Miscellaneous Solutions

Question 1:

Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of x-axis.

Answer

If \vec{r} is a unit vector in the XY-plane, then $\vec{r} = \cos\theta \hat{i} + \sin\theta \hat{j}$.

Here, θ is the angle made by the unit vector with the positive direction of the *x*-axis. Therefore, for $\theta = 30^{\circ}$:

$$\vec{r} = \cos 30^{\circ}\hat{i} + \sin 30^{\circ}\hat{j} = \frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j}$$

Hence, the required unit vector is $\frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j}$

;, Ч

Question 2:

Find the scalar components and magnitude of the vector joining the points

 $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$

Answer

The vector joining the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ can be obtained by,

PQ = Position vector of Q – Position vector of P

$$= (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$
$$\left|\overline{PQ}\right| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Hence, the scalar components and the magnitude of the vector joining the given points

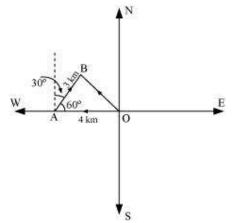
are respectively
$$\{(x_2 - x_1), (y_2 - y_1), (z_2 - z_1)\}$$
 and $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$.

Question 3:

A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure. Answer

Let O and B be the initial and final positions of the girl respectively.

Then, the girl's position can be shown as:



Now, we have:

$$\overrightarrow{OA} = -4\hat{i}$$
$$\overrightarrow{AB} = \hat{i} |\overrightarrow{AB}| \cos 60^\circ + \hat{j} |\overrightarrow{AB}| \sin 60^\circ$$
$$= \hat{i} 3 \times \frac{1}{2} + \hat{j} 3 \times \frac{\sqrt{3}}{2}$$
$$= \frac{3}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$

By the triangle law of vector addition, we have:

$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$$
$$= \left(-4\hat{i}\right) + \left(\frac{3}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}\right)$$
$$= \left(-4 + \frac{3}{2}\hat{j}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}\right)$$
$$= \left(\frac{-8+3}{2}\hat{j}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}\right)$$
$$= \frac{-5}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$

Hence, the girl's displacement from her initial point of departure is

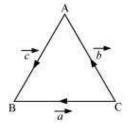
 $\frac{-5}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$

Question 4:

If $\vec{a} = \vec{b} + \vec{c}$, then is it true that $|\vec{a}| = |\vec{b}| + |\vec{c}|$? Justify your answer.

Answer

In $\triangle ABC$, let $\overrightarrow{CB} = \vec{a}$, $\overrightarrow{CA} = \vec{b}$, and $\overrightarrow{AB} = \vec{c}$ (as shown in the following figure).



Now, by the triangle law of vector addition, we have $\vec{a} = \vec{b} + \vec{c}$.

It is clearly known that $|\vec{a}|$, $|\vec{b}|$, and $|\vec{c}|$ represent the sides of Δ ABC. Also, it is known that the sum of the lengths of any two sides of a triangle is greater than the third side.

 $|\vec{a}| < |\vec{b}| + |\vec{c}|$

Hence, it is not true that $\left| \vec{a} \right| = \left| \vec{b} \right| + \left| \vec{c} \right|$.

Question 5:

Find the value of x for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector. Answer

$$x\left(\hat{i}+\hat{j}+\hat{k}
ight)_{is a unit vector if} \left|x\left(\hat{i}+\hat{j}+\hat{k}
ight)\right|=1$$

Now,

$$\begin{aligned} \left| x \left(\hat{i} + \hat{j} + \hat{k} \right) \right| &= 1 \\ \Rightarrow \sqrt{x^2 + x^2 + x^2} &= 1 \\ \Rightarrow \sqrt{3x^2} &= 1 \\ \Rightarrow \sqrt{3} x &= 1 \\ \Rightarrow x &= \pm \frac{1}{\sqrt{3}} \end{aligned}$$

Hence, the required value of x is $\pm \frac{1}{\sqrt{3}}$.

