

Triangles

*eSaral है, तो सब सरल है।

Ex - 7.1

Q1. In quadrilateral $A C B D, A C=A D$ and $A B$ bisects $\angle A$. Show that $\triangle A B C \cong \triangle A B D$. What can you say about BC and BD ?

Sol. Given : In quadrilateral $\mathrm{ACBD}, \mathrm{AC}=\mathrm{AD}$ and AB bisect $\angle \mathrm{A}$.
To prove : $\triangle \mathrm{ABC} \cong \triangle \mathrm{ABD}$
Proof : In $\triangle A B C$ and $\triangle A B D$
$\mathrm{AC}=\mathrm{AD} \quad$ (Given)
$\mathrm{AB}=\mathrm{AB}$
(Common)
$\angle \mathrm{CAB}=\angle \mathrm{DAB} \quad(\mathrm{AB}$ bisect $\angle \mathrm{A})$
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{ABD} \quad$ (by SAS criteria)
$\mathrm{BC}=\mathrm{BD} \quad($ by CPCT$)$
Q2. ABCD is a quadrilateral in which $\mathrm{AD}=\mathrm{BC}$ and $\angle \mathrm{DAB}=\angle \mathrm{CBA}$. Prove that
(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$
(ii) $\mathrm{BD}=\mathrm{AC}$
(iii) $\angle \mathrm{ABD}=\angle \mathrm{BAC}$.

Sol. In $\triangle A B D$ and $\triangle B A C$,
$\mathrm{AD}=\mathrm{BC} \quad$ (Given)
$\angle \mathrm{DAB}=\angle \mathrm{CBA} \quad$ (Given)
$\mathrm{AB}=\mathrm{AB} \quad$ (Common side)
\therefore By SAS congruence rule, we have
$\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$
Also, by CPCT, we have
$\mathrm{BD}=\mathrm{AC}$ and $\angle \mathrm{ABD}=\angle \mathrm{BAC}$

Q3. AD and BC are equal perpendiculars to a line segment AB . Show that CD bisects AB .

Sol. Given : AD and BC are equal perpendiculars to line AB .
To prove : CD bisect AB
Proof: In $\triangle \mathrm{OAD}$ and $\triangle \mathrm{OBC}$
$\mathrm{AD}=\mathrm{BC}$
(Given)
$\angle \mathrm{OAD}=\angle \mathrm{OBC} \quad\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{AOD}=\angle \mathrm{BOC} \quad$ (Vertically opposite angles)
$\triangle \mathrm{OAD} \cong \triangle \mathrm{OBC} \quad$ (AAS rule)
$\mathrm{OA}=\mathrm{OB}$
(by CPCT)
$\therefore \mathrm{CD}$ bisect AB .
Q4. $\quad \ell$ and m are two parallel lines intersected by another pair of parallel lines p and q. Show that $\Delta \mathrm{ABC} \cong \Delta \mathrm{CDA}$.

Sol. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDA}$
$\angle \mathrm{CAB}=\angle \mathrm{ACD} \quad$ (Pair of alternate angle)
$\angle \mathrm{BCA}=\angle \mathrm{DAC} \quad$ (Pair of alternate angle)
$\mathrm{AC}=\mathrm{AC} \quad$ (Common side)
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{CDA} \quad$ (ASA criteria)
Q5. Line ℓ is the bisector of an angle $\angle \mathrm{A}$ and B is any point on ℓ. BP and BQ are perpendiculars from B to the arms of $\angle A$. Show that :

(i) $\triangle \mathrm{APB} \cong \triangle \mathrm{AQB}$
(ii) $\mathrm{BP}=\mathrm{BQ}$ or B is equidistant from the arms of $\angle \mathrm{A}$.

