Hence, we showed that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.

NCERT Miscellaneous Solutions

Question 1:

Find the values of k for which the line ${ }^{(k-3) x-\left(4-k^{2}\right) y+k^{2}-7 k+6=0}$ is
(a) Parallel to the x-axis,
(b) Parallel to the y-axis,
(c) Passing through the origin.

Answer
The given equation of line is
$(k-3) x-\left(4-k^{2}\right) y+k^{2}-7 k+6=0$
(a) If the given line is parallel to the x-axis, then

Slope of the given line $=$ Slope of the x-axis
The given line can be written as
$\left(4-k^{2}\right) y=(k-3) x+k^{2}-7 k+6=0$
$y=\frac{(k-3)}{\left(4-k^{2}\right)} x+\frac{k^{2}-7 k+6}{\left(4-k^{2}\right)}$,
\therefore Slope of the given line $=\frac{(k-3)}{\left(4-k^{2}\right)}$
Slope of the x-axis $=0$

$$
\begin{aligned}
& \therefore \frac{(k-3)}{\left(4-k^{2}\right)}=0 \\
& \Rightarrow k-3=0 \\
& \Rightarrow k=3
\end{aligned}
$$

Thus, if the given line is parallel to the x-axis, then the value of k is 3 .
(b) If the given line is parallel to the y-axis, it is vertical. Hence, its slope will be undefined.
The slope of the given line is $\frac{(k-3)}{\left(4-k^{2}\right)}$.

Now, $\frac{(k-3)}{\left(4-k^{2}\right)}$ is undefined at $k^{2}=4$
$k^{2}=4$
$\Rightarrow k= \pm 2$
Thus, if the given line is parallel to the y-axis, then the value of k is ± 2.
(c) If the given line is passing through the origin, then point $(0,0)$ satisfies the given equation of line.
$(k-3)(0)-\left(4-k^{2}\right)(0)+k^{2}-7 k+6=0$
$k^{2}-7 k+6=0$
$k^{2}-6 k-k+6=0$
$(k-6)(k-1)=0$
$k=1$ or 6
Thus, if the given line is passing through the origin, then the value of k is either 1 or 6 .

Question 2:

Find the values of θ and p, if the equation $x \cos \theta+y \sin \theta=p$ is the normal form of the line $\sqrt{3} x+y+2=0$.
Answer
The equation of the given line is $\sqrt{3} x+y+2=0$.
This equation can be reduced as
$\sqrt{3} x+y+2=0$
$\Rightarrow-\sqrt{3} x-y=2$
On dividing both sides by $\sqrt{(-\sqrt{3})^{2}+(-1)^{2}}=2$, we obtain
$-\frac{\sqrt{3}}{2} x-\frac{1}{2} y=\frac{2}{2}$
$\Rightarrow\left(-\frac{\sqrt{3}}{2}\right) x+\left(-\frac{1}{2}\right) y=1$
On comparing equation (1) to $x \cos \theta+y \sin \theta=p$, we obtain
$\cos \theta=-\frac{\sqrt{3}}{2}, \sin \theta=-\frac{1}{2}$, and $p=1$
Since the values of $\sin \theta$ and $\cos \theta$ are negative, $\quad \theta=\pi+\frac{\pi}{6}=\frac{7 \pi}{6}$
Thus, the respective values of θ and p are $\frac{7 \pi}{6}$ and 1

Question 3:

Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and -6 , respectively.
Answer
Let the intercepts cut by the given lines on the axes be a and b.
It is given that
$a+b=1 \ldots$ (1)
$a b=-6 \ldots$ (2)
On solving equations (1) and (2), we obtain
$a=3$ and $b=-2$ or $a=-2$ and $b=3$
It is known that the equation of the line whose intercepts on the axes are a and b is
$\frac{x}{a}+\frac{y}{b}=1$ or $b x+a y-a b=0$
Case I: $a=3$ and $b=-2$
In this case, the equation of the line is $-2 x+3 y+6=0$, i.e., $2 x-3 y=6$.
Case II: $a=-2$ and $b=3$
In this case, the equation of the line is $3 x-2 y+6=0$, i.e., $-3 x+2 y=6$.
Thus, the required equation of the lines are $2 x-3 y=6$ and $-3 x+2 y=6$.

Question 4:

What are the points on the y-axis whose distance from the line $\frac{x}{3}+\frac{y}{4}=1$ is 4 units. Answer

Let $(0, b)$ be the point on the y-axis whose distance from line $\frac{x}{3}+\frac{y}{4}=1$ is 4 units.

