Exercise 10.3

Question 1:

Reduce the following equations into slope-intercept form and find their slopes and the y intercepts.
(i) $x+7 y=0$ (ii) $6 x+3 y-5=0$ (iii) $y=0$

Answer
(i) The given equation is $x+7 y=0$.

It can be written as

$$
\begin{equation*}
y=-\frac{1}{7} x+0 \tag{1}
\end{equation*}
$$

This equation is of the form $y=m x+c$, where $m=-\frac{1}{7}$ and $c=0$.
Therefore, equation (1) is in the slope-intercept form, where the slope and the y -
intercept are $-\frac{1}{7}$ and 0 respectively.
(ii) The given equation is $6 x+3 y-5=0$.

It can be written as
$y=\frac{1}{3}(-6 x+5)$
$y=-2 x+\frac{5}{3}$
This equation is of the form $y=m x+c$, where $m=-2$ and $c=\frac{5}{3}$.
Therefore, equation (2) is in the slope-intercept form, where the slope and the y -
intercept are-2 and $\frac{5}{3}$ respectively.
(iii) The given equation is $y=0$.

It can be written as
$y=0 . x+0$
This equation is of the form $y=m x+c$, where $m=0$ and $c=0$.
Therefore, equation (3) is in the slope-intercept form, where the slope and the y intercept are 0 and 0 respectively.

Question 2:

Reduce the following equations into intercept form and find their intercepts on the axes.
(i) $3 x+2 y-12=0$ (ii) $4 x-3 y=6$ (iii) $3 y+2=0$.

Answer
(i) The given equation is $3 x+2 y-12=0$.

It can be written as
$3 x+2 y=12$
$\frac{3 x}{12}+\frac{2 y}{12}=1$
i.e., $\frac{x}{4}+\frac{y}{6}=1$

This equation is of the form $\frac{x}{a}+\frac{y}{b}=1$, where $a=4$ and $b=6$.
Therefore, equation (1) is in the intercept form, where the intercepts on the x and y axes are 4 and 6 respectively.
(ii) The given equation is $4 x-3 y=6$.

It can be written as
$\frac{4 x}{6}-\frac{3 y}{6}=1$
$\frac{2 x}{3}-\frac{y}{2}=1$
i.e., $\frac{x}{\left(\frac{3}{2}\right)}+\frac{y}{(-2)}=1$

This equation is of the form ${ }^{\frac{x}{a}}+\frac{y}{b}=1$, where $a=\frac{3}{2}$ and $b=-2$.

Therefore, equation (2) is in the intercept form, where the intercepts on the x and y axes are $\frac{3}{2}$ and -2 respectively.
(iii) The given equation is $3 y+2=0$.

It can be written as
$3 y=-2$
i.e., $\frac{y}{\left(-\frac{2}{3}\right)}=1$

This equation is of the form $\frac{x}{a}+\frac{y}{b}=1$, where $a=0$ and $b=-\frac{2}{3}$.
Therefore, equation (3) is in the intercept form, where the intercept on the y-axis is $-\frac{2}{3}$ and it has no intercept on the x-axis.

Question 3:

Reduce the following equations into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
(i) $\mathrm{x}-\sqrt{3} \mathrm{y}+8=0$
(ii) $y-2=0$ (iii) $x-y=4$

Answer
(i) The given equation is $x-\sqrt{3} y+8=0$.

It can be reduced as:
$x-\sqrt{3} y=-8$
$\Rightarrow-x+\sqrt{3} y=8$
On dividing both sides by $\sqrt{(-1)^{2}+(\sqrt{3})^{2}}=\sqrt{4}=2$, we obtain

$$
\begin{align*}
& -\frac{x}{2}+\frac{\sqrt{3}}{2} y=\frac{8}{2} \\
& \Rightarrow\left(-\frac{1}{2}\right) x+\left(\frac{\sqrt{3}}{2}\right) y=4 \\
& \Rightarrow x \cos 120^{\circ}+y \sin 120^{\circ}=4 \tag{1}
\end{align*}
$$

Equation (1) is in the normal form.
On comparing equation (1) with the normal form of equation of line $x \cos \omega+y \sin \omega=p$, we obtain $\omega=120^{\circ}$ and $p=4$.