Sol. Given : line ℓ is bisector of angle A and B is any point on ℓ. BP and BQ are perpendicular from B to arms of $\angle \mathrm{A}$.
To prove : (i) $\Delta \mathrm{APB} \cong \triangle \mathrm{AQB}$ (ii) $\mathrm{BP}=\mathrm{BQ}$.
Proof :
(i) In $\triangle \mathrm{APB}$ and $\triangle \mathrm{AQB}$

$\angle \mathrm{BAP}=\angle \mathrm{BAQ}$	$(\ell$ is bisector)
$\mathrm{AB}=\mathrm{AB}$	(common)
$\angle \mathrm{BPA}=\angle \mathrm{BQA}$	(Each 90°)
$\therefore \triangle \mathrm{APB} \cong \triangle \mathrm{AQB}$	(AAS rule)

(ii) $\Delta \mathrm{APB} \cong \triangle \mathrm{AQB}$

$$
\mathrm{BP}=\mathrm{BQ}
$$

(By CPCT)

Q6. In figure, $\mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD}$ and $\angle \mathrm{BAD}=\angle \mathrm{EAC}$. Show that $\mathrm{BC}=\mathrm{DE}$.

Sol. Given : $\mathrm{AC}=\mathrm{AE}$
$\mathrm{AB}=\mathrm{AD}$,
$\angle \mathrm{BAD}=\angle \mathrm{EAC}$
To prove : $\mathrm{BC}=\mathrm{DE}$
Proof : In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADE}$
$\mathrm{AB}=\mathrm{AD}$
(Given)
$\mathrm{AC}=\mathrm{AE}$
(Given)
$\angle \mathrm{BAD}=\angle \mathrm{EAC}$
Add $\angle \mathrm{DAC}$ to both
$\Rightarrow \angle \mathrm{BAD}+\angle \mathrm{DAC}=\angle \mathrm{DAC}+\angle \mathrm{EAC}$
$\angle \mathrm{BAC}=\angle \mathrm{DAE}$
$\triangle \mathrm{ABC} \cong \triangle \mathrm{ADE}$
(SAS rule)
$\mathrm{BC}=\mathrm{DE}$
(By CPCT)

Q7. $A B$ is a line segment and P is its mid-point. D and E are points on the same side of $A B$ such that
$\angle \mathrm{BAD}=\angle \mathrm{ABE}$ and $\angle \mathrm{EPA}=\angle \mathrm{DPB}$. Show that
(i) $\triangle \mathrm{DAP} \cong \triangle \mathrm{EBP}$
(ii) $\mathrm{AD}=\mathrm{BE}$

Sol. $\angle \mathrm{EPA}=\angle \mathrm{DPB}$
(Given)
$\Rightarrow \angle \mathrm{EPA}+\angle \mathrm{DPE}=\angle \mathrm{DPB}+\angle \mathrm{DPE}$
$\Rightarrow \angle \mathrm{APD}=\angle \mathrm{BPE}$
Now, in $\triangle \mathrm{DAP}$ and $\triangle \mathrm{EBP}$, we have
$\mathrm{AP}=\mathrm{PB}$
$(\because \mathrm{P}$ is mid point of AB$)$
$\angle \mathrm{PAD}=\angle \mathrm{PBE}$
$\left\{\begin{array}{l}\because \angle \mathrm{PAD}=\angle \mathrm{BAD}, \angle \mathrm{PBE}=\angle \mathrm{ABE} \\ \text { and we are given that } \angle \mathrm{BAD}=\angle \mathrm{ABE}\end{array}\right\}$
Also, $\angle \mathrm{APD}=\angle \mathrm{BPE}$
(By 1)
$\therefore \triangle \mathrm{DAP} \cong \triangle \mathrm{EBP}$
(By ASA congruence)
$\Rightarrow \mathrm{AD}=\mathrm{BE}$
(By CPCT)

Q8. In right triangle ABC , right angled at C, M is the mid-point of hypotenuse $\mathrm{AB} . \mathrm{C}$ is joined to M and produced to a point D such that $\mathrm{DM}=\mathrm{CM}$. Point D is joined to point B . Show that :