The given line can be written as $4 x+3 y-12=0 \ldots$ (1)
On comparing equation (1) to the general equation of line $A x+B y+C=0$, we obtain A $=4, B=3$, and $C=-12$.
It is known that the perpendicular distance (d) of a line $A x+B y+C=0$ from a point
$\left(x_{1}, y_{1}\right)$ is given by $d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$.
Therefore, if $(0, b)$ is the point on the y-axis whose distance from line $\frac{x}{3}+\frac{y}{4}=1$ is 4 units, then:
$4=\frac{|4(0)+3(b)-12|}{\sqrt{4^{2}+3^{2}}}$
$\Rightarrow 4=\frac{|3 b-12|}{5}$
$\Rightarrow 20=|3 b-12|$
$\Rightarrow 20= \pm(3 b-12)$
$\Rightarrow 20=(3 b-12)$ or $20=-(3 b-12)$
$\Rightarrow 3 b=20+12$ or $3 b=-20+12$
$\Rightarrow b=\frac{32}{3}$ or $b=-\frac{8}{3}$
Thus, the required points are $\left(0, \frac{32}{3}\right)$ and $\left(0,-\frac{8}{3}\right)$.

Question 5:

Find the perpendicular distance from the origin to the line joining the points $(\cos \theta, \sin \theta)$ and $(\cos \phi, \sin \phi)$.

Answer
The equation of the line joining the points $(\cos \theta, \sin \theta)$ and $(\cos \phi, \sin \phi)$ is given by

$$
\begin{aligned}
& y-\sin \theta=\frac{\sin \phi-\sin \theta}{\cos \phi-\cos \theta}(x-\cos \theta) \\
& y(\cos \phi-\cos \theta)-\sin \theta(\cos \phi-\cos \theta)=x(\sin \phi-\sin \theta)-\cos \theta(\sin \phi-\sin \theta) \\
& x(\sin \theta-\sin \phi)+y(\cos \phi-\cos \theta)+\cos \theta \sin \phi-\cos \theta \sin \theta-\sin \theta \cos \phi+\sin \theta \cos \theta=0 \\
& x(\sin \theta-\sin \phi)+y(\cos \phi-\cos \theta)+\sin (\phi-\theta)=0 \\
& A x+B y+C=0, \text { where } A=\sin \theta-\sin \phi, B=\cos \phi-\cos \theta, \text { and } C=\sin (\phi-\theta)
\end{aligned}
$$

It is known that the perpendicular distance (d) of a line $A x+B y+C=0$ from a point
$\left(x_{1}, y_{1}\right)$ is given by $d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$.
Therefore, the perpendicular distance (d) of the given line from point $\left(x_{1}, y_{1}\right)=(0,0)$ is

$$
\begin{aligned}
& d=\frac{|(\sin \theta-\sin \phi)(0)+(\cos \phi-\cos \theta)(0)+\sin (\phi-\theta)|}{\sqrt{(\sin \theta-\sin \phi)^{2}+(\cos \phi-\cos \theta)^{2}}} \\
& =\frac{|\sin (\phi-\theta)|}{\sqrt{\sin ^{2} \theta+\sin ^{2} \phi-2 \sin \theta \sin \phi+\cos ^{2} \phi+\cos ^{2} \theta-2 \cos \phi \cos \theta}} \\
& =\frac{|\sin (\phi-\theta)|}{\sqrt{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\left(\sin ^{2} \phi+\cos ^{2} \phi\right)-2(\sin \theta \sin \phi+\cos \theta \cos \phi)}} \\
& =\frac{|\sin (\phi-\theta)|}{\sqrt{1+1-2(\cos (\phi-\theta))}} \\
& =\frac{|\sin (\phi-\theta)|}{\sqrt{2(1-\cos (\phi-\theta))}} \\
& =\frac{|\sin (\phi-\theta)|}{\sqrt{2\left(2 \sin 2\left(\frac{\phi-\theta}{2}\right)\right)}} \\
& =\frac{|\sin (\phi-\theta)|}{\left|2 \sin \left(\frac{\phi-\theta}{2}\right)\right|}
\end{aligned}
$$

Question 6:

Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines $x-7 y+5=0$ and $3 x+y=0$.
Answer
The equation of any line parallel to the y-axis is of the form
$x=a \ldots$ (1)
The two given lines are
$x-7 y+5=0$
$3 x+y=0 \ldots$
On solving equations (2) and (3), we obtain $x=-\frac{5}{22}$ and $y=\frac{15}{22}$.
Therefore, $\left(-\frac{5}{22}, \frac{15}{22}\right)$ is the point of intersection of lines (2) and (3).
Since line $x=a$ passes through point $\left(-\frac{5}{22}, \frac{15}{22}\right), a=-\frac{5}{22}$.
Thus, the required equation of the line is $x=-\frac{5}{22}$.

