Exercise 10.4

Question 1:

Find
$$|\vec{a} \times \vec{b}|$$
, if $\vec{a} = \hat{i} - 7\hat{j} + 7\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$

Answer

We have,

$$\vec{a} = \hat{i} - 7\hat{j} + 7\hat{k}_{and}\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$$
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -7 & 7 \\ 3 & -2 & 2 \end{vmatrix}$$
$$= \hat{i}(-14 + 14) - \hat{j}(2 - 21) + \hat{k}(-2 + 21) = 19\hat{j} + 19\hat{k}$$
$$\therefore |\vec{a} \times \vec{b}| = \sqrt{(19)^2 + (19)^2} = \sqrt{2 \times (19)^2} = 19\sqrt{2}$$

-

Question 2:

Find a unit vector perpendicular to each of the vector $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}_{and}\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$

Answer

We have,

$$\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}_{and}\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$$

$$\therefore \vec{a} + \vec{b} = 4\hat{i} + 4\hat{j}, \ \vec{a} - \vec{b} = 2\hat{i} + 4\hat{k}$$

$$\left(\vec{a} + \vec{b}\right) \times \left(\vec{a} - \vec{b}\right) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 4 & 0 \\ 2 & 0 & 4 \end{vmatrix} = \hat{i}(16) - \hat{j}(16) + \hat{k}(-8) = 16\hat{i} - 16\hat{j} - 8\hat{k}$$

$$\therefore \left| \left(\vec{a} + \vec{b}\right) \times \left(\vec{a} - \vec{b}\right) \right| = \sqrt{16^2 + (-16)^2 + (-8)^2}$$

$$= \sqrt{2^2 \times 8^2 + 2^2 \times 8^2 + 8^2}$$

$$= 8\sqrt{2^2 + 2^2 + 1} = 8\sqrt{9} = 8 \times 3 = 24$$

Hence, the unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ is given by the relation,

$$=\pm \frac{\left(\vec{a}+\vec{b}\right) \times \left(\vec{a}-\vec{b}\right)}{\left|\left(\vec{a}+\vec{b}\right) \times \left(\vec{a}-\vec{b}\right)\right|} =\pm \frac{16\hat{i}-16\hat{j}-8\hat{k}}{24}$$
$$=\pm \frac{2\hat{i}-2\hat{j}-\hat{k}}{3} =\pm \frac{2}{3}\hat{i} \mp \frac{2}{3}\hat{j} \mp \frac{1}{3}\hat{k}$$

Question 3:

If a unit vector \vec{a} makes an angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} , then find θ and hence, the compounds of \vec{a} . Answer

Let unit vector a have (a_1, a_2, a_3) components.

$$\Box \vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$

Since \vec{a} is a unit vector, $|\vec{a}| = 1$.

Also, it is given that \vec{a} makes angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} , and an acute angle θ with \hat{k} . Then, we have:

$$\cos \frac{\pi}{3} = \frac{a_1}{|\vec{a}|}$$

$$\Rightarrow \frac{1}{2} = a_1 \qquad [|\vec{a}| = 1]$$

$$\cos \frac{\pi}{4} = \frac{a_2}{|\vec{a}|}$$

$$\Rightarrow \frac{1}{\sqrt{2}} = a_2 \qquad [|\vec{a}| = 1]$$
Also, $\cos \theta = \frac{a_3}{|\vec{a}|}$.
$$\Rightarrow a_3 = \cos \theta$$

Now,

$$|a| = 1$$

$$\Rightarrow \sqrt{a_1^2 + a_2^2 + a_3^2} = 1$$

$$\Rightarrow \left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + \cos^2 \theta = 1$$

$$\Rightarrow \frac{1}{4} + \frac{1}{2} + \cos^2 \theta = 1$$

$$\Rightarrow \frac{3}{4} + \cos^2 \theta = 1$$

$$\Rightarrow \cos^2 \theta = 1 - \frac{3}{4} = \frac{1}{4}$$

$$\Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$$

$$\therefore a_3 = \cos \frac{\pi}{3} = \frac{1}{2}$$

Hence, $\theta = \frac{\pi}{3}$ and the components of \vec{a} are $\left(\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$.