(i) $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$
(ii) $\angle \mathrm{DBC}$ is a right angle.
(iii) $\triangle \mathrm{DBC} \cong \triangle \mathrm{ACB}$
(iv) $\mathrm{CM}=\frac{1}{2} \mathrm{AB}$

Sol. (i) In $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$,

$\mathrm{AM}=\mathrm{BM}$	$(\because \mathrm{M}$ is mid point of AB$)$	
$\angle \mathrm{AMC}=\angle \mathrm{BMD}$	(Vertically opposite angles)	
$\mathrm{CM}=\mathrm{DM}$	(Given)	
$\therefore \triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$	(By SAS congruence)	
$\angle \mathrm{AMC}=\angle \mathrm{BMD}$,		
$\Rightarrow \angle \mathrm{ACM}=\angle \mathrm{BDM}$	$($ By CPCT)	
$\Rightarrow \mathrm{CA} \\| \mathrm{BD}$		
$\Rightarrow \angle \mathrm{BCA}+\angle \mathrm{DBC}=180^{\circ}$		
$\Rightarrow \angle \mathrm{DBC}=90^{\circ}$	$\left(\because \angle \mathrm{BCA}=90^{\circ}\right)$	

(iii) In $\triangle \mathrm{DBC}$ and $\triangle \mathrm{ACB}$,
$\mathrm{DB}=\mathrm{AC} \quad(\because \Delta \mathrm{BMD} \cong \triangle \mathrm{AMC})$
$\angle \mathrm{DBC}=\angle \mathrm{ACB} \quad\left(\right.$ Each $\left.=90^{\circ}\right)$
$\mathrm{BC}=\mathrm{BC} \quad$ (Common side)
$\therefore \triangle \mathrm{DBC} \cong \triangle \mathrm{ACB}$ (By SAS congruence)
(iv) In $\triangle \mathrm{DBC} \cong \triangle \mathrm{ACB} \Rightarrow \mathrm{CD}=\mathrm{AB}$

Also, $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$
$\Rightarrow \mathrm{CM}=\mathrm{DM}$
$\Rightarrow \mathrm{CM}=\mathrm{DM}=\frac{1}{2} \mathrm{CD}$
$\Rightarrow \mathrm{CD}=2 \mathrm{CM}$
From (1) and (2),
$2 \mathrm{CM}=\mathrm{AB}$
$\Rightarrow \mathrm{CM}=\frac{1}{2} \mathrm{AB}$

Ex - 7.2

Q1. In an isosceles triangle ABC , with $\mathrm{AB}=\mathrm{AC}$, the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ intersect each other at O . Join A to O . Show that : (i) $\mathrm{OB}=\mathrm{OC}$ (ii) AO bisects $\angle A$.

Sol. (i) In $\triangle \mathrm{ABC}, \mathrm{OB}$ and OC are bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$.

$$
\begin{align*}
& \therefore \angle \mathrm{OBC}=\frac{1}{2} \angle \mathrm{~B} \tag{1}\\
& \angle \mathrm{OCB}=\frac{1}{2} \angle \mathrm{C} \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\text { Also, } \mathrm{AB}=\mathrm{AC} \tag{3}
\end{equation*}
$$

$\Rightarrow \angle \mathrm{B}=\angle \mathrm{C}$
(Given)

