Ex-12.3

NOTE: Unless stated otherwise, use $\pi=\frac{22}{7}$

Q1. Find the area of the shaded region in fig, if
$\mathrm{PQ}=24, \mathrm{PR}=7 \mathrm{~cm}$ and O is the centre of the circle.

Sol. In the figure, $\angle \mathrm{RPQ}=90^{\circ}$
(Angle subtended by a diameter on the circumference)
Therefore, $\triangle R P Q$ is right angled at P,
$\mathrm{RP}=7 \mathrm{~cm}$ and $\mathrm{PQ}=24 \mathrm{~cm}$
Then by Pythagoras Theorem, we have
$\mathrm{QR}^{2}=\mathrm{RP}^{2}+\mathrm{PQ}^{2}$

$$
=(7)^{2}+(24)^{2}=625
$$

$\Rightarrow \mathrm{QR}=25 \mathrm{~cm}$
\therefore The radius of the circle

$$
=\frac{25}{2} \mathrm{~cm}
$$

Now, the area of the shaded region (see figure)

$$
\begin{aligned}
& =\frac{1}{2} \pi \mathrm{r}^{2}-\frac{1}{2} \times \mathrm{RP} \times \mathrm{PQ} \\
& =\left\{\frac{1}{2} \times \frac{22}{7} \times\left(\frac{25}{2}\right)^{2}-\frac{1}{2} \times 7 \times 24\right\} \mathrm{cm}^{2} \\
& =\left\{\frac{6875}{28}-84\right\} \mathrm{cm}^{2}=\frac{4523}{28} \mathrm{~cm}^{2}
\end{aligned}
$$

Q2. Find the area of the shaded region in fig., if radii of the two concentric circles with centre O are 7 cm and 14 cm respectively and $\angle \mathrm{AOC}=40^{\circ}$.

Sol. Radius of the outer circle $=14 \mathrm{~cm}$ and $\theta=40^{\circ}$
\therefore Area of the sector AOC
$=\frac{40^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 14 \times 14 \mathrm{~cm}^{2}$
$=\frac{1}{9} \times 22 \times 2 \times 14 \mathrm{~cm}^{2}=\frac{616}{9} \mathrm{~cm}^{2}$
Radius of the inner circle $=7 \mathrm{~cm}$ and $\theta=40^{\circ}$
\therefore Area of the sector BOD

$$
\begin{aligned}
& =\frac{40^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7 \times 7 \mathrm{~cm}^{2} \\
& =\frac{1}{9} \times 22 \times 7 \mathrm{~cm}^{2}=\frac{154}{9} \mathrm{~cm}^{2}
\end{aligned}
$$

Now, area of the shaded region
= Area of sector AOC - Area of sector BOD
$=\frac{616}{9}-\frac{154}{9} \mathrm{~cm}^{2}=\frac{1}{9}(616-154) \mathrm{cm}^{2}$
$=\frac{1}{9} \times 462 \mathrm{~cm}^{2}=\frac{154}{3} \mathrm{~cm}^{2}$

Q3. Find the area of the shaded region in fig., if $A B C D$ is a square of side 14 cm and $A P D$ and BPC are semicircles.

Sol. The area of the square $\mathrm{ABCD}=(14)^{2} \mathrm{~cm}^{2}=196 \mathrm{~cm}^{2}$
$(\because$ side of the square 14 cm$)$
The sum of the areas of the semicircles APD and BPC
$=2 \times\{$ area of semicircle APD $\}$
(\because the areas of the two semicircles are equal)

$$
=2 \times\left\{\frac{1}{2} \pi r^{2}\right\}=\pi \times\left(\frac{\mathrm{AD}}{2}\right)^{2}=\pi \times\left(\frac{14}{2}\right)^{2}
$$

($\because \mathrm{AD}$ is diameter of the semicircle APD)
$=\frac{22}{7} \times 49 \mathrm{~cm}^{2}=154 \mathrm{~cm}^{2}$
The area of the shaded region
$=$ The area of the square $\mathrm{ABCD}-$ The sum of the areas of the semicircles APD and BPC.
$=196 \mathrm{~cm}^{2}-154 \mathrm{~cm}^{2}=42 \mathrm{~cm}^{2}$
Q4. Find the area of the shaded region in fig., where a circular arc of radius 6 cm has been drawn with vertex O of an equilateral triangle $O A B$ of side
12 cm as centre.