Question 6:

Find a vector of magnitude 5 units, and parallel to the resultant of the vectors

$$\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$$
 and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$

Answer

We have,

$$\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$$
 and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$

Let \vec{c} be the resultant of \vec{a} and \vec{b} .

Then,

$$\vec{c} = \vec{a} + \vec{b} = (2+1)\hat{i} + (3-2)\hat{j} + (-1+1)\hat{k} = 3\hat{i} + \hat{j}$$

$$\therefore |\vec{c}| = \sqrt{3^2 + 1^2} = \sqrt{9+1} = \sqrt{10}$$

$$\therefore \hat{c} = \frac{\vec{c}}{|\vec{c}|} = \frac{(3\hat{i} + \hat{j})}{\sqrt{10}}$$

Hence, the vector of magnitude 5 units and parallel to the resultant of vectors \vec{a} and \vec{b} is

$$\pm 5 \cdot \hat{c} = \pm 5 \cdot \frac{1}{\sqrt{10}} \left(3\hat{i} + \hat{j} \right) = \pm \frac{3\sqrt{10}\hat{i}}{2} \pm \frac{\sqrt{10}}{2} \hat{j}.$$

Question 7:

If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ and $\vec{c} = \hat{i} - 2\hat{j} + \hat{k}$, find a unit vector parallel to the vector $2\vec{a} - \vec{b} + 3\vec{c}$.

Answer

We have,

$$\vec{a} = \hat{i} + \hat{j} + \hat{k}, \ \vec{b} = 2\hat{i} - \hat{j} + 3\hat{k} \text{ and } \vec{c} = \hat{i} - 2\hat{j} + \hat{k}$$

$$2\vec{a} - \vec{b} + 3\vec{c} = 2\left(\hat{i} + \hat{j} + \hat{k}\right) - \left(2\hat{i} - \hat{j} + 3\hat{k}\right) + 3\left(\hat{i} - 2\hat{j} + \hat{k}\right)$$

$$= 2\hat{i} + 2\hat{j} + 2\hat{k} - 2\hat{i} + \hat{j} - 3\hat{k} + 3\hat{i} - 6\hat{j} + 3\hat{k}$$

$$= 3\hat{i} - 3\hat{j} + 2\hat{k}$$

$$\left|2\vec{a} - \vec{b} + 3\vec{c}\right| = \sqrt{3^2 + (-3)^2 + 2^2} = \sqrt{9 + 9 + 4} = \sqrt{22}$$

Hence, the unit vector along $2\vec{a} - \vec{b} + 3\vec{c}$ is

$$\frac{2\vec{a}-\vec{b}+3\vec{c}}{\left|2\vec{a}-\vec{b}+3\vec{c}\right|} = \frac{3\hat{i}-3\hat{j}+2\hat{k}}{\sqrt{22}} = \frac{3}{\sqrt{22}}\hat{i} - \frac{3}{\sqrt{22}}\hat{j} + \frac{2}{\sqrt{22}}\hat{k}.$$

Question 8:

Show that the points A (1, -2, -8), B (5, 0, -2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.

Answer

The given points are A (1, -2, -8), B (5, 0, -2), and C (11, 3, 7).

$$\therefore \overrightarrow{AB} = (5-1)\hat{i} + (0+2)\hat{j} + (-2+8)\hat{k} = 4\hat{i} + 2\hat{j} + 6\hat{k}$$

$$\overrightarrow{BC} = (11-5)\hat{i} + (3-0)\hat{j} + (7+2)\hat{k} = 6\hat{i} + 3\hat{j} + 9\hat{k}$$

$$\overrightarrow{AC} = (11-1)\hat{i} + (3+2)\hat{j} + (7+8)\hat{k} = 10\hat{i} + 5\hat{j} + 15\hat{k}$$

$$\left|\overrightarrow{AB}\right| = \sqrt{4^2 + 2^2 + 6^2} = \sqrt{16 + 4 + 36} = \sqrt{56} = 2\sqrt{14}$$

$$\left|\overrightarrow{BC}\right| = \sqrt{6^2 + 3^2 + 9^2} = \sqrt{36 + 9 + 81} = \sqrt{126} = 3\sqrt{14}$$

$$\left|\overrightarrow{AC}\right| = \sqrt{10^2 + 5^2 + 15^2} = \sqrt{100 + 25 + 225} = \sqrt{350} = 5\sqrt{14}$$

$$\therefore \left|\overrightarrow{AC}\right| = \left|\overrightarrow{AB}\right| + \left|\overrightarrow{BC}\right|$$

Thus, the given points A, B, and C are collinear.