From (1), (2), (3), we have

$$
\angle \mathrm{OBC}=\angle \mathrm{OCB}
$$

Now, in $\triangle \mathrm{OBC}$, we have
$\angle \mathrm{OBC}=\angle \mathrm{OCB}$
$\Rightarrow \mathrm{OB}=\mathrm{OC}$
(Sides opposite to equal angles are equal)
(ii) $\angle \mathrm{OBA}=\frac{1}{2} \angle \mathrm{~B}$ and $\angle \mathrm{OCA}=\frac{1}{2} \angle \mathrm{C}$
$\Rightarrow \angle \mathrm{OBA}=\angle \mathrm{OCA} \quad(\because \angle \mathrm{B}=\angle \mathrm{C})$
$\mathrm{AB}=\mathrm{AC}$ and $\mathrm{OB}=\mathrm{OC}$
$\therefore \triangle \mathrm{OAB} \cong \triangle \mathrm{OAC}$ (SAS congruence criteria)
$\Rightarrow \angle \mathrm{OAB}=\angle \mathrm{OAC}$
$\Rightarrow \mathrm{AO}$ bisects $\angle \mathrm{A}$.
Q2. In $\triangle A B C, A D$ is the perpendicular bisector of $B C$. Show that $\triangle A B C$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$.

Sol. Given : In $\triangle \mathrm{ABC}, \mathrm{AD}$ is perpendicular bisector of BC .
To Prove : $\triangle \mathrm{ABC}$ is isosceles Δ with $\mathrm{AB}=\mathrm{AC}$
Proof : In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ADC}$
$\angle \mathrm{ADB}=\angle \mathrm{ADC}$
(Each 90°)
$\mathrm{DB}=\mathrm{DC}$
(AD is \perp bisector of BC)
$\mathrm{AD}=\mathrm{AD}$
(Common)
$\Delta \mathrm{ADB} \cong \triangle \mathrm{ADC}$
(By SAS rule)
$\mathrm{AB}=\mathrm{AC}$
(By CPCT)
$\therefore \triangle \mathrm{ABC}$ is an isosceles Δ with $\mathrm{AB}=\mathrm{AC}$

Q3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and $A B$ respectively. Show that these altitudes are equal.

Sol. In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{ACF}$, we have
$\angle \mathrm{BEA}=\angle \mathrm{CFA} \quad\left(\right.$ Each $\left.=90^{\circ}\right)$
$\angle \mathrm{A}=\angle \mathrm{A} \quad$ (Common angle)
$\mathrm{AB}=\mathrm{AC} \quad$ (Given)
$\therefore \triangle \mathrm{ABE} \cong \triangle \mathrm{ACF} \quad$ (By AAS congruence criteria)
$\Rightarrow \mathrm{BE}=\mathrm{CF} \quad(\mathrm{By} \mathrm{CPCT})$

Q4. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (See figure). Show that (i) $\quad \triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$
(ii) $\mathrm{AB}=\mathrm{AC}$, i.e., ABC is an isosceles triangle.

Sol. (i) In $\triangle A B E$ and $\triangle A C F$, we have

$$
\begin{array}{ll}
\angle \mathrm{A}=\angle \mathrm{A} & (\text { Common }) \\
\angle \mathrm{AEB}=\angle \mathrm{AFC} & \left(\text { Each }=90^{\circ}\right) \\
\mathrm{BE}=\mathrm{CF} & (\text { Given })
\end{array}
$$

$\therefore \triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$ (By ASA congruence)
(ii) $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$
$\Rightarrow \mathrm{AB}=\mathrm{AC}$

Q5. ABC and DBC are two isosceles triangles on the same base BC (see figure). Show that $\angle \mathrm{ABD}=\angle \mathrm{ACD}$.

Sol. Given : ABC and BCD are two isosceles triangle on common base BC .
To prove : $\angle \mathrm{ABC}=\angle \mathrm{ACD}$
Proof : ABC is an isosceles
Triangle on base BC
$\therefore \angle \mathrm{ABC}=\angle \mathrm{ACB}$
$\because \mathrm{DBC}$ is an isosceles Δ on base BC .
$\angle \mathrm{DBC}=\angle \mathrm{DCB}$
Adding (1) and (2)
$\angle \mathrm{ABC}+\angle \mathrm{DBC}=\angle \mathrm{ACB}+\angle \mathrm{DCB}$
$\Rightarrow \angle \mathrm{ABD}=\angle \mathrm{ACD}$

Q6. $\triangle \mathrm{ABC}$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$. Side BA is produced to D such that $A D=A B$ (see figure). Show that $\angle B C D$ is a right angle.