Sol. Area of the circle with radius 6 cm
$=\pi \mathrm{r}^{2}=\frac{22}{7} \times 6 \times 6 \mathrm{~cm}^{2}=\frac{792}{7} \mathrm{~cm}^{2}$
Area of equilateral triangle, having side
$\mathrm{a}=12 \mathrm{~cm}$, is given by
$\frac{\sqrt{3}}{4} \mathrm{a}^{2}=\frac{\sqrt{3}}{4} \times 12 \times 12 \mathrm{~cm}^{2}=36 \sqrt{3} \mathrm{~cm}^{2}$

\because Each angle of an equilateral triangle $=60^{\circ}$
$\therefore \angle \mathrm{AOB}=60^{\circ}$
\therefore Area of sector COD

$$
\begin{aligned}
& =\frac{\theta}{360^{\circ}} \times \pi \mathrm{r}^{2}=\frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 6 \times 6 \mathrm{~cm}^{2} \\
& =\frac{22 \times 6}{7} \mathrm{~cm}^{2}=\frac{132}{7} \mathrm{~cm}^{2}
\end{aligned}
$$

Now, area of the shaded region,
$=[$ Area of the circle $]+[$ Area of the equilateral triangle $]-[$ Area of the sector COD $]$
$=\left[\frac{792}{7}+36 \sqrt{3}-\frac{132}{7}\right] \mathrm{cm}^{2}$
$=\left[\frac{660}{7}+36 \sqrt{3}\right] \mathrm{cm}^{2}$

Q5. From each corner of a square of side 4 cm a quadrant of a circle of radius 1 cm is cut and also a circle of diameter 2 cm is cut as shown in fig. Find the area of the remaining portion of the square.

Sol. Side of the square $=4 \mathrm{~cm}$
$\therefore \quad$ Area of the square $\mathrm{ABCD}=4 \times 4 \mathrm{~cm}^{2}$

$$
=16 \mathrm{~cm}^{2}
$$

\because Each corner has a quadrant circle of radius 1 cm .
\therefore Area of all the 4 quadrant squares

$$
4 \times \frac{1}{4} \pi \mathrm{r}^{2}=\pi \mathrm{r}^{2}=\frac{22}{7} \times 1 \times 1 \mathrm{~cm}^{2}=\frac{22}{7} \mathrm{~cm}^{2}
$$

Diameter of the middle circle $=2 \mathrm{~cm}$
\Rightarrow Radius of the middle circle $=1 \mathrm{~cm}$
\therefore Area of the middle circle

$$
=\pi \mathrm{r}^{2}=\frac{22}{7} \times 1 \times 1 \mathrm{~cm}^{2}=\frac{22}{7} \mathrm{~cm}^{2}
$$

Now, area of the shaded region
$=[$ Area of the square ABCD$]-[($ Area of the 4 quadrant circles $)+($ Area of the middle circle $)]$
$=\left[16 \mathrm{~cm}^{2}\right]-\left[\left(\frac{22}{7}+\frac{22}{7}\right) \mathrm{cm}^{2}\right]$
$=16 \mathrm{~cm}^{2}-2 \times \frac{22}{7} \mathrm{~cm}^{2}$
$=16 \mathrm{~cm}^{2}-\frac{44}{7} \mathrm{~cm}^{2}=\frac{112-44}{7} \mathrm{~cm}^{2}=\frac{68}{7} \mathrm{~cm}^{2}$.

Q6. In a circular table cover of radius 32 cm , a design is formed leaving an equilateral triangle ABC
in the middle as shown in fig. Find the area of the design.

Sol. O is the centre of the circular table cover and radius $=32 \mathrm{~cm} . \Delta \mathrm{ABC}$ is equilateral. Join $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}$.