Question 4:

Show that

$$\left(\vec{a}-\vec{b}\right)\times\left(\vec{a}+\vec{b}\right)=2\left(\vec{a}\times\vec{b}\right)$$

Answer

$$\begin{aligned} &\left(\vec{a} - \vec{b}\right) \times \left(\vec{a} + \vec{b}\right) \\ &= \left(\vec{a} - \vec{b}\right) \times \vec{a} + \left(\vec{a} - \vec{b}\right) \times \vec{b} \\ &= \vec{a} \times \vec{a} - \vec{b} \times \vec{a} + \vec{a} \times \vec{b} - \vec{b} \times \vec{b} \\ &= \vec{0} + \vec{a} \times \vec{b} + \vec{a} \times \vec{b} - \vec{0} \\ &= 2\vec{a} \times \vec{b} \end{aligned}$$

[By distributivity of vector product over addition] [Again, by distributivity of vector product over addition]

```
Question 5:
```

Find λ and μ if $(2\hat{i}+6\hat{j}+27\hat{k})\times(\hat{i}+\lambda\hat{j}+\mu\hat{k})=\vec{0}$.

Answer

$$\begin{aligned} &\left(2\hat{i}+6\hat{j}+27\hat{k}\right) \times \left(\hat{i}+\lambda\hat{j}+\mu\hat{k}\right) = \vec{0} \\ \Rightarrow & \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 6 & 27 \\ 1 & \lambda & \mu \end{vmatrix} = 0\hat{i}+0\hat{j}+0\hat{k} \\ \Rightarrow \hat{i}\left(6\mu-27\lambda\right) - \hat{j}\left(2\mu-27\right) + \hat{k}\left(2\lambda-6\right) = 0\hat{i}+0\hat{j}+0\hat{k} \end{aligned}$$

On comparing the corresponding components, we have:

$$6\mu - 27\lambda = 0$$

$$2\mu - 27 = 0$$

$$2\lambda - 6 = 0$$

Now,

$$2\lambda - 6 = 0 \Rightarrow \lambda = 3$$

$$2\mu - 27 = 0 \Rightarrow \mu = \frac{27}{2}$$

$$\lambda = 3 \text{ and } \mu = \frac{27}{2}.$$

Hence,

nence,

Question 6:

Given that $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \times \vec{b} = \vec{0}$. What can you conclude about the vectors \vec{a} and \vec{b} ? Answer

 $\vec{a} \cdot \vec{b} = 0$

Then,

(i) Either
$$|\vec{a}| = 0$$
 or $|\vec{b}| = 0$, or $\vec{a} \perp \vec{b}$ (in case \vec{a} and \vec{b} are non-zero)
 $\vec{a} \times \vec{b} = 0$
(ii) Either $|\vec{a}| = 0$ or $|\vec{b}| = 0$, or $\vec{a} \parallel \vec{b}$ (in case \vec{a} and \vec{b} are non-zero)

But, \vec{a} and \vec{b} cannot be perpendicular and parallel simultaneously. Hence, $|\vec{a}| = 0$ or $|\vec{b}| = 0$. **Question 7:**