Sol. In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$
$\Rightarrow \angle \mathrm{ACB}=\angle \mathrm{ABC}$
In $\triangle \mathrm{ACD}$,
$\mathrm{AD}=\mathrm{AB} \quad$ (By construction)
$\Rightarrow \mathrm{AD}=\mathrm{AC}$
$\Rightarrow \angle \mathrm{ACD}=\angle \mathrm{ADC}$
Adding (1) and (2),
$\angle \mathrm{ACB}+\angle \mathrm{ACD}=\angle \mathrm{ABC}+\angle \mathrm{ADC}$
$\Rightarrow \angle \mathrm{BCD}=\angle \mathrm{ABC}+\angle \mathrm{ADC}$
In $\angle \mathrm{DBC}+\angle \mathrm{ABC}+\angle \mathrm{BCD}+\angle \mathrm{CDB}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{BCD}=180^{\circ}$
$\Rightarrow \angle \mathrm{BCD}=90^{\circ}$

Q7. ABC is a right angled triangle in which $\angle \mathrm{A}=90^{\circ}$ and $\mathrm{AB}=\mathrm{AC}$. Find $\angle \mathrm{B}$ and $\angle \mathrm{C}$.

Sol. In $\triangle \mathrm{ABC}$
$\mathrm{AB}=\mathrm{AC}$
$\angle \mathrm{B}=\angle \mathrm{C}$

equal sides are equal)
In $\triangle \mathrm{ABC}$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$90^{\circ}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{B}+\angle \mathrm{C}=90^{\circ}$
from (1) and (2)
$\angle \mathrm{B}=\angle \mathrm{C}=45^{\circ}$

Q8. Show that the angles of an equilateral triangle are 60° each.
Sol. $\triangle \mathrm{ABC}$ is equilateral triangle.
$\Rightarrow \mathrm{AB}=\mathrm{BC}=\mathrm{CA}$
Now, $\mathrm{AB}=\mathrm{BC}$
$\Rightarrow \mathrm{BA}=\mathrm{BC}$
$\Rightarrow \angle \mathrm{C}=\angle \mathrm{A}$

Similarly, $\angle \mathrm{A}=\angle \mathrm{B} \ldots$..(2)
From (1) and (2),
$\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C} \ldots$ (3)
Also, $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \ldots$ (4)
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\frac{1}{3} \times 180^{\circ}=60^{\circ}$

Ex-7.3

Q1. $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see figure). If AD is extended to intersect BC at P , show that

(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
(ii) $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$
(iii) AP bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$
(iv) AP is the perpendicular bisector of BC .

Sol. In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$,
$\mathrm{AB}=\mathrm{AC}$
($\because \Delta \mathrm{ABC}$ is isosceles)
$\mathrm{DB}=\mathrm{DC}$
($\because \triangle \mathrm{DBC}$ is isosceles)
$\mathrm{AD}=\mathrm{AD}$
(Common side)
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
(By SSS congruence rule)
(ii) Now, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
$\Rightarrow \angle \mathrm{BAD}=\angle \mathrm{CAD} \quad(\mathrm{By} \mathrm{CPCT})$
In $\triangle \mathrm{ABP}$ and $\triangle \mathrm{ACP}$,
$\mathrm{AB}=\mathrm{AC} \quad(\because \Delta \mathrm{ABC}$ is isosceles $)$
$\Rightarrow \angle \mathrm{BAP}=\angle \mathrm{CAP} \quad(\mathrm{By} 1)$
$\mathrm{AP}=\mathrm{AP} \quad$ (common side)
$\therefore \triangle \mathrm{ABP} \cong \triangle \mathrm{ACP} \quad$ (By SAS congruence rule)
(iii) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ADC} \quad$ (Proved above)
$\angle \mathrm{BAD}=\angle \mathrm{CAD} \quad($ by CPCT$)$
$\angle \mathrm{ADB}=\angle \mathrm{ADC} \quad($ by CPCT$)$
$180-\angle \mathrm{ADB}=180-\angle \mathrm{ADC}$
$\Rightarrow \angle \mathrm{BDP}=\angle \mathrm{CDP}$
AP bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$
(iv) $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$
$\Rightarrow \mathrm{BP}=\mathrm{CP}$
(By CPCT)
$\Rightarrow \mathrm{AP}$ bisects BC
$\angle \mathrm{APB}=\angle \mathrm{APC}(\mathrm{By} \mathrm{CPCT})$
$\angle \mathrm{APB}+\angle \mathrm{APC}=180^{\circ}$
$2 \angle \mathrm{APB}=180^{\circ}$
$\angle \mathrm{APB}=90^{\circ}$
AP is perpendicular bisector of BC

