

NCERT SOLUTIONS

Similar Triangle

*eSaral है, तो सब सरल है।

Ex - 6.1

Q1. Fill in the blanks using the correct word given in brackets :
(i) All circles are \qquad . (congruent, similar)
(ii) All squares are \qquad (similar, congruent)
(iii) All \qquad triangles are similar. (isosceles, equilateral)
(iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are
\qquad and (b) their corresponding sides are \qquad - (equal, proportional)

Sol. (i) All circles are similar.
(ii) All squares are similar.
(iii) All equilateral triangles are similar.
(iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are equal and (b) their corresponding sides are proportional.

Q2. Give two different examples of pair of
(i) Similar figures.
(ii) Non-similar figures.

Sol. (i) 1. Pair of equilateral triangles are similar figures.
2. Pair of squares are similar figures.
(ii) 1. One equilateral triangle and one isosceles triangle are non-similar.
2. Square and rectangle are non-similar.

Q3. State whether the following quadrilaterals are similar or not :

Sol. The two quadrilateral in figure are not similar because their corresponding angles are not equal.

Ex-6.2

Q1. In figure, (i) and (ii), $\mathrm{DE} \| \mathrm{BC}$. Find EC in (i) and AD in (ii).

(i)

Sol. (i) In figure, (i) $\mathrm{DE} \| \mathrm{BC}$ (Given)
$\Rightarrow \frac{A D}{D B}=\frac{A E}{E C}$ (By Basic Proportionality Theorem)
$\Rightarrow \frac{1.5}{3}=\frac{1}{\mathrm{EC}}$
$\{\because \mathrm{AD}=1.5 \mathrm{~cm}, \mathrm{DB}=3 \mathrm{~cm}$ and $\mathrm{AE}=1 \mathrm{~cm}\}$
$\Rightarrow \mathrm{EC}=\frac{3}{1.5}=2 \mathrm{~cm}$
(ii) In fig. (ii) $D E \| B C$ (given)

So, $\frac{A D}{B D}=\frac{A E}{C E} \Rightarrow \frac{A D}{7.2}=\frac{1.8}{5.4}$
$\{\because \mathrm{BD}=7.2, \mathrm{AE}=1.8 \mathrm{~cm}$ and $\mathrm{CE}=5.4 \mathrm{~cm}\}$
$\mathrm{AD}=2.4 \mathrm{~cm}$

Q2. E and F are points on the sides PQ and PR respectively of a $\triangle \mathrm{PQR}$. For each of the following cases, State whether EF \| QR :
(i) $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$.
(ii) $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$.
(iii) $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.36 \mathrm{~cm}$.

Sol. (i) In figure,

$$
\begin{aligned}
& \frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{3.9}{3}=1.3, \\
& \frac{\mathrm{PF}}{\mathrm{FR}}=\frac{3.6}{2.4}=\frac{3}{2}=1.5 \\
\Rightarrow & \frac{\mathrm{PE}}{\mathrm{EQ}} \neq \frac{\mathrm{PF}}{\mathrm{FR}} \\
\Rightarrow & \mathrm{EF} \text { is not } \| \mathrm{QR} \mathrm{Q}_{\mathrm{Q}}
\end{aligned}
$$

(ii) In figure,

$$
\begin{aligned}
& \frac{P E}{E Q}=\frac{4}{4.5}=\frac{8}{9} \text { and } \frac{P F}{F R}=\frac{8}{9} \\
\Rightarrow & \frac{P E}{E Q}=\frac{P F}{F R} \Rightarrow E F \| Q R
\end{aligned}
$$

(iii) In figure,

$$
\frac{P E}{Q E}=\frac{0.18}{P Q-P E}=\frac{0.18}{1.28-0.18}=\frac{0.18}{1.10}
$$

$$
=\frac{18}{110}=\frac{9}{55}=\frac{P F}{F R}=\frac{0.36}{P R-P F}
$$

$$
=\frac{0.36}{2.56-0.36}=\frac{0.36}{2.20}=\frac{9}{55}=\frac{P E}{Q E}=\frac{P F}{F R}
$$

$\therefore E F \| Q R \quad$ (By converse of Basic Proportionality Theorem)

Q3. In figure, if $L M \| C B$ and $L N \| C D$, prove that $\frac{A M}{A B}=\frac{A N}{A D}$.

Sol. In $\triangle \mathrm{ACB}$ (see figure), $\mathrm{LM} \| \mathrm{CB}$ (Given)
$\Rightarrow \frac{A M}{M B}=\frac{A L}{L C}$
(Basic Proportionality Theorem)
In $\triangle \mathrm{ACD}$ (see figure), $\mathrm{LN} \| \mathrm{CD}$ (Given)
$\Rightarrow \frac{A N}{N D}=\frac{A L}{L C}$
(Basic Proportionality Theorem)
From (1) and (2), we get

$$
\begin{aligned}
& \frac{A M}{M B}=\frac{A N}{N D} \\
\Rightarrow & \frac{A M}{A M+M B}=\frac{A N}{A N+N D} \Rightarrow \frac{A M}{A B}=\frac{A N}{A D}
\end{aligned}
$$

Q4. In figure, $D E \| A C$ and $D F \| A E$. Prove that $\frac{B F}{F E}=\frac{B E}{E C}$.

Sol. In $\triangle \mathrm{ABE}$,
DF\|AE (Given)
$\frac{B D}{D A}=\frac{B F}{F E} \ldots$ (i) (Basic Proportionality Theorem)
In $\triangle \mathrm{ABC}$,
$D E \| A C \quad$ (Given)
$\frac{B D}{D A}=\frac{B E}{E C} \ldots .$. (ii) (Basic Proportionality Theorem)
From (i) and (ii), we get
$\frac{B F}{F E}=\frac{B E}{E C} \quad$ Hence proved.

Q5. In figure, $\mathrm{DE} \| \mathrm{OQ}$ and $\mathrm{DF} \| \mathrm{OR}$. Show that $\mathrm{EF} \| \mathrm{QR}$.

Sol. In figure, DE \| OQ and DF \| OR, then by Basic Proportionality Theorem,
We have $\quad \frac{P E}{E Q}=\frac{P D}{D O}$
and $\quad \frac{P F}{F R}=\frac{P D}{D O}$
From (1) and (2), $\frac{P E}{E Q}=\frac{P F}{F R}$
Now, in $\triangle P Q R$, we have proved that
$\Rightarrow \frac{P E}{E Q}=\frac{P F}{F R}$
EF \| QR
(By converse of Basic Proportionality Theorem)

Q6. In figure, A, B and C are points on OP, OQ and OR respectively such that $\mathrm{AB} \| \mathrm{PQ}$ and AC $\|$ PR. Show that BC \| QR.

