

NCERT SOLUTIONS

Some Applications of Trigonometry
*éSaral है, तो सब सरल है।

## Ex-9.1

Q1. A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole if the angle made by the rope with the ground level is $30^{\circ}$ (see fig.).


Sol. $\mathrm{AC}=20 \mathrm{~m}$ is the length of the rope.
Let $A B=h$ metres be the height of the pole

$$
\angle \mathrm{ACB}=30^{\circ}(\text { Given })
$$



Now, $\frac{A B}{A C}=\sin 30^{\circ}=\frac{1}{2} \quad \Rightarrow \quad \frac{h}{20}=\frac{1}{2} \Rightarrow h=10 \mathrm{~m}$
Q2. A tree breaks due to storm and the broken part bends so that the top of the trees touches the ground making an angle of $30^{\circ}$ with the ground. The distance between the foot of the tree to the point where the top touches the ground is 8 m . Find the height of the tree.
Sol. Let tree is broken at A and its top is touching the ground at B.
Now, in right $\triangle A O B$, we have
$\frac{A O}{O B}=\tan 30^{\circ}$
$\Rightarrow \quad \frac{\mathrm{AO}}{8}=\frac{1}{\sqrt{3}}$
$\Rightarrow \frac{A O}{8}=\frac{1}{\sqrt{3}} \quad \Rightarrow A O=\frac{8}{\sqrt{3}} m$


Also, $\frac{A B}{O B}=\sec 30^{\circ}$
$\Rightarrow \quad \frac{\mathrm{AB}}{8}=\frac{2}{\sqrt{3}} \quad \Rightarrow \quad \mathrm{AB}=\frac{2 \times 8}{\sqrt{3}}=\frac{16}{\sqrt{3}} \mathrm{~m}$
Now, height of the tree $\mathrm{OP}=\mathrm{OA}+\mathrm{AB}$
$=\frac{8}{\sqrt{3}}+\frac{16}{\sqrt{3}}=\frac{24}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \mathrm{~m}=8 \sqrt{3} \mathrm{~m}$

Q3. A contractor plans to install two slides for the children to play in a park. For the children below the age of 5 years, she perfers to have a slide whose top is at a height of 1.5 m and is inclinded at an angle of $30^{\circ}$ to the ground, whereas for elder children, she wants to have a steep slide at a height of 3 m , and inclined at an angle of $60^{\circ}$ to the ground. What should be the length of the slide in each case?
Sol. In figure, $\ell_{1}$ is the length of the slide made for children below the age of 5 years and $\ell_{2}$ is the length of the slide made for elder children.


In figure, $\mathrm{AB}=1.5 \mathrm{~m}, \mathrm{AC}=\ell_{1} \mathrm{~m}$ and $\angle \mathrm{ACB}=30^{\circ} ; \mathrm{PQ}=3 \mathrm{~m}, \mathrm{OP}=\ell_{2} \mathrm{~m}$ and $\angle \mathrm{POQ}=$ $60^{\circ}$
$\frac{A B}{A C}=\sin 30^{\circ} \quad$ and $\quad \frac{P Q}{O P}=\sin 60^{\circ}$
$\Rightarrow \frac{1.5}{\ell_{1}}=\frac{1}{2} \quad$ and $\quad \frac{3}{\ell_{2}}=\frac{\sqrt{3}}{2}$
$\Rightarrow \ell_{1}=2 \times 1.5 \mathrm{~m}$ and $\ell_{2}=\frac{3 \times 2}{\sqrt{3}} \mathrm{~m}$
$\Rightarrow \ell_{1}=3 \mathrm{~m} \quad$ and $\quad \ell_{2}=2 \sqrt{3} \mathrm{~m}$
Q4. The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower, is $30^{\circ}$. Find the height of the tower.
Sol. In right $\mathrm{ABC}, \mathrm{AB}=$ height of the tower and point C is 30 m away from the foot of the tower,
$\therefore \quad \mathrm{AC}=30 \mathrm{~m}$
Now $\frac{A B}{A C}=\tan 30^{\circ}$
$\Rightarrow \frac{\mathrm{h}}{30}=\frac{1}{\sqrt{3}}$

$$
\left[\because \tan 30^{\circ}=\frac{1}{\sqrt{3}}\right]
$$


$\Rightarrow \mathrm{h}=\frac{30}{\sqrt{3}}=\frac{30}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=10 \sqrt{3}$
Thus, the required height of the tower is $10 \sqrt{3} \mathrm{~m}$

Q5. A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is $60^{\circ}$. find the length of the string, assuming that there is no slack in the string.

