Exercise 10.3

Question 1:

Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2, respectively

having
$$a^{*}b = \sqrt{6}$$

It is given that,

$$\left|\vec{a}\right| = \sqrt{3}, \ \left|\vec{b}\right| = 2 \text{ and}, \ \vec{a} \cdot \vec{b} = \sqrt{6}$$

Now, we know that
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

 $\therefore \sqrt{6} = \sqrt{3} \times 2 \times \cos \theta$
 $\Rightarrow \cos \theta = \sqrt{6}$

$$\Rightarrow \cos \theta = \frac{1}{\sqrt{3 \times 2}}$$
$$\Rightarrow \cos \theta = \frac{1}{\sqrt{2}}$$
$$\Rightarrow \theta = \frac{\pi}{4}$$

Hence, the angle between the given vectors \vec{a} and \vec{b} is $\frac{\pi}{4}$.

Question 2:

Find the angle between the vectors $\hat{i} - 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$ Answer

The given vectors are $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}$.

$$\begin{aligned} |\vec{a}| &= \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14} \\ |\vec{b}| &= \sqrt{3^2 + (-2)^2 + 1^2} = \sqrt{9 + 4 + 1} = \sqrt{14} \\ \text{Now, } \vec{a} \cdot \vec{b} &= (\hat{i} - 2\hat{j} + 3\hat{k}) (3\hat{i} - 2\hat{j} + \hat{k}) \\ &= 1.3 + (-2)(-2) + 3.1 \\ &= 3 + 4 + 3 \\ &= 10 \end{aligned}$$

Also, we know that
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

 $\therefore 10 = \sqrt{14} \sqrt{14} \cos \theta$
 $\Rightarrow \cos \theta = \frac{10}{14}$
 $\Rightarrow \theta = \cos^{-1} \left(\frac{5}{7}\right)$

Question 3:

Find the projection of the vector $\hat{i} - \hat{j}$ on the vector $\hat{i} + \hat{j}$. Answer

Let
$$\vec{a} = \hat{i} - \hat{j}_{and} \vec{b} = \hat{i} + \hat{j}$$
.

Now, projection of vector \vec{a} on \vec{b} is given by,

$$\frac{1}{\left|\vec{b}\right|}\left(\vec{a}.\vec{b}\right) = \frac{1}{\sqrt{1+1}}\left\{1.1 + (-1)(1)\right\} = \frac{1}{\sqrt{2}}(1-1) = 0$$

Hence, the projection of vector \vec{a} on \vec{b} is 0.

Question 4:

Find the projection of the vector $\hat{i}+3\hat{j}+7\hat{k}$ on the vector $7\hat{i}-\hat{j}+8\hat{k}$. Answer

Let $\vec{a} = \hat{i} + 3\hat{j} + 7\hat{k}$ and $\hat{b} = 7\hat{i} - \hat{j} + 8\hat{k}$.

Now, projection of vector \vec{a} on \vec{b} is given by,

$$\frac{1}{\left|\vec{b}\right|}\left(\vec{a}\cdot\vec{b}\right) = \frac{1}{\sqrt{7^2 + (-1)^2 + 8^2}}\left\{1(7) + 3(-1) + 7(8)\right\} = \frac{7 - 3 + 56}{\sqrt{49 + 1 + 64}} = \frac{60}{\sqrt{114}}$$

Question 5:

Show that each of the given three vectors is a unit vector:

$$\frac{1}{7} \left(2\hat{i} + 3\hat{j} + 6\hat{k} \right), \frac{1}{7} \left(3\hat{i} - 6\hat{j} + 2\hat{k} \right), \frac{1}{7} \left(6\hat{i} + 2\hat{j} - 3\hat{k} \right)$$

Also, show that they are mutually perpendicular to each other. Answer

Let
$$\vec{a} = \frac{1}{7} \left(2\hat{i} + 3\hat{j} + 6\hat{k} \right) = \frac{2}{7}\hat{i} + \frac{3}{7}\hat{j} + \frac{6}{7}\hat{k},$$