Question 7:

Find the equation of a line drawn perpendicular to the line $\frac{x}{4}+\frac{y}{6}=1$ through the point, where it meets the y-axis.
Answer
The equation of the given line is $\frac{x}{4}+\frac{y}{6}=1$.
This equation can also be written as $3 x+2 y-12=0$
$y=\frac{-3}{2} x+6$, which is of the form $y=m x+c$
\therefore Slope of the given line $=-\frac{3}{2}$
\therefore Slope of line perpendicular to the given line

$$
=-\frac{1}{\left(-\frac{3}{2}\right)}=\frac{2}{3}
$$

Let the given line intersect the y-axis at $(0, y)$.
On substituting x with 0 in the equation of the given line, we obtain $\frac{y}{6}=1 \Rightarrow y=6$
\therefore The given line intersects the y-axis at $(0,6)$.
The equation of the line that has a slope of $\frac{2}{3}$ and passes through point $(0,6)$ is

$$
(y-6)=\frac{2}{3}(x-0)
$$

$3 y-18=2 x$
$2 x-3 y+18=0$
Thus, the required equation of the line is $2 x-3 y+18=0$.

Question 8:

Find the area of the triangle formed by the lines $y-x=0, x+y=0$ and $x-k=0$.
Answer
The equations of the given lines are
$y-x=0$
$x+y=0$
$x-k=0$
The point of intersection of lines (1) and (2) is given by
$x=0$ and $y=0$
The point of intersection of lines (2) and (3) is given by
$x=k$ and $y=-k$
The point of intersection of lines (3) and (1) is given by
$x=k$ and $y=k$
Thus, the vertices of the triangle formed by the three given lines are $(0,0),(k,-k)$, and (k, k).
We know that the area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ is $\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$.
Therefore, area of the triangle formed by the three given lines
$=\frac{1}{2}|0(-k-k)+k(k-0)+k(0+k)|$ square units
$=\frac{1}{2}\left|k^{2}+k^{2}\right|$ square units
$=\frac{1}{2}\left|2 k^{2}\right|$ square units
$=k^{2}$ square units

Question 9:

Find the value of p so that the three lines $3 x+y-2=0, p x+2 y-3=0$ and $2 x-y-$ $3=0$ may intersect at one point.
Answer
The equations of the given lines are
$3 x+y-2=0 \ldots$ (1)
$p x+2 y-3=0$
$2 x-y-3=0$
On solving equations (1) and (3), we obtain
$x=1$ and $y=-1$
Since these three lines may intersect at one point, the point of intersection of lines (1) and (3) will also satisfy line (2).
$p(1)+2(-1)-3=0$
$p-2-3=0$
$p=5$
Thus, the required value of p is 5 .

Question 10:

If three lines whose equations are $y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $y=m_{3} x+c_{3}$ are concurrent, then show that $m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0$.
Answer
The equations of the given lines are
$y=m_{1} x+c_{1} \ldots$ (1)
$y=m_{2} x+c_{2}$.
$y=m_{3} x+c_{3}$.

On subtracting equation (1) from (2), we obtain
$0=\left(m_{2}-m_{1}\right) x+\left(c_{2}-c_{1}\right)$
$\Rightarrow\left(m_{1}-m_{2}\right) x=c_{2}-c_{1}$
$\Rightarrow x=\frac{c_{2}-c_{1}}{m_{1}-m_{2}}$
On substituting this value of x in (1), we obtain

$$
\begin{aligned}
& y=m_{1}\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}\right)+c_{1} \\
& y=\frac{m_{1} c_{2}-m_{1} c_{1}}{m_{1}-m_{2}}+c_{1} \\
& y=\frac{m_{1} c_{2}-m_{1} c_{1}+m_{1} c_{1}-m_{2} c_{1}}{m_{1}-m_{2}} \\
& y=\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}} \\
& \therefore\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}, \frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}\right) \text { is the point of intersection of lines (1) and (2). }
\end{aligned}
$$

It is given that lines (1), (2), and (3) are concurrent. Hence, the point of intersection of lines (1) and (2) will also satisfy equation (3).
$\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}=m_{3}\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}\right)+c_{3}$
$\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}=\frac{m_{3} c_{2}-m_{3} c_{1}+c_{3} m_{1}-c_{3} m_{2}}{m_{1}-m_{2}}$
$m_{1} c_{2}-m_{2} c_{1}-m_{3} c_{2}+m_{3} c_{1}-c_{3} m_{1}+c_{3} m_{2}=0$
$m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0$
Hence, $m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0$.

Question 11:

Find the equation of the lines through the point $(3,2)$ which make an angle of 45° with the line $x-2 y=3$.

Answer
Let the slope of the required line be m_{1}.