Thus, the perpendicular distance of the line from the origin is 4 , while the angle between the perpendicular and the positive x-axis is 120°.
(ii) The given equation is $y-2=0$.

It can be reduced as $0 . x+1 . y=2$
On dividing both sides by $\sqrt{0^{2}+1^{2}}=1$, we obtain $0 . x+1 . y=2$
$\Rightarrow x \cos 90^{\circ}+y \sin 90^{\circ}=2$
Equation (1) is in the normal form.
On comparing equation (1) with the normal form of equation of line $x \cos \omega+y \sin \omega=p$, we obtain $\omega=90^{\circ}$ and $p=2$.
Thus, the perpendicular distance of the line from the origin is 2 , while the angle between the perpendicular and the positive x-axis is 90°.
(iii) The given equation is $x-y=4$.

It can be reduced as $1 . x+(-1) y=4$
On dividing both sides by $\sqrt{1^{2}+(-1)^{2}}=\sqrt{2}$, we obtain
$\frac{1}{\sqrt{2}} x+\left(-\frac{1}{\sqrt{2}}\right) y=\frac{4}{\sqrt{2}}$
$\Rightarrow \mathrm{x} \cos \left(2 \pi-\frac{\pi}{4}\right)+\mathrm{y} \sin \left(2 \pi-\frac{\pi}{4}\right)=2 \sqrt{2}$
$\Rightarrow \mathrm{x} \cos 315^{\circ}+\mathrm{y} \sin 315^{\circ}=2 \sqrt{2}$
Equation (1) is in the normal form.
On comparing equation (1) with the normal form of equation of line
$x \cos \omega+y \sin \omega=p$, we obtain $\omega=315^{\circ}$ and $\mathrm{p}=2 \sqrt{2}$.

Thus, the perpendicular distance of the line from the origin is $2 \sqrt{2}$, while the angle between the perpendicular and the positive x-axis is 315°.

Question 4:

Find the distance of the point $(-1,1)$ from the line $12(x+6)=5(y-2)$.
Answer
The given equation of the line is $12(x+6)=5(y-2)$.
$\Rightarrow 12 x+72=5 y-10$
$\Rightarrow 12 x-5 y+82=0$
On comparing equation (1) with general equation of line $A x+B y+C=0$, we obtain $A=$ $12, B=-5$, and $C=82$.
It is known that the perpendicular distance (d) of a line $A x+B y+C=0$ from a point
$\left(x_{1}, y_{1}\right)$ is given by $d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$.
The given point is $\left(x_{1}, y_{1}\right)=(-1,1)$.
Therefore, the distance of point $(-1,1)$ from the given line
$=\frac{|12(-1)+(-5)(1)+82|}{\sqrt{(12)^{2}+(-5)^{2}}}$ units $=\frac{|-12-5+82|}{\sqrt{169}}$ units $=\frac{|65|}{13}$ units $=5$ units

Question 5:

Find the points on the x-axis, whose distances from the line $\frac{x}{3}+\frac{y}{4}=1$ are 4 units. Answer
The given equation of line is

$$
\begin{align*}
& \frac{x}{3}+\frac{y}{4}=1 \\
& \text { or, } 4 x+3 y-12=0 \tag{1}
\end{align*}
$$

On comparing equation (1) with general equation of line $A x+B y+C=0$, we obtain $A=$ $4, B=3$, and $C=-12$.

Let $(a, 0)$ be the point on the x-axis whose distance from the given line is 4 units.

It is known that the perpendicular distance (d) of a line $A x+B y+C=0$ from a point
$\left(x_{1}, y_{1}\right)$ is given by $d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$.
Therefore,
$4=\frac{|4 a+3 \times 0-12|}{\sqrt{4^{2}+3^{2}}}$
$\Rightarrow 4=\frac{|4 a-12|}{5}$
$\Rightarrow|4 a-12|=20$
$\Rightarrow \pm(4 a-12)=20$
$\Rightarrow(4 a-12)=20$ or $-(4 a-12)=20$
$\Rightarrow 4 a=20+12$ or $4 a=-20+12$
$\Rightarrow a=8$ or -2
Thus, the required points on the x-axis are $(-2,0)$ and $(8,0)$.