Sol. P is the position of the kite. Its height from the point Q (on the ground) $=\mathrm{PQ}=60 \mathrm{~m}$
Let $\mathrm{OP}=\ell$ be the length of the string.

$$
\angle \mathrm{POQ}=60^{\circ} \text { (Given) }
$$

Now, $\frac{P Q}{O P}=\sin 60^{\circ}$
$\Rightarrow \quad \frac{60}{\ell}=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\Rightarrow \frac{60}{\ell}=\frac{\sqrt{3}}{2}$
$\Rightarrow \ell=40 \sqrt{3} \mathrm{~m}$


Q6. A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from $30^{\circ}$ to $60^{\circ}$ as he walks towards the building. Find the distance he walked towards the building.

Sol. $\mathrm{PQ}=30 \mathrm{~m}$ is the height of the building. $\mathrm{OA}=1.5 \mathrm{~m}$ is the height of the boy. Its first position is at OA OR is horizontal line through the position of the eye at $O$.

$$
\angle \mathrm{POR}=30^{\circ}(\text { Given })
$$

The second position of the boy is at $\mathrm{O}^{\prime} \mathrm{A}^{\prime}$ and $\angle \mathrm{PO}$ 'R $=60^{\circ}$.
Here, $\quad \mathrm{RQ}=\mathrm{OA}=1.5 \mathrm{~m}$
and $\quad P R=30 \mathrm{~m}-1.5 \mathrm{~m}=28.5 \mathrm{~m}$


From $\triangle P O R$,
From $\triangle \mathrm{PO}^{\prime} \mathrm{R}$,

$$
\begin{aligned}
& \frac{\mathrm{PR}}{\mathrm{OR}}=\tan 30^{\circ} & \frac{\mathrm{PR}}{O^{\prime} \mathrm{R}}=\tan 60^{\circ} \\
\Rightarrow & \frac{28.5}{\mathrm{OR}}=\frac{1}{\sqrt{3}} & \frac{28.5}{O^{\prime} \mathrm{R}}=\sqrt{3}
\end{aligned}
$$

$\Rightarrow \mathrm{OR}=28.5 \times \sqrt{3} \mathrm{~m} . .(1) \Rightarrow \mathrm{O}^{\prime} \mathrm{R}=\frac{28.5}{\sqrt{3}} \mathrm{~m}$
The distance walked by the boy towards the building.

$$
\begin{aligned}
& =O^{\prime}=O R-O^{\prime} R \\
& =28.5 \times \sqrt{3} \mathrm{~m}-\frac{28.5}{\sqrt{3}} \mathrm{~m} \quad[\text { From (1) and (2)] } \\
& =28.5 \times\left\{\sqrt{3}-\frac{1}{\sqrt{3}}\right\} \mathrm{m} \\
& =28.5 \times \frac{(3-1)}{\sqrt{3}} \mathrm{~m}=28.5 \times \frac{2}{\sqrt{3}} \mathrm{~m} \\
& =\frac{57}{\sqrt{3}} \mathrm{~m}=19 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

Q7. From a point on the ground the angles of elevation of the bottom and top of a transmission tower fixed at the top of a 20 m high building are $45^{\circ}$ and $60^{\circ}$ respectively. Find the height of the tower.
Sol. $\mathrm{PQ}=20 \mathrm{~m}$ is the height of the building.
Let $\mathrm{PR}=\mathrm{h}$ metres be the height of the transmission tower. P is the bottom and R is the top of the transmission tower.

$$
\angle \mathrm{POQ}=45^{\circ} \text { and } \angle \mathrm{ROQ}=60^{\circ}
$$

From $\triangle \mathrm{OPQ}$,
$\frac{\mathrm{PQ}}{\mathrm{OQ}}=\tan 45^{\circ}$

$\Rightarrow \frac{20+h}{20}=\sqrt{3}$

$$
(\because \mathrm{RQ}=\mathrm{PQ}+\mathrm{PR}=20+\mathrm{h} \text { metres and } \mathrm{OQ}
$$

$$
=20 \text { metres) }
$$

$\Rightarrow 1+\frac{\mathrm{h}}{20}=\sqrt{3} \Rightarrow \frac{\mathrm{~h}}{20}=(\sqrt{3}-1)$
$\Rightarrow \mathrm{h}=20(\sqrt{3}-1) \mathrm{m}$