The given line can be written as $y=\frac{1}{2} x-\frac{3}{2}$, which is of the form $y=m x+c$
\therefore Slope of the given line $=m_{2}=\frac{1}{2}$
It is given that the angle between the required line and line $x-2 y=3$ is 45°.
We know that if θ isthe acute angle between lines I_{1} and I_{2} with slopes m_{1} and m_{2}
respectively, then $\tan \theta=\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right|$.
$\therefore \tan 45^{\circ}=\frac{\left|m_{1}-m_{2}\right|}{1+m_{1} m_{2}}$
$\Rightarrow 1=\left|\frac{\frac{1}{2}-m_{1}}{1+\frac{m_{1}}{2}}\right|$
$\Rightarrow 1=\left|\frac{\left(\frac{1-2 m_{1}}{2}\right)}{\frac{2+m_{1}}{2}}\right|$
$\Rightarrow 1=\left|\frac{1-2 m_{1}}{2+m_{1}}\right|$
$\Rightarrow 1= \pm\left(\frac{1-2 m_{1}}{2+m_{1}}\right)$
$\Rightarrow 1=\frac{1-2 m_{1}}{2+m_{1}}$ or $1=-\left(\frac{1-2 m_{1}}{2+m_{1}}\right)$
$\Rightarrow 2+m_{1}=1-2 m_{1}$ or $2+m_{1}=-1+2 m_{1}$
$\Rightarrow m_{1}=-\frac{1}{3}$ or $m_{1}=3$
Case I: $m_{1}=3$
The equation of the line passing through $(3,2)$ and having a slope of 3 is:
$y-2=3(x-3)$
$y-2=3 x-9$
$3 x-y=7$

Case II: $m_{1}=-\frac{1}{3}$
The equation of the line passing through $(3,2)$ and having a slope of $-\frac{1}{3}$ is:
$y-2=-\frac{1}{3}(x-3)$
$3 y-6=-x+3$
$x+3 y=9$
Thus, the equations of the lines are $3 x-y=7$ and $x+3 y=9$.

Question 12:

Find the equation of the line passing through the point of intersection of the lines $4 x+$ $7 y-3=0$ and $2 x-3 y+1=0$ that has equal intercepts on the axes.
Answer
Let the equation of the line having equal intercepts on the axes be
$\frac{x}{a}+\frac{y}{a}=1$
Or $x+y=a$
On solving equations $4 x+7 y-3=0$ and $2 x-3 y+1=0$, we obtain $x=\frac{1}{13}$ and $y=\frac{5}{13}$.
$\therefore\left(\frac{1}{13}, \frac{5}{13}\right)$ is the point of intersection of the two given lines.
Since equation (1) passes through point $\left(\frac{1}{13}, \frac{5}{13}\right)$,
$\frac{1}{13}+\frac{5}{13}=a$
$\Rightarrow a=\frac{6}{13}$
\therefore Equation (1) becomes $x+y=\frac{6}{13}$, i.e., $13 x+13 y=6$
Thus, the required equation of the line is $13 x+13 y=6$.

Question 13:

Show that the equation of the line passing through the origin and making an angle θ with the line $y=m x+\operatorname{cis} \frac{y}{x}=\frac{m \pm \tan \theta}{1 \mp m \tan \theta}$.
Answer
Let the equation of the line passing through the origin be $y=m_{1} x$.
If this line makes an angle of θ with line $y=m x+c$, then angle θ is given by
$\therefore \tan \theta=\left|\frac{m_{1}-m}{1+\mathrm{m}_{1} \mathrm{~m}}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right|$
$\Rightarrow \tan \theta= \pm\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right)$
$\Rightarrow \tan \theta=\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}$ or $\tan \theta=-\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right)$

Case I:

$$
\tan \theta=\frac{\frac{\mathrm{y}}{\mathrm{x}}-\mathrm{m}}{1+\frac{\mathrm{y}}{\mathrm{x}} \mathrm{~m}}
$$

$\tan \theta=\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}$
$\Rightarrow \tan \theta+\frac{\mathrm{y}}{\mathrm{x}} \mathrm{m} \tan \theta=\frac{\mathrm{y}}{\mathrm{x}}-\mathrm{m}$
$\Rightarrow \mathrm{m}+\tan \theta=\frac{\mathrm{y}}{\mathrm{x}}(1-\mathrm{m} \tan \theta)$
$\Rightarrow \frac{\mathrm{y}}{\mathrm{x}}=\frac{\mathrm{m}+\tan \theta}{1-\mathrm{m} \tan \theta}$

$$
\tan \theta=-\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right)
$$

Case II:

$\tan \theta=-\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right)$
$\Rightarrow \tan \theta+\frac{\mathrm{y}}{\mathrm{x}} \mathrm{m} \tan \theta=-\frac{\mathrm{y}}{\mathrm{x}}+\mathrm{m}$
$\Rightarrow \frac{\mathrm{y}}{\mathrm{x}}(1+\mathrm{m} \tan \theta)=\mathrm{m}-\tan \theta$
$\Rightarrow \frac{\mathrm{y}}{\mathrm{x}}=\frac{\mathrm{m}-\tan \theta}{1+\mathrm{m} \tan \theta}$
Therefore, the required line is given by $\frac{y}{x}=\frac{m \pm \tan \theta}{1 \mp m \tan \theta}$.