Question 6:

Find the distance between parallel lines
(i) $15 x+8 y-34=0$ and $15 x+8 y+31=0$
(ii) $I(x+y)+p=0$ and $I(x+y)-r=0$

Answer

It is known that the distance (d) between parallel lines $A x+B y+C_{1}=0$ and $A x+B y+$
$C_{2}=0$ is given by $d=\frac{\left|C_{1}-C_{2}\right|}{\sqrt{A^{2}+B^{2}}}$.
(i) The given parallel lines are $15 x+8 y-34=0$ and $15 x+8 y+31=0$.

Here, $A=15, B=8, C_{1}=-34$, and $C_{2}=31$.
Therefore, the distance between the parallel lines is
$d=\frac{\left|C_{1}-C_{2}\right|}{\sqrt{A^{2}+B^{2}}}=\frac{|-34-31|}{\sqrt{(15)^{2}+(8)^{2}}}$ units $=\frac{|-65|}{17}$ units $=\frac{65}{17}$ units
(ii) The given parallel lines are $I(x+y)+p=0$ and $I(x+y)-r=0$.
$l x+l y+p=0$ and $l x+l y-r=0$
Here, $A=I, B=I, C_{1}=p$, and $C_{2}=-r$.

Therefore, the distance between the parallel lines is

$$
d=\frac{\left|C_{1}-C_{2}\right|}{\sqrt{A^{2}+B^{2}}}=\frac{|p+r|}{\sqrt{l^{2}+l^{2}}} \text { units }=\frac{|p+r|}{\sqrt{2 l^{2}}} \text { units }=\frac{|p+r|}{l \sqrt{2}} \text { units }=\frac{1}{\sqrt{2}}\left|\frac{p+r}{l}\right| \text { units }
$$

Question 7:

Find equation of the line parallel to the line $3 x-4 y+2=0$ and passing through the point $(-2,3)$.
Answer
The equation of the given line is
$3 x-4 y+2=0$
or $y=\frac{3 x}{4}+\frac{2}{4}$
or $y=\frac{3}{4} x+\frac{1}{2}$, which is of the form $y=m x+c$
\therefore Slope of the given line $=\frac{3}{4}$
It is known that parallel lines have the same slope.
\therefore Slope of the other line $=m=\frac{3}{4}$
Now, the equation of the line that has a slope of $\frac{3}{4}$ and passes through the point $(-2,3)$ is

$$
(y-3)=\frac{3}{4}\{x-(-2)\}
$$

$4 y-12=3 x+6$
i.e., $3 x-4 y+18=0$

Question 8:

Find equation of the line perpendicular to the line $x-7 y+5=0$ and having x intercept 3.

Answer
The given equation of line is $x-7 y+5=0$.

Or, $y=\frac{1}{7} x+\frac{5}{7}$, which is of the form $y=m x+c$
\therefore Slope of the given line $=\frac{1}{7}$

The slope of the line perpendicular to the line having a slope of $\frac{1}{7}$ is $m=-\frac{1}{\left(\frac{1}{7}\right)}=-7$

The equation of the line with slope -7 and x-intercept 3 is given by
$y=m(x-d)$
$\Rightarrow y=-7(x-3)$
$\Rightarrow y=-7 x+21$
$\Rightarrow 7 x+y=21$

Question 9:

Find angles between the lines $\sqrt{3} x+y=1$ and $x+\sqrt{3} y=1$
Answer
The given lines are $\sqrt{3} x+y=1$ and $x+\sqrt{3} y=1$.
$y=-\sqrt{3} x+1$
\ldots (1) and $y=-\frac{1}{\sqrt{3}} x+\frac{1}{\sqrt{3}}$

The slope of line (1) is $m_{1}=-\sqrt{3}$, while the slope of line (2) is $m_{2}=-\frac{1}{\sqrt{3}}$.
The acute angle i.e., θ between the two lines is given by

$$
\begin{aligned}
& \tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& \tan \theta=\left|\frac{-\sqrt{3}+\frac{1}{\sqrt{3}}}{1+(-\sqrt{3})\left(-\frac{1}{\sqrt{3}}\right)}\right| \\
& \tan \theta=\left|\frac{\frac{-3+1}{\sqrt{3}}}{1+1}\right|=\left|\frac{-2}{2 \times \sqrt{3}}\right| \\
& \tan \theta=\frac{1}{\sqrt{3}} \\
& \theta=30^{\circ}
\end{aligned}
$$

Thus, the angle between the given lines is either 30° or $180^{\circ}-30^{\circ}=150^{\circ}$.