 $\vec{b} = \frac{1}{7} \left(3\hat{i} - 6\hat{j} + 2\hat{k} \right) = \frac{3}{7}\hat{i} - \frac{6}{7}\hat{j} + \frac{2}{7}\hat{k},$
 $\vec{c} = \frac{1}{7} \left(6\hat{i} + 2\hat{j} - 3\hat{k} \right) = \frac{6}{7}\hat{i} + \frac{2}{7}\hat{j} - \frac{3}{7}\hat{k}.$
 $|\vec{a}| = \sqrt{\left(\frac{2}{7}\right)^2 + \left(\frac{3}{7}\right)^2 + \left(\frac{6}{7}\right)^2} = \sqrt{\frac{4}{49} + \frac{9}{49} + \frac{36}{49}} = 1$
 $|\vec{b}| = \sqrt{\left(\frac{3}{7}\right)^2 + \left(-\frac{6}{7}\right)^2 + \left(\frac{2}{7}\right)^2} = \sqrt{\frac{9}{49} + \frac{36}{49} + \frac{4}{49}} = 1$
 $|\vec{c}| = \sqrt{\left(\frac{6}{7}\right)^2 + \left(\frac{2}{7}\right)^2 + \left(-\frac{3}{7}\right)^2} = \sqrt{\frac{36}{49} + \frac{4}{49} + \frac{9}{49}} = 1$

Thus, each of the given three vectors is a unit vector.

$$\vec{a} \cdot \vec{b} = \frac{2}{7} \times \frac{3}{7} + \frac{3}{7} \times \left(\frac{-6}{7}\right) + \frac{6}{7} \times \frac{2}{7} = \frac{6}{49} - \frac{18}{49} + \frac{12}{49} = 0$$
$$\vec{b} \cdot \vec{c} = \frac{3}{7} \times \frac{6}{7} + \left(\frac{-6}{7}\right) \times \frac{2}{7} + \frac{2}{7} \times \left(\frac{-3}{7}\right) = \frac{18}{49} - \frac{12}{49} - \frac{6}{49} = 0$$
$$\vec{c} \cdot \vec{a} = \frac{6}{7} \times \frac{2}{7} + \frac{2}{7} \times \frac{3}{7} + \left(\frac{-3}{7}\right) \times \frac{6}{7} = \frac{12}{49} + \frac{6}{49} - \frac{18}{49} = 0$$

Hence, the given three vectors are mutually perpendicular to each other.

Class XII

Question 6:

Find
$$|\vec{a}|_{and} |\vec{b}|_{, if} (\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 8$$
 and $|\vec{a}| = 8 |\vec{b}|$.
Answer
 $(\vec{a} \cdot \vec{b}) \cdot (\vec{a} - \vec{b}) = 8$
 $\Rightarrow \vec{a} \cdot \vec{a} - \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} - \vec{b} \cdot \vec{b} = 8$
 $\Rightarrow |\vec{a}|^2 - |\vec{b}|^2 = 8$
 $\Rightarrow (8|\vec{b}|)^2 - |\vec{b}|^2 = 8$ $[|\vec{a}| = 8|\vec{b}|]$
 $\Rightarrow 64|\vec{b}|^2 - |\vec{b}|^2 = 8$
 $\Rightarrow 63|\vec{b}|^2 = 8$
 $\Rightarrow |\vec{b}|^2 = \frac{8}{63}$
 $\Rightarrow |\vec{b}| = \sqrt{\frac{8}{63}}$ [Magnitude of a vector is non-negative]
 $\Rightarrow |\vec{b}| = \frac{2\sqrt{2}}{3\sqrt{7}}$
 $|\vec{a}| = 8|\vec{b}| = \frac{8 \times 2\sqrt{2}}{3\sqrt{7}} = \frac{16\sqrt{2}}{3\sqrt{7}}$
Question 7:
Evaluate the product $(3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + 7\vec{b})$.

Answer

$$(3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + 7\vec{b}) = 3\vec{a} \cdot 2\vec{a} + 3\vec{a} \cdot 7\vec{b} - 5\vec{b} \cdot 2\vec{a} - 5\vec{b} \cdot 7\vec{b} = 6\vec{a} \cdot \vec{a} + 21\vec{a} \cdot \vec{b} - 10\vec{a} \cdot \vec{b} - 35\vec{b} \cdot \vec{b} = 6|\vec{a}|^2 + 11\vec{a} \cdot \vec{b} - 35|\vec{b}|^2$$

Class XII

Question 8:

Find the magnitude of two vectors \vec{a} and \vec{b} , having the same magnitude and such that

1

the angle between them is 60° and their scalar product is $\ensuremath{^2}$. Answer

Let θ be the angle between the vectors \vec{a} and \vec{b} .