Q2. $A D$ is an altitude of an isosceles triangle $A B C$ in which $A B=A C$. Show that
(i) AD bisects BC
(ii) AD bisects $\angle \mathrm{A}$

Sol. Given : AD is an altitude of an isosceles triangle ABC in which $\mathrm{AB}=\mathrm{AC}$.

To Prove : (i) AD bisect BC . (ii) AD bisect $\angle \mathrm{A}$.
Proof: (i) In right $\triangle \mathrm{ADB}$ and right $\triangle \mathrm{ADC}$.
Hyp. $\mathrm{AB}=$ Hyp. AC
$\angle \mathrm{ADB}=\angle \mathrm{ADC} \quad\left(\right.$ Each $\left.90^{\circ}\right)$
Side $\mathrm{AD}=$ side $\mathrm{AD} \quad$ (Common)
$\Delta \mathrm{ADB} \cong \triangle \mathrm{ADC}$
(RHS rule)
$\Rightarrow \mathrm{BD}=\mathrm{CD}$
(By CPCT)
$\Rightarrow \mathrm{AD}$ bisect BC
(ii) $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$
$\angle \mathrm{BAD}=\angle \mathrm{CAD}$
(By CPCT)
$\Rightarrow \mathrm{AD}$ bisect $\angle \mathrm{A}$

Q3. Two sides $A B$ and $B C$ and median $A M$ of one triangle $A B C$ are respectively equal to side $P Q$ and QR and median PN of $\triangle \mathrm{PQR}$ (see figure). Show that :
(i) $\triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$
(ii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$

Sol. (i) $\mathrm{BM}=\frac{1}{2} \mathrm{BC}$
$(\because \mathrm{M}$ is mid-point of BC$)$

$$
\begin{array}{ll}
\mathrm{QN}=\frac{1}{2} \mathrm{QR} & (\because \mathrm{~N} \text { is mid-point of } \mathrm{QR}) \\
\Rightarrow \mathrm{BM}=\mathrm{QN} & (\because \mathrm{BC}=\mathrm{QR} \text { is given })
\end{array}
$$

Now, in $\triangle \mathrm{ABM}$ and $\triangle \mathrm{PQN}$, we have

$\mathrm{AB}=\mathrm{PQ}$	(Given)
$\mathrm{BM}=\mathrm{QN}$	(Proved)
$\mathrm{AM}=\mathrm{PN}$	(Given)

$\therefore \triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$ (SSS congruence criteria)
(ii) $\triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$
$\Rightarrow \angle \mathrm{ABM}=\angle \mathrm{PQN}$
$\angle \mathrm{B}=\angle \mathrm{Q} \quad$ (By CPCT)
Now, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQN}$,
$\mathrm{AB}=\mathrm{PQ}, \angle \mathrm{B}=\angle \mathrm{Q}$ and $\mathrm{BC}=\mathrm{QN}$
$\Rightarrow \triangle \mathrm{ABC} \cong \triangle \mathrm{PQN}$ [by SAS cong.]

Q4. BE and CF are two equal altitudes of a triangle ABC . Using RHS congruence rule, prove that the triangle ABC is isosceles.