Now, $\angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{COA}=120^{\circ}$
In $\triangle \mathrm{OBC}$, we have $\mathrm{OB}=\mathrm{OC}$
Draw $\mathrm{OM} \perp \mathrm{BC}$.
$\Rightarrow \angle \mathrm{BOM}=\angle \mathrm{COM}=60^{\circ}$
($\because \Delta \mathrm{OMB} \cong \Delta \mathrm{OMC}$ by RHS congruence)
Now, $\frac{B M}{O B}=\sin 60^{\circ}$
$\Rightarrow \frac{B M}{32}=\frac{\sqrt{3}}{2}$
$\Rightarrow \mathrm{BM}=16 \sqrt{3} \mathrm{~cm}$

Then, $\mathrm{BC}=2 \times \mathrm{BM}$
$=32 \sqrt{3} \mathrm{~cm}$
Thus, the side of the equilateral triangle $\mathrm{ABC}=32 \sqrt{3} \mathrm{~cm}$
The area of the shaded region (designed)
$=$ The area of circle - area of $\triangle \mathrm{ABC}$
$=\left\{\pi \times(32)^{2}-\frac{\sqrt{3}}{4} \times(32 \sqrt{3})^{2}\right\} \mathrm{cm}^{2}$
$=\left\{\frac{22}{7} \times 32 \times 32-\frac{\sqrt{3}}{4} \times 32 \times 32 \times 3\right\} \mathrm{cm}^{2}=\left\{\frac{22528}{7}-768 \sqrt{3}\right\} \mathrm{cm}^{2}$

Q7. In fig., ABCD is a square of side 14 cm . With centres $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D , four circles are drawn such that each circle touch externally two of the remaining three circles. Find the area of the shaded region.

Sol. Side of the square $\mathrm{ABCD}=14 \mathrm{~cm}$
$\therefore \quad$ Area of the sqaure $\mathrm{ABCD}=14 \times 14 \mathrm{~cm}^{2}$

$$
=196 \mathrm{~cm}^{2}
$$

\because Circles touch each other
Radius of the circle $=\frac{14}{2}=7 \mathrm{~cm}$

Now, area of a sector of radius 7 cm and sector angle θ as 90°
$=\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7 \times 7 \mathrm{~cm}^{2}=\frac{11 \times 7}{2} \mathrm{~cm}^{2}$
Area of 4 sectors
$=4 \times\left[\frac{11 \times 7}{2}\right]=2 \times 11 \times 7 \mathrm{~cm}^{2}=154 \mathrm{~cm}^{2}$
Area of the shaded region $=$ [Area of the square ABCD$]-$ [Area of the 4 sectors]
$=196 \mathrm{~cm}^{2}-154 \mathrm{~cm}^{2}=42 \mathrm{~cm}^{2}$

Q8. Fig. depicts a racing track whose left and right ends are semicircular.

The distance between the two inner parallel line segments is 60 m and they are each 106 m long. If the track is 10 m wide, find:
(i) the distance around the track along its inneredge
(ii) the area of the track.

Sol. (i) The distance around the track along the inner edge (as seen from figure)

$=$ Perimeter of APB +BC

+ Perimeter CQD + AD
$=\{\pi \times 30+106+\pi \times 30+106\} \mathrm{m}$
$=\{60 \pi+212\} \mathrm{m}$
$=\left\{60 \times \frac{22}{7}+212\right\}=\frac{2804}{7} \mathrm{~m}$
(ii) Area of region $\mathrm{I}=\frac{1}{2} \pi \times(40)^{2}-\frac{1}{2} \pi \times(30)^{2}$
$\{\because$ outer radius $=30 \mathrm{~m}+10 \mathrm{~m}=40 \mathrm{~m}\}$
$=\frac{1}{2} \pi \times 700 \mathrm{~m}^{2}=\frac{1}{2} \times \frac{22}{7} \times 700 \mathrm{~m}^{2}$
$=1100 \mathrm{~m}^{2}$
Similarly, area of the region II $=1100 \mathrm{~m}^{2}$
Area of the region III ($106 \mathrm{~m} \times 10 \mathrm{~m}$ rectangle)
$=106 \times 10=1060 \mathrm{~m}^{2}$
Similarly, the area of the region IV $=1060 \mathrm{~m}^{2}$
Then, the total area of the track
$=2 \times 1100 \mathrm{~m}^{2}+2 \times 1060 \mathrm{~m}^{2}$
$=(2200+2120) \mathrm{m}^{2}=4320 \mathrm{~m}^{2}$

Q9. In fig., AB and CD are two diameters of a circle (with centre O) perpendicular to each other and OD is the diameter of the smaller circle. If $\mathrm{OA}=7 \mathrm{~cm}$. find the area of the shaded region.