Sol. In $\triangle \mathrm{POQ}$,
$A B \| P Q$ (given)
$\frac{O B}{B Q}=\frac{O A}{A P} \ldots$ (i) (Basic Proportionality Theorem)
In $\triangle \mathrm{POR}$,
$A C \| P R$ (given)
$\frac{O A}{A P}=\frac{O C}{C R}$
..(ii) (Basic Proportionality Theorem)
From (i) and (ii), we get
$\frac{O B}{B Q}=\frac{O C}{C R}$
\therefore By converse of Basic Proportionality Theorem,
$B C \| Q R$

Q7. Using Theorem 6.1, prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side.

Sol. In $\triangle \mathrm{ABC}, \mathrm{D}$ is mid point of AB (see figure)

i.e., $\frac{A D}{D B}=1$

Straight line $\ell \| B C$.
Line ℓ is drawn through D and it meets AC at E .
By Basic Proportionality Theorem

$$
\begin{aligned}
\frac{A D}{D B} & =\frac{A E}{E C} \Rightarrow \frac{A E}{E C}=1[\text { From (1)] } \\
\Rightarrow A E & =E C \Rightarrow E \text { is mid point of } A C .
\end{aligned}
$$

Q8. Using Theorem 6.2, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side.

Sol. In $\triangle \mathrm{ABC}, \mathrm{D}$ and E are mid points of the sides AB and AC respectively.
$\Rightarrow \frac{A D}{D B}=1$
and $\frac{A E}{E C}=1$ (see figure)

$\Rightarrow \frac{A D}{D B}=\frac{A E}{E C} \Rightarrow D E \| B C$
(By Converse of Basic Proportionality Theorem)
Q9. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and its diagonals intersect each other at the point O .
Show that $\frac{A O}{B O}=\frac{C O}{D O}$.
Sol. We draw EOF $\| \mathrm{AB}$ (also $\| \mathrm{CD}$) (see figure)
In $\triangle \mathrm{ACD}, \quad \mathrm{OE} \| \mathrm{CD}$
$\Rightarrow \frac{A E}{E D}=\frac{A O}{O C}$
In $\triangle \mathrm{ABD}, \mathrm{OE} \| \mathrm{BA}$
$\Rightarrow \frac{D E}{E A}=\frac{D O}{O B}$

$\Rightarrow \frac{A E}{E D}=\frac{O B}{O D}$.
From (1) and (2)

$$
\begin{array}{r}
\quad \frac{A O}{O C}=\frac{O B}{O D}, \\
\text { i.e., } \frac{A O}{B O}=\frac{C O}{D O} .
\end{array}
$$

Q10. The diagonals of a quadrilateral $A B C D$ intersect each other at the point O such that $\frac{A O}{B O}=\frac{C O}{D O}$. Show that ABCD is a trapezium.

Sol. In figure $\frac{A O}{B O}=\frac{C O}{D O}$
$\Rightarrow \frac{A O}{O C}=\frac{B O}{O D}$
Through O, we draw
OE || BA

OE meets AD at E .
From $\triangle \mathrm{DAB}$,

EO || AB
$\Rightarrow \frac{D E}{E A}=\frac{D O}{O B}$ (by Basic Proportionality Theorem)
$\Rightarrow \frac{A E}{E D}=\frac{B O}{O D}$
From (1) and (2),

$$
\frac{A O}{O C}=\frac{A E}{E D} \Rightarrow O E \| C D
$$

(by converse of basic proportionality theorem)
Now, we have BA || OE
and $\quad O E \| C D$
$\Rightarrow \quad \mathrm{AB} \| \mathrm{CD}$
\Rightarrow Quadrilateral ABCD is a trapezium.

Ex - 6.3

Q1. State which pairs of triangles in figure, are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form :

(i)
(ii)

(iii)
(iv)

(v)

Sol. (i) Yes. $\angle \mathrm{A}=\angle \mathrm{P}=60^{\circ}, \angle \mathrm{B}=\angle \mathrm{Q}=80^{\circ}$,
$\angle \mathrm{C}=\angle \mathrm{R}=40^{\circ}$
Therefore, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.
By AAA similarity criterion
(ii) Yes.
$\frac{\mathrm{AB}}{\mathrm{QR}}=\frac{2}{4}=\frac{1}{2}, \frac{\mathrm{BC}}{\mathrm{RP}}=\frac{2.5}{5}=\frac{1}{2}, \frac{\mathrm{CA}}{\mathrm{PQ}}=\frac{3}{6}=\frac{1}{2}$
Therefore, $\triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}$.
By SSS similarity criterion.
(iii) No.
$\frac{\mathrm{MP}}{\mathrm{DE}}=\frac{2}{4}=\frac{1}{2}, \frac{\mathrm{LP}}{\mathrm{DF}}=\frac{3}{6}=\frac{1}{2}, \frac{\mathrm{LM}}{\mathrm{EF}}=\frac{2.7}{5} \neq \frac{1}{2}$
i.e., $\frac{M P}{D E}=\frac{L P}{D F} \neq \frac{L M}{E F}$

Thus, the two triangles are not similar.
(iv) Yes,
$\frac{M N}{Q P}=\frac{M L}{Q R}=\frac{1}{2}$
and $\angle \mathrm{NML}=\angle \mathrm{PQR}=70^{\circ}$
By SAS similarity criterion
$\Delta \mathrm{NML} \sim \Delta \mathrm{PQR}$
(v) No ,
$\frac{A B}{F D} \neq \frac{A C}{F E}$
Thus, the two triangles are not similar
(vi) In triangle $\mathrm{DEF} \angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=180^{\circ}$
$70^{\circ}+80^{\circ}+\angle \mathrm{F}=180^{\circ}$
$\angle \mathrm{F}=30^{\circ}$
In triangle PQR
$\angle \mathrm{P}+80^{\circ}+30^{\circ}=180^{\circ}$
$\angle \mathrm{P}=70^{\circ}$
$\angle \mathrm{E}=\angle \mathrm{Q}=80^{\circ}$
$\angle \mathrm{D}=\angle \mathrm{P}=70^{\circ}$
$\angle \mathrm{F}=\angle \mathrm{R}=30^{\circ}$
By AAA similarity criterion,
$\Delta \mathrm{DEF} \sim \triangle \mathrm{PQR}$.

Q2. In figure, $\triangle \mathrm{ODC} \sim \triangle \mathrm{OBA}, \angle \mathrm{BOC}=125^{\circ}$ and $\angle \mathrm{CDO}=70^{\circ}$. Find $\angle \mathrm{DOC}, \angle \mathrm{DCO}$ and $\angle \mathrm{OAB}$.