Sol. Given BE and CF are two altitude of $\triangle \mathrm{ABC}$.

To prove : $\triangle \mathrm{ABC}$ is isosceles.
Proof : In right $\triangle \mathrm{BEC}$ and right $\triangle \mathrm{CFB}$ side
$\mathrm{BE}=$ side CF
(Given)
Hyp. $\mathrm{BC}=$ Hyp CB
(Common)
$\angle \mathrm{BEC}=\angle \mathrm{BFC}$
(Each 90°)
$\triangle \mathrm{BEC} \cong \triangle \mathrm{CFB}$
(RHS Rule)
$\therefore \angle \mathrm{BCE}=\angle \mathrm{CBF}$
(By CPCT)
$\mathrm{AB}=\mathrm{AC}$
(Side opp. to equal angles are equal)
$\triangle \mathrm{ABC}$ is isosceles.

Q5. ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$. Draw $\mathrm{AP} \perp \mathrm{BC}$ to show that $\angle \mathrm{B}=\angle \mathrm{C}$
Sol. In $\triangle \mathrm{APB}$ and $\triangle \mathrm{APC}$
$\mathrm{AB}=\mathrm{AC}$
(Given)
$\angle \mathrm{APB}=\angle \mathrm{APC} \quad\left(\right.$ Each $\left.=90^{\circ}\right)$
$\mathrm{AP}=\mathrm{AP}$
(common side)

Therefore, by RHS congruence criteria, we have
$\Delta \mathrm{APB} \cong \triangle \mathrm{APC}$
$\Rightarrow \angle \mathrm{ABP}=\angle \mathrm{ACP} \quad(\mathrm{By} \mathrm{CPCT})$
$\Rightarrow \angle \mathrm{B}=\angle \mathrm{C}$

Ex - 7.4

Q1. Show that in a right angled triangle, the hypotenuse is the longest side.

Sol. $\triangle \mathrm{ABC}$ is right angled at B . AC is hypotenuse.
Now, $\angle \mathrm{B}=90^{\circ}$
and $\angle \mathrm{A}+\angle \mathrm{C}=90^{\circ}$
$\Rightarrow \angle \mathrm{A}<90^{\circ}$
and $\angle \mathrm{C}<90^{\circ}$
$\Rightarrow \angle \mathrm{B}>\angle \mathrm{A}$
and $\angle \mathrm{B}>\angle \mathrm{C}$
$\Rightarrow \mathrm{AC}>\mathrm{BC}$

and $\mathrm{AC}>\mathrm{AB}$.
\therefore Hypotenuse AC is the longest side of the right angled $\triangle \mathrm{ABC}$.

Q2. In figure, sides $A B$ and $A C$ of $\triangle A B C$ are extended to points P and Q respectively. Also, $\angle \mathrm{PBC}<\angle \mathrm{QCB}$. Show that $\mathrm{AC}>\mathrm{AB}$

Sol. Sides AB and AC of $\triangle \mathrm{ABC}$ are extended to points P and Q
To prove : $\mathrm{AC}>\mathrm{AB}$
Proof : $\angle \mathrm{PBC}<\angle \mathrm{QCB}$
(Given)
$180-\angle \mathrm{PBC}>180-\angle \mathrm{QCB}$
$\angle \mathrm{ABC}>\mathrm{ACB}$
$\Rightarrow \mathrm{AC}>\mathrm{AB}$
(sides opposite to greater angle is longer)

Q3. In fig, $\angle \mathrm{B}<\angle \mathrm{A}$ and $\angle \mathrm{C}<\angle \mathrm{D}$. Show that $\mathrm{AD}<\mathrm{BC}$.

