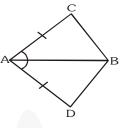
<mark>∛Saral</mark>

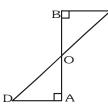
Ex - 7.1

Q1. In quadrilateral ACBD, AC = AD and AB bisects $\angle A$. Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?



- Sol. Given : In quadrilateral ACBD, AC = AD and AB bisect $\angle A$. To prove : $\triangle ABC \cong \triangle ABD$ Proof : In $\triangle ABC$ and $\triangle ABD$ AC = AD (Given) AB = AB (Common) $\angle CAB = \angle DAB$ (AB bisect $\angle A$) $\therefore \triangle ABC \cong \triangle ABD$ (by SAS criteria) BC = BD (by CPCT)
- Q2. ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$. Prove that (i) $\triangle ABD \cong \triangle BAC$ (ii) BD = AC(iii) $\angle ABD = \angle BAC$.
- Sol. In $\triangle ABD$ and $\triangle BAC$, AD = BC (Given) $\angle DAB = \angle CBA$ (Given) AB = AB (Common side) \therefore By SAS congruence rule, we have $\triangle ABD \cong \triangle BAC$ Also, by CPCT, we have BD = AC and $\angle ABD = \angle BAC$

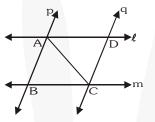
Q3. AD and BC are equal perpendiculars to a line segment AB. Show that CD bisects AB.



<mark>∛Saral</mark>

Sol.Given : AD and BC are equal perpendiculars to line AB.
To prove : CD bisect AB
Proof : In $\triangle OAD$ and $\triangle OBC$
AD = BC
 $\angle OAD = \angle OBC$
 $\triangle OAD = \angle BOC$
 $\triangle OAD = \angle BOC$
(Given)
 $\angle AOD = \angle BOC$
(Vertically opposite angles)
 $\triangle OAD \cong \triangle OBC$
(AAS rule)
OA = OB
(by CPCT)

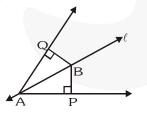
Q4. ℓ and m are two parallel lines intersected by another pair of parallel lines p and q. Show that $\Delta ABC \cong \Delta CDA$.



Sol. In $\triangle ABC$ and $\triangle CDA$ $\angle CAB = \angle ACD$ (Pair of alternate angle) $\angle BCA = \angle DAC$ (Pair of alternate angle) AC = AC (Common side) $\therefore \triangle ABC \cong \triangle CDA$ (ASA criteria)

.: CD bisect AB.

Q5. Line ℓ is the bisector of an angle $\angle A$ and B is any point on ℓ . BP and BQ are perpendiculars from B to the arms of $\angle A$. Show that :



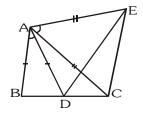
(i) $\triangle APB \cong \triangle AQB$

- (ii) BP = BQ or B is equidistant from the arms of $\angle A$.
- Sol. Given : line ℓ is bisector of angle A and B is any point on ℓ . BP and BQ are perpendicular from B to arms of $\angle A$.

To prove : (i) \triangle APB $\cong \triangle$ AQB (ii) BP = BQ. Proof : (i) In \triangle APB and \triangle AQB

$\angle BAP = \angle BAQ$	(ℓ is bisector)
AB = AB	(common)
$\angle BPA = \angle BQA$	(Each 90°)
$\therefore \Delta \text{ APB} \cong \Delta \text{ AQB}$	(AAS rule)
(ii) \triangle APB $\cong \triangle$ AQB	
BP = BQ	(By CPCT)

Q6. In figure, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE.

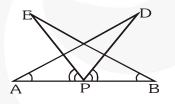


Sol. Given : AC = AEAB = AD, $\angle BAD = \angle EAC$ To prove : BC = DEProof : In $\triangle ABC$ and $\triangle ADE$ AB = AD(Given) AC = AE(Given) $\angle BAD = \angle EAC$ Add ∠DAC to both $\Rightarrow \angle BAD + \angle DAC = \angle DAC + \angle EAC$ $\angle BAC = \angle DAE$ Δ ABC $\cong \Delta$ ADE (SAS rule) BC = DE(By CPCT)

<u>&Saral</u>

Q7. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that

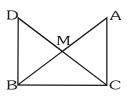
 $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$. Show that (i) $\triangle DAP \cong \triangle EBP$ (ii) AD = BE



Sol. \angle EPA = \angle DPB (Given) $\Rightarrow \angle EPA + \angle DPE = \angle DPB + \angle DPE$ $\Rightarrow \angle APD = \angle BPE$...(1) Now, in $\triangle DAP$ and $\triangle EBP$, we have AP = PB(:: P is mid point of AB) $\angle PAD = \angle PBE$ $(:: \angle PAD = \angle BAD, \angle PBE = \angle ABE$ and we are given that $\angle BAD = \angle ABE$ Also, $\angle APD = \angle BPE$ (By 1) $\therefore \Delta DAP \cong \Delta EBP$ (By ASA congruence) \Rightarrow AD = BE (By CPCT)

<mark>∛Saral</mark>

Q8. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. Show that :



(i) $\Delta AMC \cong \Delta BMD$ (ii) \angle DBC is a right angle. (iii) $\Delta DBC \cong \Delta ACB$ (iv) $CM = \frac{1}{2}AB$ **Sol.** (i) In \triangle AMC $\cong \triangle$ BMD, AM = BM(:: M is mid point of AB) $\angle AMC = \angle BMD$ (Vertically opposite angles) CM = DM(Given) $\therefore \Delta AMC \cong \Delta BMD$ (By SAS congruence) (ii) $\angle AMC = \angle BMD$, $\Rightarrow \angle ACM = \angle BDM$ (By CPCT) \Rightarrow CA \parallel BD $\Rightarrow \angle BCA + \angle DBC = 180^{\circ}$ $\Rightarrow \angle DBC = 90^{\circ}$ $(:: \angle BCA = 90^\circ)$ (iii) In \triangle DBC and \triangle ACB, DB = AC(:: $\Delta BMD \cong \Delta AMC$) $(Each = 90^\circ)$ $\angle DBC = \angle ACB$ BC = BC(Common side) $\therefore \Delta DBC \cong \Delta ACB$ (By SAS congruence) (iv) In $\triangle DBC \cong \triangle ACB \implies CD = AB$...(1) Also, $\triangle AMC \cong \triangle BMD$ \Rightarrow CM = DM \Rightarrow CM = DM = $\frac{1}{2}$ CD ...(2) \Rightarrow CD = 2 CM From (1) and (2), 2 CM = AB \Rightarrow CM = $\frac{1}{2}$ AB