Sol. From figure,

$$
\Rightarrow \quad \begin{array}{ll}
& \angle \mathrm{DOC}+125^{\circ}=180^{\circ} \\
\Rightarrow & \angle \mathrm{DOC}=180^{\circ}-125^{\circ}=55^{\circ} \\
& \angle \mathrm{DCO}+\angle \mathrm{CDO}+\angle \mathrm{DOC}=180^{\circ}
\end{array}
$$

(Sum of three angles of $\triangle \mathrm{ODC}$)
$\Rightarrow \angle \mathrm{DCO}+70^{\circ}+55^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{DCO}+125^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{DCO}=180^{\circ}-125^{\circ}=55^{\circ}$
Now, we are given that $\triangle \mathrm{ODC} \sim \triangle \mathrm{OBA}$
$\Rightarrow \angle \mathrm{OCD}=\angle \mathrm{OAB}$
$\Rightarrow \angle \mathrm{OAB}=\angle \mathrm{OCD}=\angle \mathrm{DCO}=55^{\circ}$
i.e., $\angle \mathrm{OAB}=55^{\circ}$

Hence, we have
$\angle \mathrm{DOC}=55^{\circ}, \angle \mathrm{DCO}=55^{\circ}, \angle \mathrm{OAB}=55^{\circ}$
Q3. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. Using a similarity criterion for two triangles, show that $\frac{O A}{O C}=\frac{O B}{O D}$.

Sol. In figure, $\mathrm{AB} \| \mathrm{DC}$
$\Rightarrow \angle 1=\angle 3, \angle 2=\angle 4$
(Alternate interior angles)
Also $\angle \mathrm{DOC}=\angle \mathrm{BOA}$
(Vertically opposite angles)

$\Rightarrow \triangle \mathrm{OCD} \sim \triangle \mathrm{OAB} \Rightarrow \frac{O C}{O A}=\frac{O D}{O B}$
(Ratios of the corresponding sides of the similar triangle)
$\Rightarrow \frac{O A}{O C}=\frac{O B}{O D}$ (Taking reciprocals)

Q4. In figure, $\frac{Q R}{Q S}=\frac{Q T}{P R}$ and $\angle 1=\angle 2$. Show that $\triangle P Q S \sim \Delta T Q R$.

Sol. In figure, $\angle 1=\angle 2$ (Given)
$\Rightarrow \mathrm{PQ}=\mathrm{PR}$
(Sides opposite to equal angles of $\triangle \mathrm{PQR}$)
We are given that

$$
\begin{aligned}
\frac{Q R}{Q S} & =\frac{Q T}{P R} \\
\Rightarrow \quad \frac{Q R}{Q S} & =\frac{Q T}{P Q} \quad(\because P Q=\text { PR proved }) \\
\Rightarrow \quad \frac{Q S}{Q R} & =\frac{P Q}{Q T} \quad \text { (Taking reciprocals) } \ldots(1)
\end{aligned}
$$

Now, in $\triangle P Q S$ and $\triangle T Q R$, we have

$$
\angle \mathrm{PQS}=\angle \mathrm{TQR} \quad(\mathrm{Each}=\angle 1)
$$

and $\frac{Q S}{Q R}=\frac{P Q}{Q T}$
(By (1))
Therefore, by SAS similarity criterion, we have

$$
\Delta \mathrm{PQS} \sim \Delta \mathrm{TQR} .
$$

Q5. S and T are points on sides PR and QR of $\triangle \mathrm{PQR}$ such that $\angle \mathrm{P}=\angle \mathrm{RTS}$. Show that $\triangle \mathrm{RPQ} \sim$ Δ RTS.

Sol. In figure, We have $\triangle \mathrm{RPQ}$ and $\triangle \mathrm{RTS}$ in which

$$
\begin{aligned}
& \angle \mathrm{RPQ}=\angle \mathrm{RTS}(\text { Given }) \\
& \angle \mathrm{PRQ}=\angle \mathrm{SRT}(\text { Each }=\angle \mathrm{R})
\end{aligned}
$$

Then by AA similarity criterion, we have
$\Delta \mathrm{RPQ} \sim \Delta \mathrm{RTS}$

Q6. In figure, if $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACD}$, show that $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$.

Sol. In figure,
$\triangle \mathrm{ABE} \cong \triangle \mathrm{ACD} \quad$ (Given)
$\Rightarrow \mathrm{AB}=\mathrm{AC}$ and $\mathrm{AE}=\mathrm{AD} \quad(\mathrm{CPCT})$
$\Rightarrow \frac{A B}{A C}=1$ and $\frac{A D}{A E}=1$
$\Rightarrow \frac{A B}{A C}=\frac{A D}{A E} \quad($ Each $=1)$
Now, in $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$, we have

$$
\frac{A D}{A E}=\frac{A B}{A C} \quad(\text { proved })
$$

i.e., $\frac{A D}{A B}=\frac{A E}{A C}$
and also $\angle \mathrm{DAE}=\angle \mathrm{BAC} \quad($ Each $=\angle \mathrm{A})$
$\Rightarrow \triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$ (By SAS similarity criterion)
Q7. In figure, altitudes AD and CE of $\triangle \mathrm{ABC}$ intersect each other at the point P . Show that :
(i) $\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$
(ii) $\triangle \mathrm{ABD} \sim \Delta \mathrm{CBE}$
(iii) $\triangle \mathrm{AEP} \sim \triangle \mathrm{ADB}$
(iv) $\triangle \mathrm{PDC} \sim \triangle \mathrm{BEC}$

Sol. (i) In $\triangle \mathrm{AEP}$ and $\triangle \mathrm{CDP}$,
$\angle \mathrm{APE}=\angle \mathrm{CPD}$ (vertically opposite angles)
$\angle \mathrm{AEP}=\angle \mathrm{CDP}=90^{\circ}$
$\therefore \quad$ By AA similarity
$\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$
(ii) In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CBE}$,
$\angle \mathrm{ABD}=\angle \mathrm{CBE}$ (common)
$\angle \mathrm{ADB}=\angle \mathrm{CEB}=90^{\circ}$
\therefore By AA similarity
$\triangle \mathrm{ABD} \sim \triangle \mathrm{CBE}$
(iii) In $\triangle \mathrm{AEP}$ and $\triangle \mathrm{ADB}$,
$\angle \mathrm{PAE}=\angle \mathrm{DAB}$ (common)
$\angle \mathrm{AEP}=\angle \mathrm{ADB}=90^{\circ}$
\therefore By AA similarity
$\triangle \mathrm{AEP} \sim \triangle \mathrm{ADB}$
(iv) In $\triangle \mathrm{PDC}$ and $\triangle \mathrm{BEC}$,
$\angle \mathrm{PCD}=\angle \mathrm{BCE}$ (common)
$\angle \mathrm{PDC}=\angle \mathrm{BEC}=90^{\circ}$
\therefore By AA similarity
$\triangle \mathrm{PDC} \sim \triangle \mathrm{BEC}$

Q8. E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F . Show that $\triangle \mathrm{ABE} \sim \Delta \mathrm{CFB}$.