Sol. O is the centre of the circle, $\mathrm{OA}=7 \mathrm{~cm}$
$\Rightarrow \mathrm{AB}=2(\mathrm{OA})=2 \times 7=14 \mathrm{~cm}$

$$
\mathrm{OC}=\mathrm{OA}=7 \mathrm{~cm}
$$

$\because \mathrm{AB}$ and CD are perpendicular to each other
$\Rightarrow \mathrm{OC} \perp \mathrm{AB}$
\therefore Area of $\triangle \mathrm{ABC}$
$=\frac{1}{2} \times \mathrm{AB} \times \mathrm{OC}=\frac{1}{2} \times 14 \mathrm{~cm} \times 7 \mathrm{~cm}=49 \mathrm{~cm}^{2}$
Again $\mathrm{OD}=\mathrm{OA}=7 \mathrm{~cm}$
\therefore Radius of the small circle
$=\frac{1}{2}(\mathrm{OD})=\frac{1}{2} \times 7=\frac{7}{2} \mathrm{~cm}$
\therefore Area of the small circle $=\pi r^{2}$
$=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \mathrm{~cm}^{2}=\frac{11 \times 7}{2}=\frac{77}{2} \mathrm{~cm}^{2}$
Radius of the big circle $=\frac{14}{2} \mathrm{~cm}=7 \mathrm{~cm}$
Area of the semi-circle $\mathrm{OACB}=\frac{1}{2} \pi \mathrm{r}^{2}$
$=\frac{1}{2}\left(\frac{22}{7} \times 7 \times 7\right) \mathrm{cm}^{2}=11 \times 7 \mathrm{~cm}^{2}=77 \mathrm{~cm}^{2}$
Now, Area of the shaded region
$=[$ Area of the small circle $]+[$ Area of the big semi-circle OABC] $-[$ Area of $\triangle \mathrm{ABC}]$
$=\frac{77}{2} \mathrm{~cm}^{2}+77 \mathrm{~cm}^{2}-49 \mathrm{~cm}^{2}$
$=\frac{77+154-98}{2} \mathrm{~cm}^{2}$
$=\frac{231-98}{2} \mathrm{~cm}^{2}=\frac{133}{2} \mathrm{~cm}^{2}=66.5 \mathrm{~cm}^{2}$

Q10. The area of an equilateral triangle ABC is $17320.5 \mathrm{~cm}^{2}$. With each vertex of the triangle as centre, a circle is drawn with radius equal to half the length of the side of the triangle. Find the area of the
shaded region. (Use $\pi=3.14$ and $\sqrt{3}=1.73205$)

Sol. Area of the $\triangle \mathrm{ABC}$ (equilateral) $=17320.5 \mathrm{~cm}^{2}$
Let the side of the equilateral $\triangle \mathrm{ABC}$ be x cm .

Then, $\quad \frac{\sqrt{3}}{4} \times x^{2}=17320.5$
$\Rightarrow \frac{1.73205}{4} \times x^{2}=17320.5(\because \sqrt{3}=1.73205)$
$\Rightarrow \mathrm{x}^{2}=40000 \Rightarrow \mathrm{x}=200 \mathrm{~cm}$
Then, radius of each circle $=100 \mathrm{~cm}$.
Area of the sector APR
$=\frac{60}{360} \times \pi \times(100)^{2} \mathrm{~cm}^{2}=\frac{\pi}{6} \times 10000 \mathrm{~cm}^{2}$
Similarly, area of the sector $\mathrm{BPQ}=$ area of the sector CQR

$$
=\frac{\pi}{6} \times 10000 \mathrm{~cm}^{2}
$$

Total area of regions I, II and III (i.e., non-shaded region of $\triangle \mathrm{ABC}$)
$=3 \times \frac{\pi}{6} \times 10000 \mathrm{~cm}^{2}=\frac{1}{2} \times 3.14 \times 10000 \mathrm{~cm}^{2}$
$=15700 \mathrm{~cm}^{2}$
Then, the required area of the shaded region of $\triangle \mathrm{ABC}$
$=17320.5 \mathrm{~cm}^{2}-15700 \mathrm{~cm}^{2}=1620.5 \mathrm{~cm}^{2}$

Q11. On a square handkerchief, nine circular designs each of radius 7 cm are made. Find the area of the remaining portion of the handkerchief.