Now, let point B divide AC in the ratio λ :1. Then, we have:

$$\overrightarrow{OB} = \frac{\lambda \overrightarrow{OC} + \overrightarrow{OA}}{(\lambda + 1)}$$

$$\Rightarrow 5\hat{i} - 2\hat{k} = \frac{\lambda \left(11\hat{i} + 3\hat{j} + 7\hat{k}\right) + \left(\hat{i} - 2\hat{j} - 8\hat{k}\right)}{\lambda + 1}$$

$$\Rightarrow (\lambda + 1) \left(5\hat{i} - 2\hat{k}\right) = 11\lambda\hat{i} + 3\lambda\hat{j} + 7\lambda\hat{k} + \hat{i} - 2\hat{j} - 8\hat{k}$$

$$\Rightarrow 5(\lambda + 1)\hat{i} - 2(\lambda + 1)\hat{k} = (11\lambda + 1)\hat{i} + (3\lambda - 2)\hat{j} + (7\lambda - 8)\hat{k}$$

On equating the corresponding components, we get:

$$5(\lambda + 1) = 1 1\lambda + 1$$

$$\Rightarrow 5\lambda + 5 = 1 1\lambda + 1$$

$$\Rightarrow 6\lambda = 4$$

$$\Rightarrow \lambda = \frac{4}{6} = \frac{2}{3}$$

Hence, point B divides AC in the ratio 2:3.

Question 9:

Find the position vector of a point R which divides the line joining two points P and Q

whose position vectors are $(2\vec{a}+\vec{b})$ and $(\vec{a}-3\vec{b})$ externally in the ratio 1: 2. Also, show that P is the mid point of the line segment RQ.

Answer

It is given that $\overrightarrow{OP} = 2\vec{a} + \vec{b}$, $\overrightarrow{OQ} = \vec{a} - 3\vec{b}$.

It is given that point R divides a line segment joining two points P and Q externally in the ratio 1: 2. Then, on using the section formula, we get:

$$\overrightarrow{\text{OR}} = \frac{2(2\vec{a}+\vec{b}) - (\vec{a}-3\vec{b})}{2-1} = \frac{4\vec{a}+2\vec{b}-\vec{a}+3\vec{b}}{1} = 3\vec{a}+5\vec{b}$$

Therefore, the position vector of point R is $3\vec{a} + 5\vec{b}$.

$$\overline{OQ} + \overline{OR}$$

Position vector of the mid-point of RQ = 2

$$=\frac{\left(\vec{a}-3\vec{b}\right)+\left(3\vec{a}+5\vec{b}\right)}{2}$$
$$=2\vec{a}+\vec{b}$$
$$=\overrightarrow{OP}$$

Hence, P is the mid-point of the line segment RQ.

Question 10:

The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$. Find the unit vector parallel to its diagonal. Also, find its area. Answer

Adjacent sides of a parallelogram are given as: $\vec{a} = 2\hat{i} - 4\hat{j} + 5\hat{k}_{and}\vec{b} = \hat{i} - 2\hat{j} - 3\hat{k}$ Then, the diagonal of a parallelogram is given by $\vec{a} + \vec{b}$. $\vec{a} + \vec{b} = (2+1)\hat{i} + (-4-2)\hat{j} + (5-3)\hat{k} = 3\hat{i} - 6\hat{j} + 2\hat{k}$