Sol.

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CFB}$,
$\angle \mathrm{EAB}=\angle \mathrm{BCF}$ (opp. angles of parallelogram)
$\angle \mathrm{AEB}=\angle \mathrm{CBF}$ (Alternate interior angles, As $\mathrm{AE} \| \mathrm{BC}$)
\therefore By AA similarity

$$
\triangle \mathrm{ABE} \sim \Delta \mathrm{CFB}
$$

Q9. In figure, $A B C$ and $A M P$ are two right triangles, right angled at B and M respectively. Prove that:
(i) $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$
(ii) $\frac{C A}{P A}=\frac{B C}{M P}$

Sol.

(i) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{AMP}$
$\angle \mathrm{CAB}=\angle \mathrm{PAM}$ (common)
$\angle \mathrm{ABC}=\angle \mathrm{AMP}=90^{\circ}$
\therefore By AA similarity
$\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$
(ii) As $\triangle \mathrm{ABC} \sim \Delta \mathrm{AMP}$ (Proved above)

$$
\therefore \quad \frac{C A}{P A}=\frac{B C}{M P}
$$

Q10. CD and GH are respectively the bisectors of $\angle \mathrm{ACB}$ and $\angle \mathrm{EGF}$ such that D and H lie on sides AB and FE of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EFG}$ respectively. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{FEG}$, show that :
(i) $\frac{C D}{G H}=\frac{A C}{F G}$
(ii) $\triangle \mathrm{DCB} \sim \triangle \mathrm{HGE}$
(iii) $\triangle \mathrm{DCA} \sim \Delta \mathrm{HGF}$

Sol. $\triangle \mathrm{ABC} \sim \Delta \mathrm{FEG}$

$$
\begin{align*}
& \Rightarrow \angle \mathrm{ACB}=\angle \mathrm{EGF} \\
& \Rightarrow \frac{1}{2} \angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{EGF} \\
& \Rightarrow \angle \mathrm{DCB}=\angle \mathrm{HGE} \tag{1}
\end{align*}
$$

Also, $\angle \mathrm{B}=\angle \mathrm{E}$
$\Rightarrow \angle \mathrm{DBC}=\angle \mathrm{HEG}$
From (1) and (2), we have
$\Rightarrow \quad \triangle \mathrm{DCB} \sim \Delta \mathrm{HGE}$
Similarly, we have

$$
\Delta \mathrm{DCA} \sim \Delta \mathrm{HGF}
$$

Now, $\triangle \mathrm{DCA} \sim \triangle \mathrm{HGF}$
$\Rightarrow \frac{D C}{H G}=\frac{C A}{G F} \Rightarrow \frac{C D}{G H}=\frac{A C}{F G}$
Q11. In figure, E is a point on side CB produced of an isosceles triangle ABC with $\mathrm{AB}=\mathrm{AC}$. If AD $\perp \mathrm{BC}$ and $\mathrm{EF} \perp \mathrm{AC}$, prove that $\triangle \mathrm{ABD} \sim \triangle \mathrm{ECF}$.

Sol. In figure,
We are given that $\triangle \mathrm{ABC}$ is isosceles.
and $\quad \mathrm{AB}=\mathrm{AC}$
$\Rightarrow \quad \angle \mathrm{B}=\angle \mathrm{C}$
For triangles ABD and ECF ,

$$
\begin{array}{lll}
& \angle \mathrm{ABD}=\angle \mathrm{ECF} & \{\text { from }(1)\} \\
\text { and } & & \angle \mathrm{ADB}=\angle \mathrm{EFC} \quad\left\{\text { each }=90^{\circ}\right\} \\
\Rightarrow & \Delta \mathrm{ABD} \sim \triangle \mathrm{ECF}(\mathrm{AA} \text { similarity })
\end{array}
$$

Q12. Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $P R$ and median $P M$ of another triangle $P Q R$. Show that $\triangle A B C \sim \triangle P Q R$.

Sol. Given. $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$. AD and PM are their medians respectively.

$$
\begin{equation*}
\frac{A B}{P Q}=\frac{A C}{P R}=\frac{A D}{P M} \tag{1}
\end{equation*}
$$

To prove. $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.
Construction : Produce AD to E such that $\mathrm{AD}=\mathrm{DE}$ and produce PM to N such that $\mathrm{PM}=\mathrm{MN}$. Join BE, CE, QN, RN.

Proof : Quadrilaterals ABEC and PQNR are parallelograms because their diagonals bisect each other at D and M respectively.
$\Rightarrow \mathrm{BE}=\mathrm{AC}$ and $\mathrm{QN}=\mathrm{PR}$.
$\Rightarrow \frac{B E}{Q N}=\frac{A C}{P R} \Rightarrow \frac{B E}{Q N}=\frac{A B}{P Q} \quad($ By 1)
i.e., $\frac{A B}{P Q}=\frac{B E}{Q N}$

From (1), $\frac{A B}{P Q}=\frac{A D}{P M}=\frac{2 A D}{2 P M}=\frac{A E}{P N}$
i.e., $\frac{A B}{P Q}=\frac{A E}{P N}$

From (2) and (3), we have

$$
\begin{align*}
& \frac{A B}{P Q}=\frac{B E}{Q N}=\frac{A E}{P N} \\
\Rightarrow & \Delta \mathrm{ABE} \sim \triangle \mathrm{PQN} \Rightarrow \angle 1=\angle 2 \tag{4}
\end{align*}
$$

Similarly, we can prove
$\Rightarrow \triangle \mathrm{ACE} \sim \triangle \mathrm{PRN} \Rightarrow \angle 3=\angle 4$
Adding (4) and (5), we have
$\Rightarrow \angle 1+\angle 3=\angle 2+\angle 4 \Rightarrow \angle \mathrm{~A}=\angle \mathrm{P}$
$\Rightarrow \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ (SAS similarity criterion)
Q13. D is a point on the side BC of a triangle ABC such that $\angle \mathrm{ADC}=\angle \mathrm{BAC}$. Show that $\mathrm{CA}^{2}=$ CB. CD.

Sol. For $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DAC}$, We have

$$
\begin{aligned}
& \angle \mathrm{BAC}=\angle \mathrm{ADC} \\
\text { and } & \angle \mathrm{ACB}=\angle \mathrm{DCA} \\
\Rightarrow & \triangle \mathrm{ABC} \sim \triangle \mathrm{DAC} \\
\Rightarrow & \frac{\mathrm{AC}}{\mathrm{DC}}=\frac{\mathrm{CB}}{\mathrm{CA}} \\
\Rightarrow & \frac{\mathrm{CA}}{\mathrm{CD}}=\frac{\mathrm{CB}}{\mathrm{CA}} \\
\Rightarrow & \mathrm{CA} \times \mathrm{CA}=\mathrm{CB} \text { similarity }=\angle \mathrm{C}) \\
\Rightarrow & \mathrm{CA}^{2}=\mathrm{CB} \times \mathrm{CD}
\end{aligned}
$$

Q14. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and QR and median PM of $\triangle \mathrm{PQR}$ (see figure). Show that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.