Sol. \because The circles touch each other.
\therefore The side of the square ABCD
$=3 \times$ diameter of a circle
$=3 \times(2 \times$ radius of a circle $)=3 \times(2 \times 7 \mathrm{~cm})$

$$
=42 \mathrm{~cm}
$$

\Rightarrow Area of the square $\mathrm{ABCD}=42 \times 42 \mathrm{~cm}^{2}$

$$
=1764 \mathrm{~cm}^{2} .
$$

Now, area of one circle $=\pi r^{2}$
$\Rightarrow \frac{22}{7} \times 7 \times 7 \mathrm{~cm}^{2}=154 \mathrm{~cm}^{2}$
\because There are 9 circles
\therefore Total area of 9 circles $=154 \times 9=1386 \mathrm{~cm}^{2}$
\therefore Area of the remaining portion of the handkerchief

$$
=(1764-1386) \mathrm{cm}^{2}=378 \mathrm{~cm}^{2} .
$$

Q12. In fig., OACB is a quadrant of a circle with centre O and radius 3.5 cm . If $\mathrm{OD}=2 \mathrm{~cm}$, find the area of the (i) quadrant OACB, (ii) shaded region.

Sol. (i) Area of the quadrant $\mathrm{OACB}\left(\right.$ radius $\left.=\frac{7}{2} \mathrm{~cm}\right)$

$$
\begin{aligned}
& =\frac{1}{4} \times \pi \times \mathrm{r}^{2}=\frac{1}{4} \times \frac{22}{7} \times\left(\frac{7}{2}\right)^{2} \mathrm{~cm}^{2} \\
& =\frac{1}{4} \times \frac{22}{7} \times \frac{49}{4} \mathrm{~cm}^{2}=\frac{11 \times 7}{8} \mathrm{~cm}^{2} \\
& =\frac{77}{8} \mathrm{~cm}^{2}
\end{aligned}
$$

(ii) In right angled $\triangle \mathrm{OBD}$,
$\mathrm{OB}=\frac{7}{2} \mathrm{~cm}, \mathrm{OD}=2 \mathrm{~cm}$
The area of $\triangle \mathrm{OBD}=\frac{1}{2} \times \mathrm{OB} \times \mathrm{OD}$
$=\frac{1}{2} \times \frac{7}{2} \times 2 \mathrm{~cm}^{2}=\frac{7}{2} \mathrm{~cm}^{2}$
Then area of the shaded region $=$ The area of quadrant OACB - The area of $\triangle \mathrm{OBD}$

$$
=\frac{77}{8} \mathrm{~cm}^{2}-\frac{7}{2} \mathrm{~cm}^{2}=\frac{77-28}{8} \mathrm{~cm}^{2}=\frac{49}{8} \mathrm{~cm}^{2}
$$

Q13. In fig., a square $O A B C$ is inscribed in a quadrant $O P B Q$. If $O A=20 \mathrm{~cm}$, find the area of the shaded region. (Use $\pi=3.14$)

Sol. OABC is a square such that its side $\mathrm{OA}=20 \mathrm{~cm}$
$\therefore \mathrm{OA}=20 \mathrm{~cm}$
$\therefore \mathrm{OB}^{2}=\mathrm{OA}^{2}+\mathrm{AB}^{2}$
$\therefore \mathrm{OB}^{2}=20^{2}+20^{2}$
$=400+400=800$
$\mathrm{OB}=\sqrt{800}=20 \sqrt{2} \mathrm{~cm}$

Now, area of the quadrant $\mathrm{OPBQ}=\frac{1}{4} \pi \mathrm{r}^{2}$
$=\frac{1}{4} \times \frac{314}{100} \times 800 \mathrm{~cm}^{2}=314 \times 2=628 \mathrm{~cm}^{2}$
Area of the square $\mathrm{OABC}=20 \times 20 \mathrm{~cm}^{2}$

$$
=400 \mathrm{~cm}^{2}
$$

\therefore Area of the shaded region $=$ Area of the quadrant OPBQ - Area of the square OABC
$=628 \mathrm{~cm}^{2}-400 \mathrm{~cm}^{2}=228 \mathrm{~cm}^{2}$

Q14. AB and CD are respectively arcs of two concentric circles of radii 21 cm and 7 cm and centre
O. If $\angle \mathrm{AOB}=30^{\circ}$, find the area of the shaded region.