Question 14:

In what ratio, the line joining $(-1,1)$ and $(5,7)$ is divided by the line $x+y=4$?
Answer
The equation of the line joining the points $(-1,1)$ and $(5,7)$ is given by
$y-1=\frac{7-1}{5+1}(x+1)$
$y-1=\frac{6}{6}(x+1)$
$x-y+2=0$
The equation of the given line is
$x+y-4=0$
The point of intersection of lines (1) and (2) is given by
$x=1$ and $y=3$
Let point $(1,3)$ divide the line segment joining $(-1,1)$ and $(5,7)$ in the ratio $1: k$.
Accordingly, by section formula,

$$
\begin{aligned}
& (1,3)=\left(\frac{k(-1)+1(5)}{1+k}, \frac{k(1)+1(7)}{1+k}\right) \\
& \Rightarrow(1,3)=\left(\frac{-k+5}{1+k}, \frac{k+7}{1+k}\right) \\
& \Rightarrow \frac{-k+5}{1+k}=1, \frac{k+7}{1+k}=3 \\
& \therefore \frac{-k+5}{1+k}=1 \\
& \Rightarrow-k+5=1+k \\
& \Rightarrow 2 k=4 \\
& \Rightarrow k=2
\end{aligned}
$$

Thus, the line joining the points $(-1,1)$ and $(5,7)$ is divided by line $x+y=4$ in the ratio 1:2.

Question 15:

Find the distance of the line $4 x+7 y+5=0$ from the point $(1,2)$ along the line $2 x-y$ $=0$.

Answer

The given lines are
$2 x-y=0$
$4 x+7 y+5=0$
A $(1,2)$ is a point on line (1).
Let B be the point of intersection of lines (1) and (2).

On solving equations (1) and (2), we obtain $x=\frac{-5}{18}$ and $y=\frac{-5}{9}$.
\therefore Coordinates of point B are $\left(\frac{-5}{18}, \frac{-5}{9}\right)$.

By using distance formula, the distance between points A and B can be obtained as
$\mathrm{AB}=\sqrt{\left(1+\frac{5}{18}\right)^{2}+\left(2+\frac{5}{9}\right)^{2}}$ units
$=\sqrt{\left(\frac{23}{18}\right)^{2}+\left(\frac{23}{9}\right)^{2}}$ units
$=\sqrt{\left(\frac{23}{2 \times 9}\right)^{2}+\left(\frac{23}{9}\right)^{2}}$ units
$=\sqrt{\left(\frac{23}{9}\right)^{2}\left(\frac{1}{2}\right)^{2}+\left(\frac{23}{9}\right)^{2}}$ units
$=\sqrt{\left(\frac{23}{9}\right)^{2}\left(\frac{1}{4}+1\right)}$ units
$=\frac{23}{9} \sqrt{\frac{5}{4}}$ units
$=\frac{23}{9} \times \frac{\sqrt{5}}{2}$ units
$=\frac{23 \sqrt{5}}{18}$ units
Thus, the required distance is $\frac{23 \sqrt{5}}{18}$ units.

Question 16:

Find the direction in which a straight line must be drawn through the point $(-1,2)$ so that its point of intersection with the line $x+y=4$ may be at a distance of 3 units from this point.
Answer
Let $y=m x+c$ be the line through point $(-1,2)$.
Accordingly, $2=m(-1)+c$.
$\Rightarrow 2=-m+c$
$\Rightarrow c=m+2$
$\therefore y=m x+m+2 \ldots$ (1)
The given line is

$$
\begin{equation*}
x+y=4 \tag{2}
\end{equation*}
$$

On solving equations (1) and (2), we obtain

$$
x=\frac{2-m}{m+1} \text { and } y=\frac{5 m+2}{m+1}
$$

$\therefore\left(\frac{2-m}{m+1}, \frac{5 m+2}{m+1}\right)$ is the point of intersection of lines (1) and (2).
Since this point is at a distance of 3 units from point ($-1,2$), according to distance formula,

$$
\begin{aligned}
& \sqrt{\left(\frac{2-m}{m+1}+1\right)^{2}+\left(\frac{5 m+2}{m+1}-2\right)^{2}}=3 \\
& \Rightarrow\left(\frac{2-m+m+1}{m+1}\right)^{2}+\left(\frac{5 m+2-2 m-2}{m+1}\right)^{2}=3^{2} \\
& \Rightarrow \frac{9}{(m+1)^{2}}+\frac{9 m^{2}}{(m+1)^{2}}=9 \\
& \Rightarrow \frac{1+m^{2}}{(m+1)^{2}}=1 \\
& \Rightarrow 1+m^{2}=m^{2}+1+2 m \\
& \Rightarrow 2 m=0 \\
& \Rightarrow m=0
\end{aligned}
$$

Thus, the slope of the required line must be zero i.e., the line must be parallel to the x axis.