Sol.

As, $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A D}{P M}$ (Given)
So, $\frac{A B}{P Q}=\frac{B D}{Q M}=\frac{A D}{P M}$

$$
\left\{\because \frac{A B}{P Q}=\frac{\frac{1}{2} B C}{\frac{1}{2} Q R}=\frac{B D}{Q M}\right\}
$$

\therefore By SSS similarity,

$$
\triangle \mathrm{ABD} \sim \triangle \mathrm{PQM}
$$

As, $\triangle \mathrm{ABD} \sim \triangle \mathrm{PQM}$.
$\therefore \quad \angle \mathrm{ABD}=\angle \mathrm{PQM}$
Now, In $\triangle A B C$ and $\triangle P Q R$

$$
\frac{A B}{P Q}=\frac{B C}{Q R} \text { (Given) }
$$

$\angle \mathrm{ABC}=\angle \mathrm{PQR}$ (Proved above)
\therefore By SAS similarity
$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.

Q15. A vertical stick of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Sol.

$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$\therefore \quad \frac{A B}{P Q}=\frac{B C}{Q R}$
$\frac{6}{x}=\frac{4}{28}$
$\Rightarrow \mathrm{x}=42 \mathrm{~m}$

Q16. If AD and PM are medians of triangles ABC and PQR , respectively where $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$, prove that $\frac{A B}{P Q}=\frac{A D}{P M}$.

Sol. $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ (Given)

$$
\begin{align*}
\Rightarrow & \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}} ; \\
& \angle \mathrm{A}=\angle \mathrm{P}, \angle \mathrm{~B}=\angle \mathrm{Q}, \angle \mathrm{C}=\angle \mathrm{R} \tag{1}
\end{align*}
$$

Now, $\quad \mathrm{BD}=\mathrm{CD}=\frac{1}{2} \mathrm{BC}$
and $\quad \mathrm{QM}=\mathrm{RM}=\frac{1}{2} \mathrm{QR}$
$(\because \mathrm{D}$ is mid-point of BC and M is mid-point of QR$)$

From (1), $\frac{A B}{P Q}=\frac{B C}{Q R} \Rightarrow \frac{A B}{P Q}=\frac{2 B D}{2 Q M}(B y$ (2))
$\Rightarrow \frac{A B}{P Q}=\frac{B D}{Q M}$
Thus, we have $\frac{A B}{P Q}=\frac{B D}{Q M}$
and $\angle \mathrm{ABD}=\angle \mathrm{PQM} \quad(\because \angle \mathrm{B}=\angle \mathrm{Q})$
$\Rightarrow \triangle \mathrm{ABD} \sim \triangle \mathrm{PQM} \quad$ (By SAS similarity criterion)
$\Rightarrow \frac{A B}{P Q}=\frac{A D}{P M}$

Ex - 6.4

Q1. Let $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and their areas be $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$ respectively. If $\mathrm{EF}=15.4 \mathrm{~cm}$, find BC.

Sol. $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$ (Given)

$$
\begin{aligned}
& \Rightarrow \frac{\operatorname{ar}(A B C)}{\operatorname{ar}(D E F)}=\frac{B C^{2}}{E F^{2}} \quad(B y \text { theorem 6.7) } \\
& \Rightarrow \frac{64}{121}=\frac{B C^{2}}{E F^{2}} \quad \Rightarrow\left\{\frac{B C}{E F}\right\}^{2}=\left\{\frac{8}{11}\right\}^{2} \\
& \Rightarrow \frac{B C}{E F}=\frac{8}{11} \quad \Rightarrow B C=\frac{8}{11} \times E F \\
& \Rightarrow B C=\frac{8}{11} \times 15.4 \mathrm{~cm}=11.2 \mathrm{~cm}
\end{aligned}
$$

Q2. Diagonals of trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. If $A B=2 C D$, find the ratio of the areas of triangles AOB and COD .

Sol.

In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$,
$\angle \mathrm{OAB}=\angle \mathrm{OCD}$ (Alternate interior angles)
$\angle \mathrm{OBA}=\angle \mathrm{ODC}$ (Alternate interior angles)
\therefore By AA, similarity

$$
\triangle \mathrm{AOB} \sim \Delta \mathrm{COD}
$$

So, $\frac{\operatorname{ar} . \triangle A O B}{\operatorname{ar} \cdot \triangle C O D}=\left(\frac{A B}{C D}\right)^{2}$

$$
\begin{aligned}
& =\left(\frac{2}{1}\right)^{2}\{\because \mathrm{AB}=2 \mathrm{CD}\} \\
& =4: 1
\end{aligned}
$$

Q3. In figure, $A B C$ and $D B C$ are two triangles on the same base $B C$. If $A D$ intersects $B C$ at O, show that $\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(D B C)}=\frac{A O}{D O}$.

Sol. Draw $\mathrm{AL} \perp \mathrm{BC}$ and $\mathrm{DM} \perp \mathrm{BC}$ (see figure)
$\Delta \mathrm{OLA} \sim \triangle \mathrm{OMD} \quad$ (AA similarity criterion)

$\Rightarrow \frac{A L}{D M}=\frac{A O}{D O}$
Now, $\quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{\frac{1}{2} \times(B C) \times(A L)}{\frac{1}{2} \times(B C) \times(D M)}$
$=\frac{A L}{D M}=\frac{A O}{D O}$
Hence, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$

Q4. If the areas of two similar triangles are equal, prove that they are congruent.
Sol. Let $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ and area $(\triangle \mathrm{ABC}) \quad=\operatorname{area}(\triangle \mathrm{PQR}) \quad$ (Given)
i.e., $\frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle P Q R)}=1$
$\Rightarrow \frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{C A^{2}}{P R^{2}}=1$
$\Rightarrow \mathrm{AB}=\mathrm{PQ}, \mathrm{BC}=\mathrm{QR}$ and $\mathrm{CA}=\mathrm{PR}$
$\Rightarrow \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$

Q5. D, E and F are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the areas of $\triangle \mathrm{DEF}$ and $\triangle \mathrm{ABC}$.

Sol.