Thus, the unit vector parallel to the diagonal is

$$\frac{\vec{a} + \vec{b}}{\left|\vec{a} + \vec{b}\right|} = \frac{3\hat{i} - 6\hat{j} + 2\hat{k}}{\sqrt{3^2 + (-6)^2 + 2^2}} = \frac{3\hat{i} - 6\hat{j} + 2\hat{k}}{\sqrt{9 + 36 + 4}} = \frac{3\hat{i} - 6\hat{j} + 2\hat{k}}{7} = \frac{3}{7}\hat{i} - \frac{6}{7}\hat{j} + \frac{2}{7}\hat{k}.$$

$$\therefore \text{ Area of parallelogram ABCD} = \begin{vmatrix}\vec{a} \times \vec{b}\end{vmatrix}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k}\\ 2 & -4 & 5\\ 1 & -2 & -3\end{vmatrix}$$

$$= \hat{i}(12 + 10) - \hat{j}(-6 - 5) + \hat{k}(-4 + 4)$$

$$= 22\hat{i} + 11\hat{j}$$

$$= 11(2\hat{i} + \hat{j})$$

$$\therefore \left|\vec{a} \times \vec{b}\right| = 11\sqrt{2^2 + 1^2} = 11\sqrt{5}$$

Hence, the area of the parallelogram is $^{11\sqrt{5}}$ square units.

Question 11:

Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ

$$\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$$

Answer

Let a vector be equally inclined to axes OX, OY, and OZ at angle *a*.

Then, the direction cosines of the vector are $\cos a$, $\cos a$, and $\cos a$.

Now,

$$\cos^{2} \alpha + \cos^{2} \alpha + \cos^{2} \alpha = 1$$
$$\Rightarrow 3\cos^{2} \alpha = 1$$
$$\Rightarrow \cos \alpha = \frac{1}{\sqrt{3}}$$

Hence, the direction cosines of the vector which are equally inclined to the axes

$$\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$$

Question 12:

Let
$$\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$$
, $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} , and $\vec{c} \cdot \vec{d} = 15$.

Answer

```
Let \vec{d} = d_1\hat{i} + d_2\hat{j} + d_3\hat{k}.

Since \vec{d} is perpendicular to both \vec{a} and \vec{b}, we have:

\vec{d} \cdot \vec{a} = 0

\Rightarrow d_1 + 4d_2 + 2d_3 = 0 ...(i)

And,

\vec{d} \cdot \vec{b} = 0

\Rightarrow 3d_1 - 2d_2 + 7d_3 = 0 ...(ii)

Also, it is given that:

\vec{c} \cdot \vec{d} = 15

\Rightarrow 2d_1 - d_2 + 4d_3 = 15 ...(iii)
```

On solving (i), (ii), and (iii), we get:

$$d_{1} = \frac{160}{3}, d_{2} = -\frac{5}{3} \text{ and } d_{3} = -\frac{70}{3}$$

$$\therefore \vec{d} = \frac{160}{3}\hat{i} - \frac{5}{3}\hat{j} - \frac{70}{3}\hat{k} = \frac{1}{3}\left(160\hat{i} - 5\hat{j} - 70\hat{k}\right)$$

Hence, the required vector is $\frac{1}{3}\left(160\hat{i} - 5\hat{j} - 70\hat{k}\right)$.

Hence, the required vector is

Question 13:

The scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{\lambda}\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of $\hat{\lambda}$.

Answer

$$(2\hat{i}+4\hat{j}-5\hat{k})+(\lambda\hat{i}+2\hat{j}+3\hat{k})$$
$$=(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}$$

Therefore, unit vector along $(2\hat{i}+4\hat{j}-5\hat{k})+(\lambda\hat{i}+2\hat{j}+3\hat{k})$ is given as: $\frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{(2+\lambda)^{2}+6^{2}+(-2)^{2}}} = \frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{4+4\lambda+\lambda^{2}+36+4}} = \frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{\lambda^{2}+4\lambda+44}}$

Scalar product of $\left(\hat{i}+\hat{j}+\hat{k}
ight)$ with this unit vector is 1.