It is given that
$$|\vec{a}| = |\vec{b}|, \ \vec{a} \cdot \vec{b} = \frac{1}{2}$$
, and $\theta = 60^{\circ}$(1)

We know that $\vec{a} \cdot \vec{b} = \left| \vec{a} \right| \left| \vec{b} \right| \cos \theta$

$$\therefore \frac{1}{2} = |\vec{a}| |\vec{a}| \cos 60^{\circ} \qquad [Using (1)]$$
$$\Rightarrow \frac{1}{2} = |\vec{a}|^2 \times \frac{1}{2}$$
$$\Rightarrow |\vec{a}|^2 = 1$$
$$\Rightarrow |\vec{a}| = |\vec{b}| = 1$$

Question 9:

Find $|\vec{x}|$, if for a unit vector \vec{a} , $(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 12$. Answer $(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 12$ $\Rightarrow \vec{x} \cdot \vec{x} + \vec{x} \cdot \vec{a} - \vec{a} \cdot \vec{x} - \vec{a} \cdot \vec{a} = 12$ $\Rightarrow |\vec{x}|^2 - |\vec{a}|^2 = 12$ $\Rightarrow |\vec{x}|^2 - 1 = 12$ $[|\vec{a}| = 1 \text{ as } \vec{a} \text{ is a unit vector}]$ $\Rightarrow |\vec{x}|^2 = 13$ $\therefore |\vec{x}| = \sqrt{13}$ **Question 10:**

If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} ,

then find the value of λ .

Answer

The given vectors are $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$, and $\vec{c} = 3\hat{i} + \hat{j}$. Now, $\vec{a} + \lambda \vec{b} = (2\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k}) = (2 - \lambda)\hat{i} + (2 + 2\lambda)\hat{j} + (3 + \lambda)\hat{k}$ If $(\vec{a} + \lambda \vec{b})$ is perpendicular to \vec{c} , then $(\vec{a} + \lambda \vec{b}) \cdot \vec{c} = 0$. $\Rightarrow [(2 - \lambda)\hat{i} + (2 + 2\lambda)\hat{j} + (3 + \lambda)\hat{k}] \cdot (3\hat{i} + \hat{j}) = 0$ $\Rightarrow (2 - \lambda)3 + (2 + 2\lambda)1 + (3 + \lambda)0 = 0$ $\Rightarrow 6 - 3\lambda + 2 + 2\lambda = 0$ $\Rightarrow -\lambda + 8 = 0$ $\Rightarrow \lambda = 8$

Hence, the required value of λ is 8.

Question 11:

Show that $|\vec{a}|\vec{b}+|\vec{b}|\vec{a}$ is perpendicular to $|\vec{a}|\vec{b}-|\vec{b}|\vec{a}$, for any two nonzero vectors \vec{a} and \vec{b} Answer

$$\left(\left| \vec{a} \right| \vec{b} + \left| \vec{b} \right| \vec{a} \right) \cdot \left(\left| \vec{a} \right| \vec{b} - \left| \vec{b} \right| \vec{a} \right)$$

$$= \left| \vec{a} \right|^2 \vec{b} \cdot \vec{b} - \left| \vec{a} \right| \left| \vec{b} \right| \vec{b} \cdot \vec{a} + \left| \vec{b} \right| \left| \vec{a} \right| \vec{a} \cdot \vec{b} - \left| \vec{b} \right|^2 \vec{a} \cdot \vec{a}$$

$$= \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 - \left| \vec{b} \right|^2 \left| \vec{a} \right|^2$$

$$= 0$$

Hence, $|\vec{a}|b+|b|\vec{a}$ and $|\vec{a}|b-|b|\vec{a}$ are perpendicular to each other.