$\mathrm{DF}=\frac{1}{2} \mathrm{BC}, \mathrm{DE}=\frac{1}{2} \mathrm{AC}, \mathrm{EF}=\frac{1}{2} \mathrm{AB}$
[By midpoint theorem]
So, $\frac{D F}{B C}=\frac{D E}{A C}=\frac{E F}{A B}=\frac{1}{2}$
$\therefore \quad \triangle \mathrm{DEF} \sim \triangle \mathrm{CAB}$
So, $\frac{\operatorname{ar} \triangle D E F}{\operatorname{ar} \triangle A B C}=\left(\frac{D E}{A C}\right)^{2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$ or $1: 4$
Q6. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Sol. In figure, $A D$ is a median of $\triangle A B C$ and $P M$ is a median of $\triangle P Q R$. Here, D is mid-point of $B C$ and M is mid-point of QR .
Now, we have $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.

$\Rightarrow \angle \mathrm{B}=\angle \mathrm{Q}$
(Corresponding angles are equal)
Also $\quad \frac{A B}{P Q}=\frac{B C}{Q R}$
(Ratio of corresponding sides are equal)
$\Rightarrow \frac{A B}{P Q}=\frac{2 B D}{2 Q M}$
$(\because D$ is mid-point of $B C$ and M is mid-point of $Q R)$

$$
\begin{equation*}
\Rightarrow \frac{A B}{P Q}=\frac{B D}{Q M} \tag{2}
\end{equation*}
$$

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQM}$

$$
\begin{equation*}
\angle \mathrm{ABD}=\angle \mathrm{PQM} \tag{By1}
\end{equation*}
$$

and $\frac{A B}{P Q}=\frac{B D}{Q M}$
$\Rightarrow \triangle \mathrm{ABD} \sim \Delta \mathrm{PQM}$
(SAS similarity)
$\Rightarrow \frac{A B}{P Q}=\frac{A D}{P M}$
Now, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}} \quad$ (By theorem 6.7)
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A D^{2}}{P M^{2}} \quad\left(\because \frac{A B}{P Q}=\frac{A D}{P M}\right)$

Q7. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Sol. ABCD is a square having sides of length $=\mathrm{a}$.

Then the diagonal $\mathrm{BD}=\mathrm{a} \sqrt{2}$.
We construct equilateral $\Delta \mathrm{s}$ PAB and QBD
$\Rightarrow \quad \triangle \mathrm{PAB} \sim \Delta \mathrm{QBD}$ (Equilateral triangles are similar)
$\Rightarrow \frac{\operatorname{ar}(\triangle P A B)}{\operatorname{ar}(\triangle Q B D)}=\frac{A B^{2}}{B D^{2}}=\frac{a^{2}}{(a \sqrt{2})^{2}}=\frac{1}{2}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{PAB})=\frac{1}{2}$ ar $(\triangle \mathrm{QBD})$.
Tick the correct answer and justify

Q8. ABC and BDE are two equilateral triangles such that D is the mid-point of BC . Ratio of the areas of triangles ABC and BDE is
(1) $2: 1$
(2) $1: 2$
(3) $4: 1$
(4) $1: 4$

Sol.

Since, both are equilateral triangles.
$\triangle \mathrm{ABC} \sim \Delta \mathrm{EBD}$

$$
\frac{\operatorname{ar} \triangle A B C}{\operatorname{ar} \triangle B D E}=\left(\frac{B C}{B D}\right)^{2}=\left(\frac{2}{1}\right)^{2}=4: 1
$$

Q9. Sides of two similar triangles are in the ratio 4:9. Areas of these triangles are in the ratio
(1) $2: 3$
(2) $4: 9$
(3) $81: 16$
(4) $16: 81$

Sol. $\frac{\text { area of } 1^{\text {st }} \Delta}{\text { area of } 2^{\text {nd }} \Delta}=\left(\frac{4}{9}\right)^{2}=\frac{16}{81}$

Ex-6.5

Q1. Sides of some triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
(i) $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$
(ii) $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$
(iii) $50 \mathrm{~cm}, 80 \mathrm{~cm}, 100 \mathrm{~cm}$
(iv) $13 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$

Sol. (i) $(7)^{2}+(24)^{2}=49+576=625=(25)^{2}$
Therefore, given sides $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$ make a right triangle.
(ii) $(6)^{2}+(3)^{2}=36+9=45$
$(8)^{2}=64$
$(6)^{2}+(3)^{2} \neq(8)^{2}$
Therefore, given sides $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$ does not make a right triangle.
(iii) $(50)^{2}+(80)^{2}=2500+6400=8900$
$(100)^{2}=10000$
$(50)^{2}+(80)^{2} \neq 100^{2}$
Therefore, given sides $50 \mathrm{~cm}, 80 \mathrm{~cm}, 100 \mathrm{~cm}$ does not make a right triangle.
(iv) $(12)^{2}+(5)^{2}=144+25=169=(13)^{2}$

Therefore, given sides $13 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$ make a right triangle.
Q2. $P Q R$ is a triangle right angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $\mathrm{PM}^{2}=\mathrm{QM} \times \mathrm{MR}$.

Sol. $\angle 1+\angle 2=\angle 2+\angle 4$

$\Rightarrow \angle 1=\angle 4$
Similarly, $\angle 2=\angle 3$. Now, this gives

$$
\Delta \mathrm{QPM} \sim \Delta \mathrm{PRM}
$$

(AA similarity)
$\Rightarrow \frac{\operatorname{ar}(\triangle Q P M)}{\operatorname{ar}(\Delta P R M)}=\frac{P M^{2}}{R M^{2}}$
(By theorem 6.7)

$$
\begin{aligned}
& \Rightarrow \frac{\frac{1}{2}(Q M) \times(P M)}{\frac{1}{2}(R M) \times(P M)}=\frac{P M^{2}}{R M^{2}}\binom{\text { A rea of a triangle }}{=\frac{1}{2} \times B \text { ase } \times H \text { eight }} \\
& \Rightarrow \frac{Q M}{R M}=\frac{P M^{2}}{R M^{2}} \\
& \Rightarrow P^{2}=Q M \times R M \quad \text { or } \quad \mathrm{PM}^{2}=\mathrm{QM} \times M R
\end{aligned}
$$

Q3. In figure, ABD is a right triangle right angled at A and $\mathrm{AC} \perp \mathrm{BD}$. Show that
(i) $\mathrm{AB}^{2}=\mathrm{BC} \cdot \mathrm{BD}$
(ii) $\mathrm{AC}^{2}=\mathrm{BC} \cdot \mathrm{DC}$
(iii) $\mathrm{AD}^{2}=\mathrm{BD} . \mathrm{CD}$