Q8. A statue, 1.6 m tall, stands on the top of pedestal. From a point on the ground, the angle of elevation of the top of the statue is $60^{\circ}$ and from the same point the angle of elevation of the top of the pedestal is $45^{\circ}$. Find the height of the pedestal.
Sol. In the figure, DC represents the statue and BC represents the pedestal.
Now, in right $\triangle \mathrm{ABC}$, we have

$$
\frac{A B}{B C}=\cot 45^{\circ}=1
$$

$$
\Rightarrow \frac{A B}{h}=1
$$


$\Rightarrow \mathrm{AB}=\mathrm{h}$ metres.
Now in right $\triangle \mathrm{ABD}$, we have
$\frac{B D}{A B}=\tan 60^{\circ}=\sqrt{3}$
$\Rightarrow \mathrm{BD}=\sqrt{3} \times \mathrm{AB}=\sqrt{3} \times \mathrm{h}$
$\Rightarrow \mathrm{h}+1.6=\sqrt{3} \mathrm{~h}$
$\Rightarrow \mathrm{h}(\sqrt{3}-1)=1.6$
$\Rightarrow \mathrm{h}=\frac{1.6}{\sqrt{3}-1}=\frac{1.6}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$
$\Rightarrow \mathrm{h}=\frac{1.6}{3-1} \times(\sqrt{3}+1)=\frac{1.6}{2} \times(\sqrt{3}+1)$
$=0.8(\sqrt{3}+1) \mathrm{m}$
Thus, the height of the pedestal is $0.8(\sqrt{3}+1) \mathrm{m}$.
Q9. The angle of elevation of the top of the building from the foot of the tower is $30^{\circ}$ and the angle of elevation of the top of the tower from the foot of the building is $60^{\circ}$. If the tower is 50 m high, find the height of the building.
Sol. $\mathrm{PQ}=50$ metres is the height of the tower. Let $\mathrm{AB}=\mathrm{h}$ metres be the height of the building. Angle of elevation of the top of the building from the foot of the tower $=30^{\circ}$, i.e., $\angle \mathrm{AQB}=30^{\circ}$.


Angle of elevation of the top of the tower from the foot of the building
$=60$,i.e., $\angle \mathrm{PBQ}=60$
From $\triangle$ AQB
$\frac{h}{B Q}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$\Rightarrow \mathrm{BQ}=\mathrm{h} \sqrt{3}$
From $\triangle$ PBQ
$\frac{50}{B Q}=\tan 60^{\circ}=\sqrt{3}$
$\Rightarrow \mathrm{BQ}=\frac{50}{\sqrt{3}}$
From (1) and (2), we have $h \sqrt{3}=\frac{50}{\sqrt{3}}$
$\Rightarrow h=\frac{50}{3} m$, i.e., $h=16 \frac{2}{3} m$
Q10. Two poles of equal heights are standing opposite to each other on either side of the road which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are $60^{\circ}$ and $30^{\circ}$, respectively. Find the height of the poles and the distances of the point from the poles.
Sol. Let AB and CD be the towels \& P is the point between them.
$\mathrm{AB}=\mathrm{h}$ metres
$\mathrm{CD}=\mathrm{h}$ metres
$\mathrm{AP}=\mathrm{x} \mathrm{m}$
$C P=(80-x) m$
Now, in right $\triangle \mathrm{APB}$, We have

$$
\frac{A B}{A P}=\tan 60^{\circ} \Rightarrow \frac{h}{x}=\sqrt{3}
$$


$\Rightarrow \mathrm{h}=\mathrm{x} \sqrt{3}$
Again in right $\triangle \mathrm{CPD}$, we have
$\frac{C D}{C P}=\tan 30^{\circ}$
$\Rightarrow \frac{\mathrm{h}}{(80-\mathrm{x})}=\frac{1}{\sqrt{3}}$
$\Rightarrow \mathrm{h}=\frac{80-\mathrm{x}}{\sqrt{3}}$

From (1) and (2), we get
$\sqrt{3} x=\frac{80-x}{\sqrt{3}}$
$\Rightarrow \sqrt{3} \times \sqrt{3} \times \mathrm{x}=80-\mathrm{x} \Rightarrow 3 \mathrm{x}=80-\mathrm{x}$
$\Rightarrow 3 x+x=80 \Rightarrow 4 x=80 \Rightarrow x=\frac{80}{4}=20$
$\therefore C P=80-x=80-20=60 \mathrm{~m}$
Now, from (1), we have
$h=\sqrt{3} \times 20=1.732 \times 20=34.64$
Thus, the required point is 20 m away from the first pole and 60 m away from the second pole.
Height of each pole $=34.64 \mathrm{~m}$.
Q11. A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is $60^{\circ}$. From another point 20 m away this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is $30^{\circ}$ (see fig.). Find the height of the tower and the width of the canal.