$$\Rightarrow \left(\hat{i} + \hat{j} + \hat{k}\right) \cdot \frac{(2+\lambda)i + 6j - 2k}{\sqrt{\lambda^2 + 4\lambda + 44}} = 1$$

$$\Rightarrow \frac{(2+\lambda) + 6 - 2}{\sqrt{\lambda^2 + 4\lambda + 44}} = 1$$

$$\Rightarrow \sqrt{\lambda^2 + 4\lambda + 44} = \lambda + 6$$

$$\Rightarrow \lambda^2 + 4\lambda + 44 = (\lambda + 6)^2$$

$$\Rightarrow \lambda^2 + 4\lambda + 44 = \lambda^2 + 12\lambda + 36$$

$$\Rightarrow 8\lambda = 8$$

$$\Rightarrow \lambda = 1$$
Hence, the value of λ is 1.

Question 14:

If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c} .

Answer

Since \vec{a}, \vec{b} , and \vec{c} are mutually perpendicular vectors, we have

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0.$$

It is given that:

 $\left|\vec{a}\right| = \left|\vec{b}\right| = \left|\vec{c}\right|$

Let vector $\vec{a} + \vec{b} + \vec{c}$ be inclined to \vec{a}, \vec{b} , and \vec{c} at angles θ_1 , θ_2 , and θ_3 respectively. Then, we have:

$$\begin{aligned} \cos \theta_{1} &= \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{a}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{a}\right|} = \frac{\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} + \vec{c} \cdot \vec{a}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{a}\right|} \\ &= \frac{\left|\vec{a}\right|^{2}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{a}\right|} \qquad \left[\vec{b} \cdot \vec{a} = \vec{c} \cdot \vec{a} = 0\right] \\ &= \frac{\left|\vec{a}\right|}{\left|\vec{a} + \vec{b} + \vec{c}\right|} \\ \cos \theta_{2} &= \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{b}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{b}\right|} = \frac{\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{b}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \cdot \left|\vec{b}\right|} \\ &= \frac{\left|\vec{b}\right|^{2}}{\left|\vec{a} + \vec{b} + \vec{c}\right|} \\ &= \frac{\left|\vec{b}\right|}{\left|\vec{a} + \vec{b} + \vec{c}\right|} \\ \cos \theta_{3} &= \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{c}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{c}\right|} = \frac{\vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{c}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{c}\right|} \\ &= \frac{\left|\vec{c}\right|^{2}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{c}\right|} \\ &= \frac{\left|\vec{c}\right|^{2}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{c}\right|} \\ &= \frac{\left|\vec{c}\right|}{\left|\vec{a} + \vec{b} + \vec{c}\right|} \end{aligned}$$

Now, as
$$|\vec{a}| = |\vec{b}| = |\vec{c}|$$
, $\cos \theta_1 = \cos \theta_2 = \cos \theta_3$.
 $\therefore \theta_1 = \theta_2 = \theta_3$
Hence, the vector $(\vec{a} + \vec{b} + \vec{c})$ is equally inclined to \vec{a}, \vec{b} , and \vec{c} .
Question 15:

Prove that $(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$, if and only if \vec{a} , \vec{b} are perpendicular, given $\vec{a} \neq \vec{0}$, $\vec{b} \neq \vec{0}$. Answer $(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$ $\Leftrightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = |\vec{a}|^2 + |\vec{b}|^2$ [Distributivity of scalar products over addition] $\Leftrightarrow |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2$ [$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (Scalar product is commutative)] $\Leftrightarrow 2\vec{a} \cdot \vec{b} = 0$ $\Leftrightarrow \vec{a} \cdot \vec{b} = 0$ $\therefore \vec{a}$ and \vec{b} are perpendicular. [$\vec{a} \neq \vec{0}, \ \vec{b} \neq \vec{0}$ (Given)]

Question 16:

If θ is the angle between two vectors \vec{a} and \vec{b} , then $\vec{a}.\vec{b} \ge 0$ only when