Let the vectors \vec{a} , \vec{b} , \vec{c} given as $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, $c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$. Then show $= \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ that Answer We have, $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \ \vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}, \ \vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ $(\vec{b} + \vec{c}) = (b_1 + c_1)\hat{i} + (b_2 + c_2)\hat{j} + (b_3 + c_3)\hat{k}$ Now, $\vec{a} \times (\vec{b} + \vec{c}) \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \end{vmatrix}$ $=\hat{i}\left[a_{2}(b_{3}+c_{3})-a_{3}(b_{2}+c_{2})\right]-\hat{j}\left[a_{1}(b_{3}+c_{3})-a_{3}(b_{1}+c_{1})\right]+\hat{k}\left[a_{1}(b_{2}+c_{2})-a_{2}(b_{1}+c_{1})\right]$ $=\hat{i}\left[a_{2}b_{3}+a_{2}c_{3}-a_{3}b_{2}-a_{3}c_{2}\right]+\hat{j}\left[-a_{1}b_{3}-a_{1}c_{3}+a_{3}b_{1}+a_{3}c_{1}\right]+\hat{k}\left[a_{1}b_{2}+a_{1}c_{2}-a_{2}b_{1}-a_{2}c_{1}\right] \dots (1)$ $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ $=\hat{i}[a_2b_3-a_3b_2]+\hat{j}[b_1a_3-a_1b_3]+\hat{k}[a_1b_2-a_2b_1]$ (2) $\vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ $=\hat{i}[a_{2}c_{3}-a_{3}c_{2}]+\hat{j}[a_{3}c_{1}-a_{1}c_{3}]+\hat{k}[a_{1}c_{2}-a_{2}c_{1}]$ (3) On adding (2) and (3), we get: $(\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c}) = \hat{i} [a_2 b_3 + a_2 c_3 - a_3 b_2 - a_3 c_2] + \hat{j} [b_1 a_3 + a_3 c_1 - a_1 b_3 - a_1 c_3]$ $+\hat{k}[a_1b_2+a_1c_2-a_2b_1-a_2c_1]$ (4)

Now, from (1) and (4), we have:

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

Hence, the given result is proved.

Question 8:

If either $\vec{a} = \vec{0}_{or}\vec{b} = \vec{0}$, then $\vec{a} \times \vec{b} = \vec{0}$. Is the converse true? Justify your answer with an example.

Answer

Take any parallel non-zero vectors so that $\vec{a} \times \vec{b} = \vec{0}$.

Let
$$\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$$
, $\vec{b} = 4\hat{i} + 6\hat{j} + 8\hat{k}$.

Then,

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 4 & 6 & 8 \end{vmatrix} = \hat{i} (24 - 24) - \hat{j} (16 - 16) + \hat{k} (12 - 12) = 0 \hat{i} + 0 \hat{j} + 0 \hat{k} = \vec{0}$$

It can now be observed that:

$$\begin{vmatrix} \vec{a} \end{vmatrix} = \sqrt{2^2 + 3^2 + 4^2} = \sqrt{29}$$

$$\therefore \vec{a} \neq \vec{0}$$

$$\begin{vmatrix} \vec{b} \end{vmatrix} = \sqrt{4^2 + 6^2 + 8^2} = \sqrt{116}$$

$$\therefore \vec{b} \neq \vec{0}$$

Hence, the converse of the given statement need not be true.

Question 9:

Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and

C (1, 5, 5).

Answer

The vertices of triangle ABC are given as A (1, 1, 2), B (2, 3, 5), and C (1, 5, 5).

The adjacent sides \overrightarrow{AB} and \overrightarrow{BC} of $\triangle ABC$ are given as:

$$\overrightarrow{AB} = (2-1)\hat{i} + (3-1)\hat{j} + (5-2)\hat{k} = \hat{i} + 2\hat{j} + 3\hat{k}$$
$$\overrightarrow{BC} = (1-2)\hat{i} + (5-3)\hat{j} + (5-5)\hat{k} = -\hat{i} + 2\hat{j}$$

Area of
$$\triangle ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{BC}|$$

 $\overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -1 & 2 & 0 \end{vmatrix} = \hat{i} (-6) - \hat{j} (3) + \hat{k} (2+2) = -6\hat{i} - 3\hat{j} + 4\hat{k}$
 $\therefore |\overrightarrow{AB} \times \overrightarrow{BC}| = \sqrt{(-6)^2 + (-3)^2 + 4^2} = \sqrt{36 + 9 + 16} = \sqrt{61}$
Hence, the area of $\triangle ABC = \frac{\sqrt{61}}{2}$ square units.