Sol. Let $\mathrm{PQ}=\mathrm{h}$ metres be the height of the tower and $\mathrm{BQ}=\mathrm{x}$ metres be the width of the canal $\angle \mathrm{PBQ}=60^{\circ}$


Now, the angle of elevation of the top of the tower from the point $\mathrm{A}=30^{\circ}$, i.e., $\angle \mathrm{PAQ}=30^{\circ}$ where $\mathrm{AB}=20$ metres.

From $\triangle \mathrm{PBQ}$,
$\frac{h}{x}=\tan 60^{\circ}$
$\Rightarrow \frac{\mathrm{h}}{\mathrm{x}}=\sqrt{3}$ or $\mathrm{h}=\mathrm{x} \sqrt{3}$
From $\triangle \mathrm{PAQ}$,

$$
\begin{equation*}
\frac{\mathrm{h}}{20+\mathrm{x}}=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \Rightarrow \mathrm{~h}=\frac{20+\mathrm{x}}{\sqrt{3}} \tag{2}
\end{equation*}
$$

From (1) and (2), we have $x \sqrt{3}=\frac{20+x}{\sqrt{3}}$
$\Rightarrow 3 \mathrm{x}=20+\mathrm{x}$ or $2 \mathrm{x}=20 \Rightarrow \mathrm{x}=10$
From (1), h = $10 \sqrt{3} \mathrm{~m}$

Q12. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is $60^{\circ}$ and the angle of depression of its foot is $45^{\circ}$. Determine the height of the tower.
Sol. Let $\mathrm{PQ}=\mathrm{h}$ metres be the height of the cable tower.
$\mathrm{AB}=7$ metres is the height of the bulding
$\angle \mathrm{PAR}=60^{\circ}$ is the angle of elevation of the top of the cable tower from the top of the building.
$\angle \mathrm{RAQ}=45^{\circ}$ is the angle of depression of the foot of the cable tower from the top of the building. Then $\angle \mathrm{AQB}=45^{\circ}$.


Now, $\mathrm{BQ}=\mathrm{AR}=\mathrm{x}$ metres (say)
From $\triangle A Q B, \frac{A B}{B Q}=\tan 45^{\circ} \Rightarrow \frac{7}{x}=1 \Rightarrow x=7 m$
Now, from $\triangle P A R, \frac{P R}{A R}=\tan 60^{\circ} \Rightarrow \frac{P Q-Q R}{x}=\sqrt{3}$
$\Rightarrow \frac{\mathrm{h}-7}{\mathrm{x}}=\sqrt{3} \Rightarrow \frac{\mathrm{~h}-7}{7}=\sqrt{3} \Rightarrow \mathrm{~h}=7(\sqrt{3}+1)$
Hence, the height of the cable tower is $7(\sqrt{3}+1)$ metre.

Q13. As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are $30^{\circ}$ and $45^{\circ}$. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.
Sol. In the figure, let AB represent the light house.
$\therefore \quad \mathrm{AB}=75 \mathrm{~m}$
Let the two ships be C and D such that angle of depression from A are $45^{\circ}$ and $30^{\circ}$ respectively.
Now, in right $\triangle \mathrm{ABC}$, we have
$\frac{A B}{B C}=\tan 45^{\circ}$

$\Rightarrow \frac{75}{\mathrm{BC}}=1 \Rightarrow \mathrm{BC}=75$
Again, in right $\triangle \mathrm{ABD}$, We have

$$
\frac{A B}{B D}=\tan 30^{\circ} \quad \Rightarrow \quad \frac{75}{B D}=\frac{1}{\sqrt{3}}
$$

$\Rightarrow \mathrm{BD}=75 \sqrt{3}$
Since the distance between the two ships
$=\mathrm{CD}=\mathrm{BD}-\mathrm{BC}=75 \sqrt{3}-75=75[\sqrt{3}-1]$
$=75[1.732-1]=75 \times 0.732=54.9$
Thus, the required distance between the ships is 54.9 m .
Q14. A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is $60^{\circ}$. After some time, the angle of elevation reduces to $30^{\circ}$. Find the distance travelled by the balloon during the interval.


Sol. From figure, we have $\angle \mathrm{POQ}=30^{\circ}$ is the angle of elevation for the first position of the balloon. Let
$\mathrm{OQ}=\mathrm{y} \mathrm{m}$.