Question 18:

Find the image of the point $(3,8)$ with respect to the line $x+3 y=7$ assuming the line to be a plane mirror.

Answer
The equation of the given line is
$x+3 y=7 \ldots$ (1)
Let point $\mathrm{B}(a, b)$ be the image of point $\mathrm{A}(3,8)$.
Accordingly, line (1) is the perpendicular bisector of AB.

Slope of $\mathrm{AB}=\frac{b-8}{a-3}$, while the slope of line $(1)=-\frac{1}{3}$
Since line (1) is perpendicular to $A B$,
$\left(\frac{b-8}{a-3}\right) \times\left(-\frac{1}{3}\right)=-1$
$\Rightarrow \frac{b-8}{3 a-9}=1$
$\Rightarrow b-8=3 a-9$
$\Rightarrow 3 a-b=1$
Mid-point of $\mathrm{AB}=\left(\frac{a+3}{2}, \frac{b+8}{2}\right)$
The mid-point of line segment $A B$ will also satisfy line (1).
Hence, from equation (1), we have
$\left(\frac{a+3}{2}\right)+3\left(\frac{b+8}{2}\right)=7$
$\Rightarrow a+3+3 b+24=14$
$\Rightarrow a+3 b=-13$
On solving equations (2) and (3), we obtain $a=-1$ and $b=-4$.
Thus, the image of the given point with respect to the given line is $(-1,-4)$.

Question 19:

If the lines $y=3 x+1$ and $2 y=x+3$ are equally inclined to the line $y=m x+4$, find the value of m.
Answer
The equations of the given lines are

$$
y=3 x+1 \ldots \text { (1) }
$$

$2 y=x+3$
$y=m x+4$
Slope of line (1), $m_{1}=3$
Slope of line (2), $\quad m_{2}=\frac{1}{2}$
Slope of line (3), $m_{3}=m$
It is given that lines (1) and (2) are equally inclined to line (3). This means that the angle between lines (1) and (3) equals the angle between lines (2) and (3).
$\therefore\left|\frac{m_{1}-m_{3}}{1+m_{1} m_{3}}\right|=\left|\frac{m_{2}-m_{3}}{1+m_{2} m_{3}}\right|$
$\Rightarrow\left|\frac{3-m}{1+3 m}\right|=\left|\frac{\frac{1}{2}-m}{1+\frac{1}{2} m}\right|$
$\Rightarrow\left|\frac{3-m}{1+3 m}\right|=\left|\frac{1-2 m}{m+2}\right|$
$\Rightarrow \frac{3-m}{1+3 m}= \pm\left(\frac{1-2 m}{m+2}\right)$
$\Rightarrow \frac{3-m}{1+3 m}=\frac{1-2 m}{m+2}$ or $\frac{3-m}{1+3 m}=-\left(\frac{1-2 m}{m+2}\right)$
If $\frac{3-m}{1+3 m}=\frac{1-2 m}{m+2}$, then
$(3-m)(m+2)=(1-2 m)(1+3 m)$
$\Rightarrow-m^{2}+m+6=1+m-6 m^{2}$
$\Rightarrow 5 m^{2}+5=0$
$\Rightarrow\left(m^{2}+1\right)=0$
$\Rightarrow m=\sqrt{-1}$, which is not real

Hence, this case is not posible.

$$
\begin{aligned}
& \text { If } \frac{3-m}{1+3 m}=-\left(\frac{1-2 m}{m+2}\right), \text { then } \\
& \Rightarrow(3-m)(m+2)=-(1-2 m)(1+3 m) \\
& \Rightarrow-m^{2}+m+6=-\left(1+m-6 m^{2}\right) \\
& \Rightarrow 7 m^{2}-2 m-7=0 \\
& \Rightarrow m=\frac{2 \pm \sqrt{4-4(7)(-7)}}{2(7)} \\
& \Rightarrow m=\frac{2 \pm 2 \sqrt{1+49}}{14} \\
& \Rightarrow m=\frac{1 \pm 5 \sqrt{2}}{7}
\end{aligned}
$$

Thus, the required value of m is $\frac{1 \pm 5 \sqrt{2}}{7}$.