Sol. In the given figure, we have

$$
\Delta \mathrm{ABC} \sim \Delta \mathrm{DAC} \sim \Delta \mathrm{DBA}
$$

(i) $\triangle \mathrm{ABC} \sim \triangle \mathrm{DBA}$
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B A)}=\frac{A B^{2}}{D B^{2}} \Rightarrow \frac{\frac{1}{2}(B C) \times(A C)}{\frac{1}{2}(B D) \times(A C)}=\frac{A B^{2}}{D B^{2}} \Rightarrow \quad A B^{2}=B C . B D$
(ii) $\triangle \mathrm{ABC} \sim \triangle \mathrm{DAC}$
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D A C)}=\frac{A C^{2}}{D C^{2}} \Rightarrow \frac{\frac{1}{2}(B C) \times(A C)}{\frac{1}{2}(D C) \times(A C)}=\frac{A C^{2}}{D C^{2}} \Rightarrow \quad A C^{2}=B C . D C$
(iii) $\triangle \mathrm{DAC} \sim \triangle \mathrm{DBA}$

$$
\Rightarrow \frac{\operatorname{ar}(\triangle D A C)}{\operatorname{ar}(\triangle D B A)}=\frac{D A^{2}}{D B^{2}} \Rightarrow \frac{\frac{1}{2}(C D) \times(A C)}{\frac{1}{2}(B D) \times(A C)}=\frac{A D^{2}}{B D^{2}} \Rightarrow \quad A D^{2}=B D \cdot C D
$$

Q4. ABC is an isosceles triangle right angled at C. Prove that $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$.

Sol. In $\triangle \mathrm{ABC}, \angle \mathrm{ACB}=90^{\circ}$. We are given that $\triangle \mathrm{ABC}$ is an isosceles triangle.

$$
\begin{align*}
& \Rightarrow \angle \mathrm{A}=\angle \mathrm{B}=45^{\circ} \\
& \Rightarrow \mathrm{AC}=\mathrm{BC} \tag{1}
\end{align*}
$$

By pythagoras theorem, we have

$$
\begin{aligned}
\mathrm{AB}^{2} & =\mathrm{AC}^{2}+\mathrm{BC}^{2} \\
& =\mathrm{AC}^{2}+\mathrm{AC}^{2} \quad\{\because \mathrm{BC}=\mathrm{AC} \text { by }(1)] \\
& =2 \mathrm{AC}^{2}
\end{aligned}
$$

Q5. ABC is an isosceles triangle with $\mathrm{AC}=\mathrm{BC}$. If $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$, prove that ABC is a right triangle.
Sol.

As, $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{AC}^{2}$

$$
=\mathrm{AC}^{2}+\mathrm{BC}^{2} \quad[\because \mathrm{AC}=\mathrm{BC}]
$$

As it satisfy the pythagoran triplet
So, $\triangle \mathrm{ABC}$ is right triangle, right angled at $\angle \mathrm{C}$.

Q6. ABC is an equilateral triangle of side 2 a . Find each of its altitudes.

Sol. Altitude of equilateral triangle
$=\frac{\sqrt{3}}{2} \times$ Side $=\frac{\sqrt{3}}{2} \times 2 \mathrm{a}=\sqrt{3} \mathrm{a}$
Q7. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

Sol. ABCD is a rhombus in which $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=\mathrm{a}$ (say). Its diagonals AC and BD are right bisectors of each other at O .
In $\triangle \mathrm{OAB}, \angle \mathrm{AOB}=90^{\circ}$,
$\mathrm{OA}=\frac{1}{2} \mathrm{AC}$ and $\mathrm{OB}=\frac{1}{2} \mathrm{BD}$

By pythagoras theorem, we have

$$
\begin{aligned}
& \mathrm{OA}^{2}+\mathrm{OB}^{2}=\mathrm{AB}^{2} \\
\Rightarrow & \left(\frac{1}{2} \mathrm{AC}\right)^{2}+\left(\frac{1}{2} \mathrm{BD}\right)^{2}=\mathrm{AB}^{2} \\
\Rightarrow & \mathrm{AC}^{2}+\mathrm{BD}^{2}=4 \mathrm{AB}^{2} \\
\text { or } & 4 \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2} \\
& =\mathrm{AC}^{2}+\mathrm{BD}^{2}
\end{aligned}
$$

Hence proved.

Q8. In figure, O is a point in the interior of a triangle $\mathrm{ABC}, \mathrm{OD} \perp \mathrm{BC}, \mathrm{OE} \perp \mathrm{AC}$ and $\mathrm{OF} \perp \mathrm{AB}$. Show that
(i) $\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}-\mathrm{OF}^{2}$
$=\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}$
(ii) $\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{AE}^{2}+\mathrm{CD}^{2}+\mathrm{BF}^{2}$.

Sol. (i) In right angled $\triangle \mathrm{OFA}$,

$\mathrm{OA}^{2}=\mathrm{OF}^{2}+\mathrm{AF}^{2} \quad$ (Pythagoras theorem)
$\Rightarrow \quad \mathrm{OA}^{2}-\mathrm{OF}^{2}=\mathrm{AF}^{2}$
Similarly, $\quad \mathrm{OB}^{2}-\mathrm{OD}^{2}=\mathrm{BD}^{2}$
and $\quad \mathrm{OC}^{2}-\mathrm{OE}^{2}=\mathrm{CE}^{2}$
Adding (1), (2) and (3), we get

$$
\begin{aligned}
\mathrm{OA}^{2}+\mathrm{OB}^{2} & +\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}-\mathrm{OF}^{2} \\
& =\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2} . \\
\mathrm{OA}^{2}+\mathrm{OB}^{2} & +\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}-\mathrm{OF}^{2} \\
& =\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2} .
\end{aligned}
$$

(ii) We have proved that

Similarly, we can prove that

$$
\begin{align*}
\mathrm{OA}^{2}+\mathrm{OB}^{2} & +\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}-\mathrm{OF}^{2} \\
& =\mathrm{BF}^{2}+\mathrm{CD}^{2}+\mathrm{AE}^{2} . \tag{5}
\end{align*}
$$

From (4) and (5), we have
$\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{AE}^{2}+\mathrm{CD}^{2}+\mathrm{BF}^{2}$.

Q9. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.

Sol. Let $\mathrm{AC}=\mathrm{x}$ metres be the distance of the foot of the ladder from the base of the wall.

$\mathrm{AB}=8 \mathrm{~m}$ (Height of window)
$\mathrm{BC}=10 \mathrm{~m}$ (length of ladder)
Now, $\quad x^{2}+(8)^{2}=(10)^{2}$
$\Rightarrow x^{2}=100-64=36 \Rightarrow x=6$, i.e., $A C=6 m$

Q10. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

Sol. Let AB be the vertical pole of 18 m and AC be the wire of 24 m .
The $\triangle \mathrm{ABC}$, by pythagoras theorem

$$
\begin{aligned}
& \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
& 24^{2}=18^{2}+\mathrm{BC}^{2} \\
& \mathrm{BC}^{2}=252 \\
& \mathrm{BC}=6 \sqrt{7} \mathrm{~m}
\end{aligned}
$$

Q11. An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. How far apart will be the two planes after $1 \frac{1}{2}$ hours?