Question 10:

The line through the points $(h, 3)$ and $(4,1)$ intersects the line $7 x-9 y-19=0$. at right angle. Find the value of h.

Answer
The slope of the line passing through points $(h, 3)$ and $(4,1)$ is

$$
m_{1}=\frac{1-3}{4-h}=\frac{-2}{4-h}
$$

The slope of line $7 x-9 y-19=0$ or $\quad y=\frac{7}{9} x-\frac{19}{9} \quad m_{2}=\frac{7}{9}$.
It is given that the two lines are perpendicular.
$\therefore m_{1} \times m_{2}=-1$
$\Rightarrow\left(\frac{-2}{4-h}\right) \times\left(\frac{7}{9}\right)=-1$
$\Rightarrow \frac{-14}{36-9 h}=-1$
$\Rightarrow 14=36-9 h$
$\Rightarrow 9 h=36-14$
$\Rightarrow h=\frac{22}{9}$
Thus, the value of h is $\frac{22}{9}$.

Question 11:

Prove that the line through the point $\left(x_{1}, y_{1}\right)$ and parallel to the line $\mathrm{A} x+\mathrm{B} y+\mathrm{C}=0$ is A $\left(x-x_{1}\right)+B\left(y-y_{1}\right)=0$.
Answer
The slope of line $\mathrm{A} x+\mathrm{B} y+\mathrm{C}=0$ or $\quad y=\left(\frac{-\mathrm{A}}{\mathrm{B}}\right) x+\left(\frac{-\mathrm{C}}{\mathrm{B}}\right)$ is $m=-\frac{\mathrm{A}}{\mathrm{B}}$
It is known that parallel lines have the same slope.
\therefore Slope of the other line $=m=-\frac{\mathrm{A}}{\mathrm{B}}$
The equation of the line passing through point (x_{1}, y_{1}) and having a slope $m=-\frac{\mathrm{A}}{\mathrm{B}}$ is

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-y_{1}=-\frac{\mathrm{A}}{\mathrm{~B}}\left(x-x_{1}\right)
\end{aligned}
$$

$\mathrm{B}\left(y-y_{1}\right)=-\mathrm{A}\left(x-x_{1}\right)$
$\mathrm{A}\left(x-x_{1}\right)+\mathrm{B}\left(y-y_{1}\right)=0$
Hence, the line through point $\left(x_{1}, y_{1}\right)$ and parallel to line $\mathrm{A} x+\mathrm{B} y+\mathrm{C}=0$ is
$\mathrm{A}\left(x-x_{1}\right)+\mathrm{B}\left(y-y_{1}\right)=0$

Question 12:

Two lines passing through the point $(2,3)$ intersects each other at an angle of 60°. If slope of one line is 2 , find equation of the other line.
Answer
It is given that the slope of the first line, $m_{1}=2$.
Let the slope of the other line be m_{2}.
The angle between the two lines is 60°.

$$
\begin{aligned}
& \therefore \tan 60^{\circ}=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& \Rightarrow \sqrt{3}=\left|\frac{2-m_{2}}{1+2 m_{2}}\right| \\
& \Rightarrow \sqrt{3}= \pm\left(\frac{2-m_{2}}{1+2 m_{2}}\right) \\
& \Rightarrow \sqrt{3}=\frac{2-m_{2}}{1+2 m_{2}} \text { or } \sqrt{3}=-\left(\frac{2-m_{2}}{1+2 m_{2}}\right) \\
& \Rightarrow \sqrt{3}\left(1+2 m_{2}\right)=2-m_{2} \text { or } \sqrt{3}\left(1+2 m_{2}\right)=-\left(2-m_{2}\right) \\
& \Rightarrow \sqrt{3}+2 \sqrt{3} m_{2}+m_{2}=2 \text { or } \sqrt{3}+2 \sqrt{3} m_{2}-m_{2}=-2 \\
& \Rightarrow \sqrt{3}+(2 \sqrt{3}+1) m_{2}=2 \text { or } \sqrt{3}+(2 \sqrt{3}-1) m_{2}=-2 \\
& \Rightarrow m_{2}=\frac{2-\sqrt{3}}{(2 \sqrt{3}+1)} \text { or } m_{2}=\frac{-(2+\sqrt{3})}{(2 \sqrt{3}-1)}
\end{aligned}
$$