Question 20:

If sum of the perpendicular distances of a variable point $\mathrm{P}(x, y)$ from the lines $x+y-5$ $=0$ and $3 x-2 y+7=0$ is always 10 . Show that P must move on a line.
Answer
The equations of the given lines are
$x+y-5=0$
$3 x-2 y+7=0$
The perpendicular distances of $\mathrm{P}(x, y)$ from lines (1) and (2) are respectively given by
$d_{1}=\frac{|x+y-5|}{\sqrt{(1)^{2}+(1)^{2}}}$ and $d_{2}=\frac{|3 x-2 y+7|}{\sqrt{(3)^{2}+(-2)^{2}}}$
i.e., $d_{1}=\frac{|x+y-5|}{\sqrt{2}}$ and $d_{2}=\frac{|3 x-2 y+7|}{\sqrt{13}}$

It is given that $d_{1}+d_{2}=10$.

$$
\begin{aligned}
& \therefore \frac{|x+y-5|}{\sqrt{2}}+\frac{|3 x-2 y+7|}{\sqrt{13}}=10 \\
& \Rightarrow \sqrt{13}|x+y-5|+\sqrt{2}|3 x-2 y+7|-10 \sqrt{26}=0 \\
& \Rightarrow \sqrt{13}(x+y-5)+\sqrt{2}(3 x-2 y+7)-10 \sqrt{26}=0
\end{aligned}
$$

[Assuming $(x+y-5)$ and $(3 x-2 y+7)$ are positive]
$\Rightarrow \sqrt{13} x+\sqrt{13} y-5 \sqrt{13}+3 \sqrt{2} x-2 \sqrt{2} y+7 \sqrt{2}-10 \sqrt{26}=0$
$\Rightarrow x(\sqrt{13}+3 \sqrt{2})+y(\sqrt{13}-2 \sqrt{2})+(7 \sqrt{2}-5 \sqrt{13}-10 \sqrt{26})=0$, which is the equation of a line.
Similarly, we can obtain the equation of line for any signs of $(x+y-5)$ and $(3 x-2 y+7)$. Thus, point P must move on a line.

Question 21:

Find equation of the line which is equidistant from parallel lines $9 x+6 y-7=0$ and $3 x$
$+2 y+6=0$.
Answer
The equations of the given lines are
$9 x+6 y-7=0$
$3 x+2 y+6=0$...
Let $\mathrm{P}(h, k)$ be the arbitrary point that is equidistant from lines (1) and (2). The perpendicular distance of $P(h, k)$ from line (1) is given by

$$
d_{1}=\frac{|9 h+6 k-7|}{(9)^{2}+(6)^{2}}=\frac{|9 h+6 k-7|}{\sqrt{117}}=\frac{|9 h+6 k-7|}{3 \sqrt{13}}
$$

The perpendicular distance of $P(h, k)$ from line (2) is given by

$$
d_{2}=\frac{|3 h+2 k+6|}{\sqrt{(3)^{2}+(2)^{2}}}=\frac{|3 h+2 k+6|}{\sqrt{13}}
$$

Since $\mathrm{P}(h, k)$ is equidistant from lines (1) and (2), $d_{1}=d_{2}$

$$
\begin{aligned}
& \therefore \frac{|9 h+6 k-7|}{3 \sqrt{13}}=\frac{|3 h+2 k+6|}{\sqrt{13}} \\
& \Rightarrow|9 h+6 k-7|=3|3 h+2 k+6| \\
& \Rightarrow|9 h+6 k-7|= \pm 3(3 h+2 k+6) \\
& \Rightarrow 9 h+6 k-7=3(3 h+2 k+6) \text { or } 9 h+6 k-7=-3(3 h+2 k+6)
\end{aligned}
$$

The case $9 h+6 k-7=3(3 h+2 k+6)$ is not possible as
$9 h+6 k-7=3(3 h+2 k+6) \Rightarrow-7=18$ (which is absurd)
$\therefore .^{9 h+6 k-7}=-3(3 h+2 k+6)$
$9 h+6 k-7=-9 h-6 k-18$
$\Rightarrow 18 h+12 k+11=0$
Thus, the required equation of the line is $18 x+12 y+11=0$.

Question 22:

A ray of light passing through the point $(1,2)$ reflects on the x-axis at point A and the reflected ray passes through the point $(5,3)$. Find the coordinates of A.
Answer

Let the coordinates of point A be $(a, 0)$.
Draw a line (AL) perpendicular to the x-axis.
We know that angle of incidence is equal to angle of reflection. Hence, let
$\angle B A L=\angle C A L=\varnothing$
Let $\angle \mathrm{CAX}=\theta$
$\therefore \angle \mathrm{OAB}=180^{\circ}-(\theta+2 \Phi)=180^{\circ}-\left[\theta+2\left(90^{\circ}-\theta\right)\right]$
$=180^{\circ}-\theta-180^{\circ}+2 \theta$
$=\theta$
$\therefore \angle B A X=180^{\circ}-\theta$
Now, slope of line $\mathrm{AC}=\frac{3-0}{5-a}$
$\Rightarrow \tan \theta=\frac{3}{5-a}$
Slope of line $\mathrm{AB}=\frac{2-0}{1-a}$
$\Rightarrow \tan \left(180^{\circ}-\theta\right)=\frac{2}{1-a}$
$\Rightarrow-\tan \theta=\frac{2}{1-a}$
$\Rightarrow \tan \theta=\frac{2}{a-1}$
From equations (1) and (2), we obtain

$$
\begin{aligned}
& \frac{3}{5-a}=\frac{2}{a-1} \\
& \Rightarrow 3 a-3=10-2 a \\
& \Rightarrow a=\frac{13}{5}
\end{aligned}
$$

Thus, the coordinates of point A are $\left(\frac{13}{5}, 0\right)$.