Sol. The first plane travels distance BC in the direction of north in $1 \frac{1}{2}$ hours at a speed of 1000 $\mathrm{km} / \mathrm{hr}$.
$\therefore \quad \mathrm{BC}=1000 \times \frac{3}{2} \mathrm{~km}=1500 \mathrm{~km}$.

The second plane travels distance BA in the direction of west in $1 \frac{1}{2}$ hours at a speed of 1200 $\mathrm{km} / \mathrm{hr}$.
$\therefore \quad \mathrm{BA}=1200 \times \frac{3}{2} \mathrm{~km}=1800 \mathrm{~km}$.
From right angled $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
\mathrm{AC}^{2} & =\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
& =(1800)^{2}+(1500)^{2} \\
& =3240000+2250000=5490000 \\
\Rightarrow \mathrm{AC} & =\sqrt{5490000} \mathrm{~m} \Rightarrow \mathrm{AC}=300 \sqrt{61} \mathrm{~m}
\end{aligned}
$$

Q12. Two poles of height 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m , find the distance between their tops.

Sol.

Let AD and BE be two poles of height 6 m and 11 m and $\mathrm{AB}=12 \mathrm{~m}$
In $\triangle \mathrm{DEC}$, by pythagoras theorem
$\mathrm{DE}^{2}=\mathrm{CD}^{2}+\mathrm{CE}^{2}$
$\mathrm{DE}^{2}=12^{2}+5^{2} \quad(\mathrm{DC}=\mathrm{AB}=12 \mathrm{~m})$
$\mathrm{DE}=\sqrt{144+25}=\sqrt{169}=13 \mathrm{~m}$
Thus, distance between their tops is 13 m .
Q13. D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angled at C.
Prove that $\mathrm{AE}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{DE}^{2}$.
Sol. In right angled $\triangle \mathrm{ACE}$,

$$
\begin{equation*}
\mathrm{AE}^{2}=\mathrm{CA}^{2}+\mathrm{CE}^{2} \tag{1}
\end{equation*}
$$

and in right angled $\triangle \mathrm{BCD}$,

$$
\begin{equation*}
\mathrm{BD}^{2}=\mathrm{BC}^{2}+\mathrm{CD}^{2} \tag{2}
\end{equation*}
$$

Adding (1) and (2), we get

$$
\begin{aligned}
\mathrm{AE}^{2}+\mathrm{BD}^{2} & \quad=\left(\mathrm{CA}^{2}+\mathrm{CE}^{2}\right)+\left(\mathrm{BC}^{2}+\mathrm{CD}^{2}\right) \\
& =\left(\mathrm{BC}^{2}+\mathrm{CA}^{2}\right)+\left(\mathrm{CD}^{2}+\mathrm{CE}^{2}\right) \\
& =\mathrm{BA}^{2}+\mathrm{DE}^{2} \\
\therefore \quad \mathrm{AE}^{2}+\mathrm{BD}^{2} & =\mathrm{AB}^{2}+\mathrm{DE}^{2}
\end{aligned}
$$

Q14. The perpendicular from A on side $B C$ of a $\triangle A B C$ intersects $B C$ at D such that $D B=3 C D$ (see figure). Prove that $2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}$.

Sol. $\mathrm{DB}=3 \mathrm{CD}$
$\Rightarrow \mathrm{CD}=\frac{1}{4} \mathrm{BC}$
and $\mathrm{DB}=\frac{3}{4} \mathrm{BC}$
In $\triangle \mathrm{ABD}, \quad \mathrm{AB}^{2}=\mathrm{DB}^{2}+\mathrm{AD}^{2}$
In $\triangle \mathrm{ACD}, \quad \mathrm{AC}^{2}=\mathrm{CD}^{2}+\mathrm{AD}^{2}$

Subtracting (3) from (2), we get
$\mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{DB}^{2}-\mathrm{CD}^{2}$
$=\left(\frac{3}{4} B C\right)^{2}-\left(\frac{1}{4} B C\right)^{2}=\frac{9}{16} B C^{2}-\frac{1}{16} B C^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \mathrm{BC}^{2} \Rightarrow \quad 2 \mathrm{AB}^{2}-2 \mathrm{AC}^{2}=\mathrm{BC}^{2} \\
& \Rightarrow 2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}
\end{aligned}
$$

Hence proved.

Q15. In an equailateral triangle $A B C, D$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9 \mathrm{AD}^{2}=7 \mathrm{AB}^{2}$.

Sol. $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=\mathrm{a}$ (say)
$B D=\frac{1}{3} B C=\frac{1}{3} a$
$\Rightarrow \mathrm{CD}=\frac{2}{3} \mathrm{BC}=\frac{2}{3} \mathrm{a}$
$\mathrm{AE} \perp \mathrm{BC}$

$\Rightarrow \mathrm{BE}=\mathrm{EC}=\frac{1}{2} \mathrm{a}$

$$
\mathrm{DE}=\frac{1}{2} \mathrm{a}-\frac{1}{3} \mathrm{a}=\frac{1}{6} \mathrm{a}
$$

$$
\mathrm{AD}^{2}=\mathrm{AE}^{2}+\mathrm{DE}^{2}=\mathrm{AB}^{2}-\mathrm{BE}^{2}+\mathrm{DE}^{2}
$$

$$
=a^{2}-\left(\frac{1}{2} a\right)^{2}+\left(\frac{1}{6} a\right)^{2}
$$

$$
=a^{2}-\frac{1}{4} a^{2}+\frac{1}{36} a^{2}
$$

$$
=\frac{(36-9+1) a^{2}}{36}=\frac{28}{36} a^{2}=\frac{7}{9} A B^{2}
$$

$$
\Rightarrow 9 \mathrm{AD}^{2}=7 \mathrm{AB}^{2}
$$

Q16. In an equailateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

Sol.

Altitude of equilateral $\Delta=\frac{\sqrt{3}}{2}$ side
$h=\frac{\sqrt{3}}{2} a$
$h^{2}=\frac{3}{4} \mathrm{a}^{2}$
$4 h^{2}=3 a^{2}$

Q17. Tick the correct answer and justify: In $\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$. The angle B is :
(1) 120°
(2) 60°
(3) 90°
(4) 45°

Sol. $\mathrm{AB}^{2}=(6 \sqrt{3})^{2}=108$
$\mathrm{BC}^{2}=6^{2}=36$
$\mathrm{AC}^{2}=12^{2}=144$
So, $\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$

$\Delta \mathrm{ABC}$ is right Δ, right angled at B $\angle \mathrm{B}=90^{\circ}$.