$$
\text { Case I : } \quad m_{2}=\left(\frac{2-\sqrt{3}}{2 \sqrt{3}+1}\right)
$$

The equation of the line passing through point $(2,3)$ and having a slope of $\frac{(2-\sqrt{3})}{(2 \sqrt{3}+1)}$ is

$$
\begin{aligned}
& (y-3)=\frac{2-\sqrt{3}}{2 \sqrt{3}+1}(x-2) \\
& (2 \sqrt{3}+1) y-3(2 \sqrt{3}+1)=(2-\sqrt{3}) x-2(2-\sqrt{3}) \\
& (\sqrt{3}-2) x+(2 \sqrt{3}+1) y=-4+2 \sqrt{3}+6 \sqrt{3}+3 \\
& (\sqrt{3}-2) x+(2 \sqrt{3}+1) y=-1+8 \sqrt{3}
\end{aligned}
$$

In this case, the equation of the other line is $(\sqrt{3}-2) x+(2 \sqrt{3}+1) y=-1+8 \sqrt{3}$.
Case II : $\quad m_{2}=\frac{-(2+\sqrt{3})}{(2 \sqrt{3}-1)}$
The equation of the line passing through point $(2,3)$ and having a slope of $\frac{-(2+\sqrt{3})}{(2 \sqrt{3}-1)}$ is

$$
\begin{aligned}
& (y-3)=\frac{-(2+\sqrt{3})}{(2 \sqrt{3}-1)}(x-2) \\
& (2 \sqrt{3}-1) y-3(2 \sqrt{3}-1)=-(2+\sqrt{3}) x+2(2+\sqrt{3}) \\
& (2 \sqrt{3}-1) y+(2+\sqrt{3}) x=4+2 \sqrt{3}+6 \sqrt{3}-3 \\
& (2+\sqrt{3}) x+(2 \sqrt{3}-1) y=1+8 \sqrt{3}
\end{aligned}
$$

In this case, the equation of the other line is $(2+\sqrt{3}) x+(2 \sqrt{3}-1) y=1+8 \sqrt{3}$.
Thus, the required equation of the other line is $(\sqrt{3}-2) x+(2 \sqrt{3}+1) y=-1+8 \sqrt{3}$ or $(2+\sqrt{3}) x+(2 \sqrt{3}-1) y=1+8 \sqrt{3}$.

Question 13:

Find the equation of the right bisector of the line segment joining the points $(3,4)$ and $(-1,2)$.
Answer
The right bisector of a line segment bisects the line segment at 90°.
The end-points of the line segment are given as $A(3,4)$ and $B(-1,2)$.
Accordingly, mid-point of $\mathrm{AB}=\left(\frac{3-1}{2}, \frac{4+2}{2}\right)=(1,3)$
Slope of $A B=\frac{2-4}{-1-3}=\frac{-2}{-4}=\frac{1}{2}$
\therefore Slope of the line perpendicular to $A B=-\frac{1}{\left(\frac{1}{2}\right)}=-2$
The equation of the line passing through $(1,3)$ and having a slope of -2 is
$(y-3)=-2(x-1)$
$y-3=-2 x+2$
$2 x+y=5$
Thus, the required equation of the line is $2 x+y=5$.

Question 14:

Find the coordinates of the foot of perpendicular from the point $(-1,3)$ to the line $3 x-$ $4 y-16=0$.

Answer
Let (a, b) be the coordinates of the foot of the perpendicular from the point $(-1,3)$ to the line $3 x-4 y-16=0$.