Question 23:

Prove that the product of the lengths of the perpendiculars drawn from the points
$\left(\sqrt{a^{2}-b^{2}}, 0\right)$ and $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to the line $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$ is b^{2}.
Answer
The equation of the given line is
$\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$
Or, $b x \cos \theta+a y \sin \theta-a b=0$

Length of the perpendicular from point $\left(\sqrt{a^{2}-b^{2}}, 0\right)$ to line (1) is

$$
\begin{equation*}
p_{1}=\frac{\left|b \cos \theta\left(\sqrt{a^{2}-b^{2}}\right)+a \sin \theta(0)-a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}=\frac{\left|b \cos \theta \sqrt{a^{2}-b^{2}}-a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}} \tag{2}
\end{equation*}
$$

Length of the perpendicular from point $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to line (2) is

$$
\begin{equation*}
p_{2}=\frac{\left|b \cos \theta\left(-\sqrt{a^{2}-b^{2}}\right)+a \sin \theta(0)-a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}=\frac{\left|b \cos \theta \sqrt{a^{2}-b^{2}}+a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}} \tag{3}
\end{equation*}
$$

On multiplying equations (2) and (3), we obtain

$$
\begin{aligned}
& p_{1} p_{2}=\frac{\left|b \cos \theta \sqrt{a^{2}-b^{2}}-a b\right|\left|\left(b \cos \theta \sqrt{a^{2}-b^{2}}+a b\right)\right|}{\left(\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}\right)^{2}} \\
& =\frac{\left|\left(b \cos \theta \sqrt{a^{2}-b^{2}}-a b\right)\left(b \cos \theta \sqrt{a^{2}-b^{2}}+a b\right)\right|}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)} \\
& =\frac{\left|\left(b \cos \theta \sqrt{a^{2}-b^{2}}\right)^{2}-(a b)^{2}\right|}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)} \\
& =\frac{\left|b^{2} \cos ^{2} \theta\left(a^{2}-b^{2}\right)-a^{2} b^{2}\right|}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)} \\
& =\frac{\left|a^{2} b^{2} \cos ^{2} \theta-b^{4} \cos ^{2} \theta-a^{2} b^{2}\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\
& =\frac{b^{2}\left|a^{2} \cos ^{2} \theta-b^{2} \cos ^{2} \theta-a^{2}\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\
& =\frac{b^{2}\left|a^{2} \cos ^{2} \theta-b^{2} \cos ^{2} \theta-a^{2} \sin ^{2} \theta-a^{2} \cos ^{2} \theta\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\
& =\frac{b^{2}\left|-\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\
& =\frac{b^{2}\left(b^{2} \cos ^{2} \theta+a^{2} \cos ^{2} \theta=1\right]}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)} \\
& =b^{2}
\end{aligned}
$$

Hence, proved.

Question 24:

A person standing at the junction (crossing) of two straight paths represented by the equations $2 x-3 y+4=0$ and $3 x+4 y-5=0$ wants to reach the path whose equation is $6 x-7 y+8=0$ in the least time. Find equation of the path that he should follow.

Answer
The equations of the given lines are

$$
\begin{align*}
& 2 x-3 y+4=0 \tag{1}\\
& 3 x+4 y-5=0 \tag{2}
\end{align*}
$$

$$
\begin{equation*}
6 x-7 y+8=0 \tag{3}
\end{equation*}
$$

The person is standing at the junction of the paths represented by lines (1) and (2).
On solving equations (1) and (2), we obtain $x=-\frac{1}{17}$ and $y=\frac{22}{17}$.
Thus, the person is standing at point $\left(-\frac{1}{17}, \frac{22}{17}\right)$.
The person can reach path (3) in the least time if he walks along the perpendicular line to (3) from point $\left(-\frac{1}{17}, \frac{22}{17}\right)$.
Slope of the line (3) $=\frac{6}{7}$
\therefore Slope of the line perpendicular to line (3) $=-\frac{1}{\left(\frac{6}{7}\right)}=-\frac{7}{6}$
The equation of the line passing through $\left(-\frac{1}{17}, \frac{22}{17}\right)$ and having a slope of $-\frac{7}{6}$ is given by

$$
\begin{aligned}
& \left(y-\frac{22}{17}\right)=-\frac{7}{6}\left(x+\frac{1}{17}\right) \\
& 6(17 y-22)=-7(17 x+1) \\
& 102 y-132=-119 x-7 \\
& 119 x+102 y=125
\end{aligned}
$$

Hence, the path that the person should follow is $119 x+102 y=125$.