Question 10:

Find the area of the parallelogram whose adjacent sides are determined by the vector $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$

Answer

The area of the parallelogram whose adjacent sides are \vec{a} and $\vec{b}_{is} |\vec{a} \times \vec{b}|$. Adjacent sides are given as:

$$\vec{a} = \hat{i} - \hat{j} + 3\hat{k} \text{ and } \vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$$

$$\therefore \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1 \end{vmatrix} = \hat{i}(-1+21) - \hat{j}(1-6) + \hat{k}(-7+2) = 20\hat{i} + 5\hat{j} - 5\hat{k}$$

$$\left| \vec{a} \times \vec{b} \right| = \sqrt{20^2 + 5^2 + 5^2} = \sqrt{400 + 25 + 25} = 15\sqrt{2}$$

Hence, the area of the given parallelogram is $15\sqrt{2}$ square units

Question 11:

Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}| = 3$ and $|\vec{b}| = \frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between \vec{a} and \vec{b} is

 $\frac{\pi}{6} \frac{\pi}{6} \frac{\pi}{8} \frac{\pi}{4} \frac{\pi}{(C)} \frac{\pi}{3} \frac{\pi}{(D)} \frac{\pi}{2}$ Answer It is given that $|\vec{a}| = 3$ and $|\vec{b}| = \frac{\sqrt{2}}{3}$. We know that $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$, where \hat{n} is a unit vector perpendicular to both \vec{a} and \vec{b} and θ is the angle between \vec{a} and \vec{b} . Now, $\vec{a} \times \vec{b}$ is a unit vector if $|\vec{a} \times \vec{b}| = 1$. $|\vec{a} \times \vec{b}| = 1$ $\Rightarrow |\vec{a}| |\vec{b}| \sin \theta \hat{n}| = 1$ $\Rightarrow 3 \times \frac{\sqrt{2}}{3} \times \sin \theta = 1$ $\Rightarrow \sin \theta = \frac{1}{\sqrt{2}}$ $\Rightarrow \theta = \frac{\pi}{4}$

Hence, $\vec{a} \times \vec{b}$ is a unit vector if the angle between \vec{a} and \vec{b} is $\frac{\pi}{4}$. The correct answer is B.

Question 12:

Area of a rectangle having vertices A, B, C, and D with position vectors

$$-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \hat{i} - \frac{1}{2}\hat{j} + 4\hat{k} \text{ and } -\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k} \text{ respectively is}$$
(A) $\frac{1}{2}$ (B) 1
(C) 2 (D) 4
Answer

The position vectors of vertices A, B, C, and D of rectangle ABCD are given as:

$$\overrightarrow{OA} = -\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \overrightarrow{OB} = \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \overrightarrow{OC} = \hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}, \ \overrightarrow{OD} = -\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$$

The adjacent sides \overrightarrow{AB} and \overrightarrow{BC} of the given rectangle are given as:

$$\overline{AB} = (1+1)\hat{i} + \left(\frac{1}{2} - \frac{1}{2}\right)\hat{j} + (4-4)\hat{k} = 2\hat{i}$$
$$\overline{BC} = (1-1)\hat{i} + \left(-\frac{1}{2} - \frac{1}{2}\right)\hat{j} + (4-4)\hat{k} = -\hat{j}$$
$$\therefore \overline{AB} \times \overline{BC} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 0 \\ 0 & -1 & 0\end{vmatrix} = \hat{k}(-2) = -2\hat{k}$$
$$\left|\overline{AB} \times \overline{AC}\right| = \sqrt{(-2)^2} = 2$$

Now, it is known that the area of a parallelogram whose adjacent sides are

$$\vec{a}$$
 and $\vec{b}_{is} \left| \vec{a} \times \vec{b} \right|$

Hence, the area of the given rectangle is $\left| \overrightarrow{AB} \times \overrightarrow{BC} \right| = 2$ square units. The correct answer is C.