Slope of the line joining $(-1,3)$ and $(a, b), m_{1}=\frac{b-3}{a+1}$
Slope of the line $3 x-4 y-16=0$ or $y=\frac{3}{4} x-4, m_{2}=\frac{3}{4}$
Since these two lines are perpendicular, $m_{1} m_{2}=-1$
$\therefore\left(\frac{b-3}{a+1}\right) \times\left(\frac{3}{4}\right)=-1$
$\Rightarrow \frac{3 b-9}{4 a+4}=-1$
$\Rightarrow 3 b-9=-4 a-4$
$\Rightarrow 4 a+3 b=5$

Point (a, b) lies on line $3 x-4 y=16$.
$\therefore 3 a-4 b=16$
On solving equations (1) and (2), we obtain
$a=\frac{68}{25}$ and $b=-\frac{49}{25}$
Thus, the required coordinates of the foot of the perpendicular are $\left(\frac{68}{25},-\frac{49}{25}\right)$.

Question 15:

The perpendicular from the origin to the line $y=m x+c$ meets it at the point $(-1,2)$. Find the values of m and c.
Answer
The given equation of line is $y=m x+c$.
It is given that the perpendicular from the origin meets the given line at $(-1,2)$.
Therefore, the line joining the points $(0,0)$ and $(-1,2)$ is perpendicular to the given line.
\therefore Slope of the line joining $(0,0)$ and $(-1,2)=\frac{2}{-1}=-2$
The slope of the given line is m.
$\therefore m \times-2=-1 \quad$ [The two lines are perpendicular]
$\Rightarrow m=\frac{1}{2}$
Since point $(-1,2)$ lies on the given line, it satisfies the equation $y=m x+c$.
$\therefore 2=m(-1)+c$
$\Rightarrow 2=\frac{1}{2}(-1)+c$
$\Rightarrow c=2+\frac{1}{2}=\frac{5}{2}$
Thus, the respective values of m and c are $\frac{1}{2}$ and $\frac{5}{2}$.

Question 16:

If p and q are the lengths of perpendiculars from the origin to the lines $x \cos \theta-y \sin \theta$
$=k \cos 2 \theta$ and $x \sec \theta+y \operatorname{cosec} \theta=k$, respectively, prove that $p^{2}+4 q^{2}=k^{2}$
Answer
The equations of given lines are
$x \cos \theta-y \sin \theta=k \cos 2 \theta \ldots$ (1)
$x \sec \theta+y \operatorname{cosec} \theta=k$.
The perpendicular distance (d) of a line $A x+B y+C=0$ from a point $\left(x_{1}, y_{1}\right)$ is given by

$$
d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}} .
$$

On comparing equation (1) to the general equation of line i.e., $A x+B y+C=0$, we obtain $A=\cos \theta, B=-\sin \theta$, and $C=-k \cos 2 \theta$.
It is given that p is the length of the perpendicular from $(0,0)$ to line (1).

$$
\begin{equation*}
\therefore p=\frac{|A(0)+B(0)+C|}{\sqrt{A^{2}+B^{2}}}=\frac{|C|}{\sqrt{A^{2}+B^{2}}}=\frac{|-k \cos 2 \theta|}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}}=|-k \cos 2 \theta| \tag{3}
\end{equation*}
$$

On comparing equation (2) to the general equation of line i.e., $A x+B y+C=0$, we obtain $A=\sec \theta, B=\operatorname{cosec} \theta$, and $C=-k$.

It is given that q is the length of the perpendicular from $(0,0)$ to line (2).

$$
\begin{equation*}
\therefore q=\frac{|A(0)+B(0)+C|}{\sqrt{A^{2}+B^{2}}}=\frac{|C|}{\sqrt{A^{2}+B^{2}}}=\frac{|-k|}{\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}} \tag{4}
\end{equation*}
$$

