2

23
2 5

 = 0.115
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(viii)
6 2 3 2

15 3 5 5


 
  = 0.4

(ix) 2

35 5 7 7
50 2 52 5


 


 = 0.7

Q3. The following real numbers have decimal expansions as given below. In each case, decide

whether they are rational, or not. If they are rational, and of the form 
p
q , what can you say

about the prime factors of q?
(i) 43.123456789
(ii) 0.120 1200 12000 120000....
(iii) 43.123456789

Sol. (i)  43.123456789
Since, the decimal expansion terminates, so the given real number is rational and therefore of the
form 

p
q . 43.123456789

= 
43123456789
1000000000

= 9

43123456789
10

=  9

43123456789
(2 5)

= 9 9

43123456789
2 5

Hence, q = 29 59

The prime factorization of q is of the form 2n 5m, where n = 9, m = 9.

(ii) 0.120 1200 12000 120000....
Since, the decimal expansion is neither terminating nor non-terminating repeating, therefore,
the given real number is not rational.

(iii) 43.123456789

Since, the decimal expansion is non-terminating and repeating, therefore, the given real
number

is rational.
As the number is non-terminating so q  is not of the form 2m × 5n.