Question 12: If $\vec{a} \cdot \vec{a} = 0$ and $\vec{a} \cdot \vec{b} = 0$, then what can be concluded about the vector \vec{b} ? Class XII

Answer

It is given that $\vec{a} \cdot \vec{a} = 0$ and $\vec{a} \cdot \vec{b} = 0$. Now, $\vec{a} \cdot \vec{a} = 0 \Rightarrow |\vec{a}|^2 = 0 \Rightarrow |\vec{a}| = 0$

 $\therefore \vec{a}$ is a zero vector.

Hence, vector \vec{b} satisfying $\vec{a} \cdot \vec{b} = 0$ can be any vector.

Question 14:

If either vector $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$, then $\vec{a} \cdot \vec{b} = 0$. But the converse need not be true. Justify your answer with an example.

Answer

Consider $\vec{a} = 2\hat{i} + 4\hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + 3\hat{j} - 6\hat{k}$.

Then,

$$\vec{a} \cdot \vec{b} = 2.3 + 4.3 + 3(-6) = 6 + 12 - 18 = 0$$

We now observe that:

$$\begin{vmatrix} \vec{a} \end{vmatrix} = \sqrt{2^2 + 4^2 + 3^2} = \sqrt{29}$$

$$\therefore \vec{a} \neq \vec{0}$$

$$\begin{vmatrix} \vec{b} \end{vmatrix} = \sqrt{3^2 + 3^2 + (-6)^2} = \sqrt{54}$$

$$\therefore \vec{b} \neq \vec{0}$$

Hence, the converse of the given statement need not be true.

Question 15:

If the vertices A, B, C of a triangle ABC are (1, 2, 3), (-1, 0, 0), (0, 1, 2), respectively,

then find $\Box ABC$. [$\Box ABC$ is the angle between the vectors \overrightarrow{BA} and \overrightarrow{BC}]

Answer

The vertices of \triangle ABC are given as A (1, 2, 3), B (-1, 0, 0), and C (0, 1, 2).

Also, it is given that $\Box ABC$ is the angle between the vectors \overline{BA} and \overline{BC} .

$$\begin{aligned} \overrightarrow{BA} &= \{1 - (-1)\}\hat{i} + (2 - 0)\hat{j} + (3 - 0)\hat{k} = 2\hat{i} + 2\hat{j} + 3\hat{k} \\ \overrightarrow{BC} &= \{0 - (-1)\}\hat{i} + (1 - 0)\hat{j} + (2 - 0)\hat{k} = \hat{i} + \hat{j} + 2\hat{k} \\ \therefore \overrightarrow{BA} \cdot \overrightarrow{BC} &= (2\hat{i} + 2\hat{j} + 3\hat{k}) \cdot (\hat{i} + \hat{j} + 2\hat{k}) = 2 \times 1 + 2 \times 1 + 3 \times 2 = 2 + 2 + 6 = 10 \\ |\overrightarrow{BA}| &= \sqrt{2^2 + 2^2 + 3^2} = \sqrt{4 + 4 + 9} = \sqrt{17} \\ |\overrightarrow{BC}| &= \sqrt{1 + 1 + 2^2} = \sqrt{6} \end{aligned}$$

Now, it is known that:

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = |\overrightarrow{BA}| |\overrightarrow{BC}| \cos(\angle ABC)$$
$$\therefore 10 = \sqrt{17} \times \sqrt{6} \cos(\angle ABC)$$
$$\Rightarrow \cos(\angle ABC) = \frac{10}{\sqrt{17} \times \sqrt{6}}$$
$$\Rightarrow \angle ABC = \cos^{-1} \left(\frac{10}{\sqrt{102}}\right)$$

Question 16:

Show that the points A (1, 2, 7), B (2, 6, 3) and C (3, 10, -1) are collinear. Answer

The given points are A (1, 2, 7), B (2, 6, 3), and C (3, 10, -1).