From (3) and (4), we have

$$
\begin{aligned}
& p^{2}+4 q^{2}=(|-k \cos 2 \theta|)^{2}+4\left(\frac{|-k|}{\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}}\right)^{2} \\
& =k^{2} \cos ^{2} 2 \theta+\frac{4 k^{2}}{\left(\sec ^{2} \theta+\operatorname{cosec}^{2} \theta\right)} \\
& =k^{2} \cos ^{2} 2 \theta+\frac{4 k^{2}}{\left(\frac{1}{\cos ^{2} \theta}+\frac{1}{\sin ^{2} \theta}\right)} \\
& =k^{2} \cos ^{2} 2 \theta+\frac{4 k^{2}}{\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin ^{2} \theta \cos ^{2} \theta}\right)} \\
& =k^{2} \cos ^{2} 2 \theta+\frac{4 k^{2}}{\left(\frac{1}{\sin ^{2} \theta \cos ^{2} \theta}\right)} \\
& =k^{2} \cos ^{2} 2 \theta+4 k^{2} \sin ^{2} \theta \cos ^{2} \theta \\
& =k^{2} \cos ^{2} 2 \theta+k^{2}\left(2 \sin ^{2} \theta{\cos \theta)^{2}}^{=k^{2} \cos ^{2} 2 \theta+k^{2} \sin ^{2} 2 \theta}\right. \\
& =k^{2}\left(\cos ^{2} 2 \theta+\sin ^{2} 2 \theta\right) \\
& =k^{2}
\end{aligned}
$$

Hence, we proved that $p^{2}+4 q^{2}=k^{2}$.

Question 17:

In the triangle $A B C$ with vertices $A(2,3), B(4,-1)$ and $C(1,2)$, find the equation and length of altitude from the vertex A.
Answer
Let $A D$ be the altitude of triangle $A B C$ from vertex A.
Accordingly, $A D \perp B C$

The equation of the line passing through point $(2,3)$ and having a slope of 1 is
$(y-3)=1(x-2)$
$\Rightarrow x-y+1=0$
$\Rightarrow y-x=1$
Therefore, equation of the altitude from vertex $A=y-x=1$.
Length of $A D=$ Length of the perpendicular from $A(2,3)$ to $B C$
The equation of $B C$ is

$$
\begin{align*}
& (y+1)=\frac{2+1}{1-4}(x-4) \\
& \Rightarrow(y+1)=-1(x-4) \\
& \Rightarrow y+1=-x+4 \\
& \Rightarrow x+y-3=0 \tag{1}
\end{align*}
$$

The perpendicular distance (d) of a line $A x+B y+C=0$ from a point $\left(x_{1}, y_{1}\right)$ is given by $d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$

On comparing equation (1) to the general equation of line $A x+B y+C=0$, we obtain A $=1, B=1$, and $C=-3$.
\therefore Length of $A D=\frac{|1 \times 2+1 \times 3-3|}{\sqrt{1^{2}+1^{2}}}$ units $=\frac{|2|}{\sqrt{2}}$ units $=\frac{2}{\sqrt{2}}$ units $=\sqrt{2}$ units
Thus, the equation and the length of the altitude from vertex A are $y-x=1$ and $\sqrt{2}$ units respectively.

Question 18:

If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.
Answer
It is known that the equation of a line whose intercepts on the axes are a and b is

$$
\begin{align*}
& \frac{x}{a}+\frac{y}{b}=1 \\
& \text { or } b x+a y=a b \\
& \text { or } b x+a y-a b=0 \tag{1}
\end{align*}
$$

The perpendicular distance (d) of a line $A x+B y+C=0$ from a point $\left(x_{1}, y_{1}\right)$ is given by $d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$.
On comparing equation (1) to the general equation of line $A x+B y+C=0$, we obtain A $=b, B=a$, and $C=-a b$.
Therefore, if p is the length of the perpendicular from point $\left(x_{1}, y_{1}\right)=(0,0)$ to line (1), we obtain

$$
\begin{aligned}
& p=\frac{|A(0)+B(0)-a b|}{\sqrt{b^{2}+a^{2}}} \\
& \Rightarrow p=\frac{|-a b|}{\sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

On squaring both sides, we obtain
$p^{2}=\frac{(-a b)^{2}}{a^{2}+b^{2}}$
$\Rightarrow p^{2}\left(a^{2}+b^{2}\right)=a^{2} b^{2}$
$\Rightarrow \frac{a^{2}+b^{2}}{a^{2} b^{2}}=\frac{1}{p^{2}}$
$\Rightarrow \frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