We are given that

$$
\mathrm{AC}=88.2 \mathrm{~m} ., \mathrm{AB}=88.2-1.2=87 \mathrm{~m}
$$

For the second position of the balloon, we have

$$
\angle \mathrm{POQ}=30^{\circ} . \text { Let } \mathrm{OB}=\mathrm{x} \mathrm{~m} .
$$

We have to find $d=B Q=(y-x)$

$$
\begin{aligned}
& \frac{A B}{O B}=\tan 60^{\circ} \text { and } \frac{P Q}{O Q}=\tan 30^{\circ} \\
\Rightarrow & \frac{87}{x}=\sqrt{3} \text { and } \frac{87}{y}=\frac{1}{\sqrt{3}} \\
\Rightarrow & x=\frac{87}{\sqrt{3}} m \text { and } y=87 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

Then $d=y-x=\left\{87 \sqrt{3}-\frac{87}{\sqrt{3}}\right\} m$
$=87 \times\left\{\sqrt{3}-\frac{1}{\sqrt{3}}\right\} \mathrm{m}$
$=87 \times \frac{2}{\sqrt{3}} \mathrm{~m}=87 \times \frac{2}{3} \times \sqrt{3} \mathrm{~m}$
$=\frac{174}{3} \sqrt{3} \mathrm{~m}=58 \sqrt{3} \mathrm{~m}$

Q15. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of $30^{\circ}$, which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be $60^{\circ}$. Find the time taken by the car to reach the foot of the tower.
Sol. Let $\mathrm{PQ}=\mathrm{h}$ metres be the height of the tower. P is the top of the tower. PX is horizontal line through P . The first and second positions of the car are at A and B respectively.

$\angle \mathrm{APX}=30^{\circ}$
(Angle of depression of the car when observed at A)
and $\angle \mathrm{BPX}=60^{\circ}$
(Angle of depression of the car when observed at B )
Then $\angle \mathrm{PAQ}=30^{\circ}$ and $\angle \mathrm{PBQ}=60^{\circ}$
Let the speed of the car be $\mathrm{x} \mathrm{m} /$ second
Then distance $A B=6 x$ metres.
Let the time taken from $B$ to $Q$ be $n$ second.
Then distance $\mathrm{BQ}=\mathrm{nx}$ metres.
In right $\triangle \mathrm{PAQ}$,

$$
\begin{array}{c|c}
\text { In right } \triangle P A Q & \text { In right } \triangle P B Q \\
\frac{h}{6 x+n x}=\tan 30^{\circ}=\frac{1}{\sqrt{3}} & \frac{h}{n x}=\tan 60^{\circ}=\sqrt{3} \\
\Rightarrow h=\frac{(n+6) x}{\sqrt{3}} \ldots(1) & \Rightarrow h=n x \sqrt{3} \ldots \text { (2) }
\end{array}
$$

From (1) and (2), we have

$$
\frac{(n+6) x}{\sqrt{3}}=n x \sqrt{3}
$$

$\Rightarrow \mathrm{n}+6=\mathrm{n} \sqrt{3} \times \sqrt{3}$
$\Rightarrow 3 n=n+6$
$\Rightarrow 2 \mathrm{n}=6$
$\Rightarrow \mathrm{n}=3$
Hence, the time from B to $\mathrm{Q}=3$ seconds.

Q16. The angles of a elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m .
Sol. Let the tower be represented by AB in the figure.


Let $\mathrm{AB}=\mathrm{h}$ metres.
$\therefore$ In right $\triangle \mathrm{ABC}$, we have
$\frac{A B}{A C}=\tan \theta$
$\Rightarrow \frac{\mathrm{h}}{9}=\tan \theta$
In right $\triangle \mathrm{ABD}$, we have
$\frac{\mathrm{AB}}{\mathrm{AD}}=\tan \left(90^{\circ}-\theta\right)=\cot \theta$
$\Rightarrow \frac{\mathrm{h}}{4}=\cot \theta$
Multiplying (1) and (2), we get
$\frac{\mathrm{h}}{9} \times \frac{\mathrm{h}}{4}=\tan \theta \times \cot \theta=1 \quad[\because \tan \theta \times \cot \theta=1]$
$\Rightarrow \frac{\mathrm{h}^{2}}{36}=1 \Rightarrow \mathrm{~h}^{2}=36$
$\Rightarrow \mathrm{h}= \pm 6 \mathrm{~m} \quad \therefore \mathrm{~h}=6 \mathrm{~m}$
[ $\because$ Height is positive only]
Thus, the height of the tower is 6 m .