$$\therefore \overrightarrow{AB} = (2-1)\hat{i} + (6-2)\hat{j} + (3-7)\hat{k} = \hat{i} + 4\hat{j} - 4\hat{k}$$

$$\overrightarrow{BC} = (3-2)\hat{i} + (10-6)\hat{j} + (-1-3)\hat{k} = \hat{i} + 4\hat{j} - 4\hat{k}$$

$$\overrightarrow{AC} = (3-1)\hat{i} + (10-2)\hat{j} + (-1-7)\hat{k} = 2\hat{i} + 8\hat{j} - 8\hat{k}$$

$$\left|\overrightarrow{AB}\right| = \sqrt{1^2 + 4^2} + (-4)^2 = \sqrt{1 + 16 + 16} = \sqrt{33}$$

$$\left|\overrightarrow{BC}\right| = \sqrt{1^2 + 4^2} + (-4)^2 = \sqrt{1 + 16 + 16} = \sqrt{33}$$

$$\left|\overrightarrow{AC}\right| = \sqrt{2^2 + 8^2} + 8^2 = \sqrt{4 + 64 + 64} = \sqrt{132} = 2\sqrt{33}$$

$$\therefore \left|\overrightarrow{AC}\right| = \left|\overrightarrow{AB}\right| + \left|\overrightarrow{BC}\right|$$

Hence, the given points A, B, and C are collinear.

Question 17:

Show that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ form the vertices of a right angled triangle.

Answer

Let vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ be position vectors of points A, B, and C respectively.

i.e.,
$$\overrightarrow{OA} = 2\hat{i} - \hat{j} + \hat{k}$$
, $\overrightarrow{OB} = \hat{i} - 3\hat{j} - 5\hat{k}$ and $\overrightarrow{OC} = 3\hat{i} - 4\hat{j} - 4\hat{k}$

Now, vectors \overrightarrow{AB} , \overrightarrow{BC} , and \overrightarrow{AC} represent the sides of $\triangle ABC$.

i.e.,
$$\overrightarrow{OA} = 2\hat{i} - \hat{j} + \hat{k}$$
, $\overrightarrow{OB} = \hat{i} - 3\hat{j} - 5\hat{k}$, and $\overrightarrow{OC} = 3\hat{i} - 4\hat{j} - 4\hat{k}$
 $\therefore \overrightarrow{AB} = (1-2)\hat{i} + (-3+1)\hat{j} + (-5-1)\hat{k} = -\hat{i} - 2\hat{j} - 6\hat{k}$
 $\overrightarrow{BC} = (3-1)\hat{i} + (-4+3)\hat{j} + (-4+5)\hat{k} = 2\hat{i} - \hat{j} + \hat{k}$
 $\overrightarrow{AC} = (2-3)\hat{i} + (-1+4)\hat{j} + (1+4)\hat{k} = -\hat{i} + 3\hat{j} + 5\hat{k}$
 $\left|\overrightarrow{AB}\right| = \sqrt{(-1)^2 + (-2)^2 + (-6)^2} = \sqrt{1+4+36} = \sqrt{41}$
 $\left|\overrightarrow{BC}\right| = \sqrt{2^2 + (-1)^2 + 1^2} = \sqrt{4+1+1} = \sqrt{6}$
 $\left|\overrightarrow{AC}\right| = \sqrt{(-1)^2 + 3^2 + 5^2} = \sqrt{1+9+25} = \sqrt{35}$
 $\therefore \left|\overrightarrow{BC}\right|^2 + \left|\overrightarrow{AC}\right|^2 = 6+35 = 41 = \left|\overrightarrow{AB}\right|^2$

Hence, $\triangle ABC$ is a right-angled triangle.

Question 18:

If \vec{a} is a nonzero vector of magnitude 'a' and λ a nonzero scalar, then $\lambda \vec{a}$ is unit vector if

(A)
$$\lambda = 1$$
 (B) $\lambda = -1$ (C) $a = |\lambda|$
(D) $a = \frac{1}{|\lambda|}$

Answer

Vector $\lambda \vec{a}$ is a unit vector if $|\lambda \vec{a}| = 1$.

Class XII	Chapter 10 – Vector Algebra	Maths
Now,		
$\left \lambda\vec{a}\right = 1$		
$\Rightarrow \lambda \vec{a} = 1$		
$\Rightarrow \left \vec{a} \right = \frac{1}{\left \lambda \right }$	$\left[\lambda\neq0\right]$	
$\Rightarrow a = \frac{1}{ \lambda }$	$\left[\left \vec{a}\right = a\right]$	
Hence, vector $\lambda \vec{a}$ is a unit vector if $a = \frac{1}{ \lambda }$.		
The correct answer is D.		