Sol. $\angle \mathrm{B}<\angle \mathrm{A}$ in $\triangle \mathrm{OAB} \Rightarrow \mathrm{OA}<\mathrm{OB}$
Also, $\angle \mathrm{C}<\angle \mathrm{D}$ in $\triangle \mathrm{OCD} \Rightarrow \mathrm{OD}<\mathrm{OC}$

Adding (1) and (2),
$\mathrm{OA}+\mathrm{OD}<\mathrm{OB}+\mathrm{OC}$
$\Rightarrow \mathrm{AD}<\mathrm{BC}$

Q4. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see figure). Show that $\angle \mathrm{A}>\angle \mathrm{C}$ and $\angle \mathrm{B}>\angle \mathrm{D}$.

Sol. In quadrilateral $\mathrm{ABCD}, \mathrm{AB}$ is the smallest side and CD is the longest side. Join AC and BD .

In $\triangle \mathrm{ABC}, \mathrm{BC}>\mathrm{AB}$
$\Rightarrow \angle 1>\angle 3$
In $\triangle \mathrm{ACD}, \mathrm{CD}>\mathrm{AD}$
$\Rightarrow \angle 2>\angle 4$
Ading (1) and (2), we have
$\angle 1+\angle 2>\angle 3+\angle 4$
$\Rightarrow \angle \mathrm{A}>\angle \mathrm{C}$
Similarly, we can prove that
($\because \mathrm{AB}$ is smallest side)
($\because \mathrm{CD}$ is longest side)

$\angle B>\angle D$

Q5. In figure, $\mathrm{PR}>\mathrm{PQ}$ and PS bisects $\angle \mathrm{QPR}$. Prove that $\angle \mathrm{PSR}>\angle \mathrm{PSQ}$.

Sol. Given : $\mathrm{PR}>\mathrm{PQ}$, PS bisect $\angle \mathrm{QPR}$.
To prove : $\angle \mathrm{PSR}>\angle \mathrm{PSQ}$
Proof : In $\triangle \mathrm{PQR}$
$\mathrm{PR}>\mathrm{PQ} \quad$ (Given)
$\angle \mathrm{PQR}>\angle \mathrm{PRQ}$
(angle opposite to longer side is greater)
PS bisects $\angle \mathrm{QPR}$
$\Rightarrow \angle \mathrm{QPS}=\angle \mathrm{RPS}$
In $\triangle \mathrm{PQS}$
$\angle \mathrm{PQR}+\angle \mathrm{QPS}+\angle \mathrm{PSQ}=180^{\circ}$
In \triangle PRS
$\angle \mathrm{PSR}+\angle \mathrm{SPR}+\angle \mathrm{SRP}=180^{\circ}$
From (2) and (3)

$$
\begin{aligned}
& \angle \mathrm{PQR}+\angle \mathrm{QPS}+\angle \mathrm{PSQ} \\
= & \angle \mathrm{PSR}+\angle \mathrm{SPR}+\angle \mathrm{SRP} \\
& \angle \mathrm{PQR}+\angle \mathrm{PSQ}=\angle \mathrm{PSR}+\angle \mathrm{PRS} \\
& \angle \mathrm{PRS}+\angle \mathrm{PSR}=\angle \mathrm{PQR}+\angle \mathrm{PSQ} \\
& \angle \mathrm{PRS}+\angle \mathrm{PSR}>\angle \mathrm{PRQ}+\angle \mathrm{PSQ} \\
& \angle \mathrm{PRQ}+\angle \mathrm{PSR}>\angle \mathrm{PRQ}+\angle \mathrm{PSQ} \\
& \angle \mathrm{PSR}>\angle \mathrm{PSQ}
\end{aligned}
$$

Q6. Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Sol. Let us have AB as the perpendicular line segment and AP is any other line segment. Now $\triangle \mathrm{ABP}$ is right angled and AP is hypotenuse.
Here, $\angle \mathrm{B}>\angle \mathrm{P}$

$$
\left(\because \angle \mathrm{B}=90^{\circ}\right)
$$

$\Rightarrow \mathrm{AP}>\mathrm{AB}$

Thus perpendicular line segment is smallest.