(A) $0 < \theta < \frac{\pi}{2}$ (B) $0 \le \theta \le \frac{\pi}{2}$ (C) $0 < \theta < \pi$ (D) $0 \le \theta \le \pi$ Answer Let θ be the angle between two vectors \vec{a} and \vec{b} . Then, without loss of generality, \vec{a} and \vec{b} are non-zero vectors so

that $|\vec{a}|$ and $|\vec{b}|$ are positive

It is known that $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ $\therefore \vec{a} \cdot \vec{b} \ge 0$ $\Rightarrow |\vec{a}| |\vec{b}| \cos \theta \ge 0$ $\Rightarrow \cos \theta \ge 0$ $[|\vec{a}| \text{ and } |\vec{b}| \text{ are positive}]$ $\Rightarrow 0 \le \theta \le \frac{\pi}{2}$

Hence,
$$\vec{a}.\vec{b} \ge 0$$
 when $0 \le \theta \le \frac{\pi}{2}$.

The correct answer is B.

Question 17:

Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a} + \vec{b}$ is a unit vector if

(A)
$$\theta = \frac{\pi}{4}$$
 (B) $\theta = \frac{\pi}{3}$ (C) $\theta = \frac{\pi}{2}$ (D) $\theta = \frac{2\pi}{3}$

Answer

Let \vec{a} and \vec{b} be two unit vectors and θ be the angle between them.

Then,
$$\left| \vec{a} \right| = \left| \vec{b} \right| = 1$$
.

Now, $\vec{a} + \vec{b}$ is a unit vector if $|\vec{a} + \vec{b}| = 1$.

$$\begin{vmatrix} \vec{a} + \vec{b} \end{vmatrix} = 1$$

$$\Rightarrow \left(\vec{a} + \vec{b} \right)^2 = 1$$

$$\Rightarrow \left(\vec{a} + \vec{b} \right) \cdot \left(\vec{a} + \vec{b} \right) = 1$$

$$\Rightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = 1$$

$$\Rightarrow \left| \vec{a} \right|^2 + 2\vec{a} \cdot \vec{b} + \left| \vec{b} \right|^2 = 1$$

$$\Rightarrow 1^2 + 2 \left| \vec{a} \right| \left| \vec{b} \right| \cos \theta + 1^2 = 1$$

$$\Rightarrow 1 + 2 \cdot 1 \cdot 1 \cos \theta + 1 = 1$$

$$\Rightarrow \cos \theta = -\frac{1}{2}$$

$$\Rightarrow \theta = \frac{2\pi}{3}$$

Hence, $\vec{a} + \vec{b}$ is a unit vector if $\theta = \frac{2\pi}{3}$.

The correct answer is D.

```
Question 18:
```

The value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})_{\text{is}}$ (A) 0 (B) -1 (C) 1 (D) 3 Answer $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ $= \hat{i} \cdot \hat{i} + \hat{j} \cdot (-\hat{j}) + \hat{k} \cdot \hat{k}$ $= 1 - \hat{j} \cdot \hat{j} + 1$ = 1The correct answer is C.

Question 19:

If θ is the angle between any two vectors \vec{a} and \vec{b} , then $\left|\vec{a}.\vec{b}\right| = \left|\vec{a}\times\vec{b}\right|$ when θ is equal to

(A) 0 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) п Answer Let θ be the angle between two vectors \vec{a} and \vec{b} . Then, without loss of generality, \vec{a} and \vec{b} are non-zero vectors, so ${}_{\rm that}\!\left|\!ec{a}\!\right|$ and $\left|\!ec{b}\!\right|$ are positive $\left| \vec{a} \cdot \vec{b} \right| = \left| \vec{a} \times \vec{b} \right|$ $\Rightarrow |\vec{a}| |\vec{b}| \cos \theta = |\vec{a}| |\vec{b}| \sin \theta$ $\Rightarrow \cos \theta = \sin \theta$ $\left[\left| \vec{a} \right| \text{ and } \left| \vec{b} \right| \text{ are positive} \right]$ $\Rightarrow \tan \theta = 1$ $\Rightarrow \theta = \frac{\pi}{4}$ Hence, $\left|\vec{a}.\vec{b}\right| = \left|\vec{a}\times\vec{b}\right|$ when θ is equal to $\frac{\pi}{4}$.

The correct answer is B.