Sol. Radius of bigger circle $\mathrm{R}=21 \mathrm{~cm}$ and sector angle $\theta=30^{\circ}$
\therefore Area of the sector OAB
$=\frac{30^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 21 \times 21 \mathrm{~cm}^{2}$
$=\frac{11 \times 21}{2} \mathrm{~cm}^{2}=\frac{231}{2} \mathrm{~cm}^{2}$
Again, radius of the smaller circle, $\mathrm{r}=7 \mathrm{~cm}$
Also, the sector angle is 30°
\therefore Area of the sector OCD

$$
=\frac{30^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7 \times 7 \mathrm{~cm}^{2}=\frac{77}{6} \mathrm{~cm}^{2}
$$

\therefore Area of the shaded region $=$ Area of the sector OAB - Area of the sector OCD

$$
\begin{aligned}
& =\left[\frac{231}{2}-\frac{77}{6}\right] \mathrm{cm}^{2}=\frac{693-77}{6} \mathrm{~cm}^{2} \\
& =\frac{616}{6} \mathrm{~cm}^{2}=\frac{308}{3} \mathrm{~cm}^{2}
\end{aligned}
$$

Q15. In fig., ABC is a quadrant of a circle of radius 14 cm and a semicircle is drawn with BC as diameter. Find the area of the shaded region.

Sol. $B C=\sqrt{(14)^{2}+(14)^{2}}=14 \sqrt{2} \mathrm{~cm}$

Area of region II $=$ Area of sector ABC

- Area of $\triangle \mathrm{ABC}=\left\{\frac{1}{4} \pi \times(14)^{2}-\frac{1}{2} \times 14 \times 14\right\} \mathrm{cm}^{2}$
$=\left\{\frac{1}{4} \times \frac{22}{7} \times 196-98\right\} \mathrm{cm}^{2}=56 \mathrm{~cm}^{2}$
The area of the shaded region III $=$ The area of the semicircle drawn on BC as diameter The area of region II
$=\left\{\frac{1}{2} \pi \times\left(\frac{14 \sqrt{2}}{2}\right)^{2}-56\right\} \mathrm{cm}^{2}$
$=\left\{\frac{1}{2} \times \frac{22}{7} \times 98-56\right\} \mathrm{cm}^{2}$
$=\{154-56\} \mathrm{cm}^{2}=98 \mathrm{~cm}^{2}$

Q16. Calculate the area of the designed region in fig. common between the two quadrants of circles of radius 8 cm each.

Sol. Side of the square $=8 \mathrm{~cm}$
\therefore Area of the square $(\mathrm{ABCD})=8 \times 8 \mathrm{~cm}^{2}$

$$
=64 \mathrm{~cm}^{2}
$$

Now, radius of the quadrant $\mathrm{ADQB}=8 \mathrm{~cm}$
\therefore Area of the quadrant ADQB
$=\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 8 \times 8 \mathrm{~cm}^{2}$
$=\frac{1}{4} \times \frac{22}{7} \times 64 \mathrm{~cm}^{2}=\frac{22 \times 16}{7} \mathrm{~cm}^{2}$
Similarly, area of the quadrant
$\mathrm{BPDC}=\frac{22 \times 16}{7} \mathrm{~cm}^{2}$

Sum of the two quadrant
$=2\left[\frac{22 \times 16}{7}\right] \mathrm{cm}^{2}=\frac{704}{7} \mathrm{~cm}^{2}$
Now, area of design
= [Sum of the area of two quadrant] -
[Area of the square ABCD]
$=\frac{704}{7} \mathrm{~cm}^{2}-64 \mathrm{~cm}^{2}=\frac{704-448}{7} \mathrm{~cm}^{2}$
$=\frac{256}{7} \mathrm{~cm}^{2}$

