<mark>∛Saral</mark>

Ex - 7.3

Q1. $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see figure). If AD is extended to intersect BC at P, show that

- (i) $\triangle ABD \cong \triangle ACD$
- (ii) $\triangle ABP \cong \triangle ACP$
- (iii) AP bisects $\angle A$ as well as $\angle D$
- (iv) AP is the perpendicular bisector of BC.

Sol. In \triangle ABD and \triangle ACD,

AB = AC(:: \triangle ABC is isosceles) DB = DC(:: $\triangle DBC$ is isosceles) AD = AD(Common side) $\therefore \Delta ABD \cong \Delta ACD$ (By SSS congruence rule) (ii) Now, $\triangle ABD \cong \triangle ACD$ $\Rightarrow \angle BAD = \angle CAD$ (By CPCT) ...(1) In $\triangle ABP$ and $\triangle ACP$, AB = AC(:: \triangle ABC is isosceles) $\Rightarrow \angle BAP = \angle CAP$ (By 1) AP = AP(common side) $\therefore \Delta ABP \cong \Delta ACP$ (By SAS congruence rule) (iii) $\triangle ABD \cong \triangle ADC$ (Proved above) $\angle BAD = \angle CAD$ (by CPCT) (by CPCT) $\angle ADB = \angle ADC$ $180 - \angle ADB = 180 - \angle ADC$ $\Rightarrow \angle BDP = \angle CDP$ AP bisects $\angle A$ as well as $\angle D$ (iv) $\triangle ABP \cong \triangle ACP$ \Rightarrow BP = CP (By CPCT) \Rightarrow AP bisects BC $\angle APB = \angle APC$ (By CPCT) $\angle APB + \angle APC = 180^{\circ}$ $2\angle APB = 180^{\circ}$ $\angle APB = 90^{\circ}$ AP is perpendicular bisector of BC

<u> &Saral</u>

- **Q2.** AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that (i) AD bisects BC (ii) AD bisects $\angle A$
- **Sol.** Given : AD is an altitude of an isosceles triangle ABC in which AB = AC.

To Prove : (i) AD bisect BC. (ii) AD bisect $\angle A$. Proof : (i) In right \triangle ADB and right \triangle ADC. Hyp.AB = Hyp.AC $\angle ADB = \angle ADC$ (Each 90°) Side AD = side AD(Common) $\triangle ADB \cong \triangle ADC$ (RHS rule) \Rightarrow BD = CD (By CPCT) \Rightarrow AD bisect BC (ii) $\triangle ADB \cong \triangle ADC$ ∠BAD =∠CAD (By CPCT) \Rightarrow AD bisect $\angle A$

Q3. Two sides AB and BC and median AM of one triangle ABC are respectively equal to side PQ and QR and median PN of Δ PQR (see figure). Show that :

(i) $\triangle ABM \cong \triangle PQN$

(ii) $\triangle ABC \cong \triangle PQR$

Sol. (i) BM = $\frac{1}{2}$ BC

(:: M is mid-point of BC)

$$QN = \frac{1}{2}QR \qquad (\because N \text{ is mid-point of } QR)$$

$$\Rightarrow BM = QN \qquad (\because BC = QR \text{ is given})$$

Now, in $\triangle ABM$ and $\triangle PQN$, we have

$$AB = PQ \qquad (Given)$$

$$BM = QN \qquad (Proved)$$

$$AM = PN \qquad (Given)$$

$$\therefore \triangle ABM \cong \triangle PON \qquad (SSS \text{ congruence criteria})$$

- (ii) $\triangle ABM \cong \triangle PQN$ $\Rightarrow \angle ABM = \angle PQN$ $\angle B = \angle Q$ (By CPCT) Now, in $\triangle ABC$ and $\triangle PQN$, AB = PQ, $\angle B = \angle Q$ and BC = QN $\Rightarrow \triangle ABC \cong \triangle PQN$ [by SAS cong.]
- **Q4.** BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.
- **Sol.** Given BE and CF are two altitude of $\triangle ABC$.

To prove : $\triangle ABC$ is isosceles. Proof : In right $\triangle BEC$ and right $\triangle CFB$ side BE = side CF (Given) Hyp.BC = Hyp CB (Common) $\angle BEC = \angle BFC$ (Each 90°) $\triangle BEC \cong \triangle CFB$ (RHS Rule) $\therefore \angle BCE = \angle CBF$ (By CPCT) AB = AC(Side opp. to equal angles are equal) $\triangle ABC$ is isosceles.

Q5. ABC is an isosceles triangle with AB = AC. Draw AP \perp BC to show that $\angle B = \angle C$

Sol. In $\triangle APB$ and $\triangle APC$

 $AB = AC \qquad (Given)$ $\angle APB = \angle APC \qquad (Each = 90^{\circ})$ $AP = AP \qquad (common side) \qquad B \qquad P$ Therefore, by RHS congruence criteria, we have $\Delta APB \cong \Delta APC$ $\Rightarrow \angle ABP = \angle ACP \qquad (By CPCT)$ $\Rightarrow \angle B = \angle C$