Exercise 11.1

Question 1:

Find the equation of the circle with centre (0, 2) and radius 2

Answer

The equation of a circle with centre (h, k) and radius r is given as $(x - h)^2 + (y - k)^2 = r^2$ It is given that centre (h, k) = (0, 2) and radius (r) = 2. Therefore, the equation of the circle is $(x - 0)^2 + (y - 2)^2 = 2^2$ $x^2 + y^2 + 4 - 4y = 4$ $x^2 + y^2 - 4y = 0$

Question 2:

Find the equation of the circle with centre (-2, 3) and radius 4

Answer

The equation of a circle with centre (h, k) and radius r is given as

 $(x - h)^2 + (y - k)^2 = r^2$

It is given that centre (h, k) = (-2, 3) and radius (r) = 4.

Therefore, the equation of the circle is

 $(x + 2)^{2} + (y - 3)^{2} = (4)^{2}$ $x^{2} + 4x + 4 + y^{2} - 6y + 9 = 16$ $x^{2} + y^{2} + 4x - 6y - 3 = 0$

Question 3:

Find the equation of the circle with centre $\left(\frac{1}{2}, \frac{1}{4}\right)_{and radius} \frac{1}{12}$ Answer

The equation of a circle with centre (h, k) and radius r is given as $(x - h)^2 + (y - k)^2 = r^2$

It is given that centre $(h, k) = \left(\frac{1}{2}, \frac{1}{4}\right)$ and radius $(r) = \frac{1}{12}$.

Therefore, the equation of the circle is

$$\left(x - \frac{1}{2}\right)^{2} + \left(y - \frac{1}{4}\right)^{2} = \left(\frac{1}{12}\right)^{2}$$

$$x^{2} - x + \frac{1}{4} + y^{2} - \frac{y}{2} + \frac{1}{16} = \frac{1}{144}$$

$$x^{2} - x + \frac{1}{4} + y^{2} - \frac{y}{2} + \frac{1}{16} - \frac{1}{144} = 0$$

$$144x^{2} - 144x + 36 + 144y^{2} - 72y + 9 - 1 = 0$$

$$144x^{2} - 144x + 144y^{2} - 72y + 44 = 0$$

$$36x^{2} - 36x + 36y^{2} - 18y + 11 = 0$$

$$36x^{2} + 36y^{2} - 36x - 18y + 11 = 0$$

Question 4:

Find the equation of the circle with centre (1, 1) and radius $\sqrt{2}$ Answer

The equation of a circle with centre (h, k) and radius r is given as $(x - h)^2 + (y - k)^2 = r^2$

It is given that centre (h, k) = (1, 1) and radius $(r) = \sqrt{2}$. Therefore, the equation of the circle is

$$(x-1)^{2} + (y-1)^{2} = (\sqrt{2})^{2}$$
$$x^{2} - 2x + 1 + y^{2} - 2y + 1 = 2$$
$$x^{2} + y^{2} - 2x - 2y = 0$$

Question 5:

Find the equation of the circle with centre (-a, -b) and radius $\sqrt{a^2 - b^2}$ Answer

The equation of a circle with centre (h, k) and radius r is given as $(x - h)^2 + (y - k)^2 = r^2$

It is given that centre (h, k) = (-a, -b) and radius $(r) = \sqrt{a^2 - b^2}$. Therefore, the equation of the circle is

$$(x+a)^{2} + (y+b)^{2} = (\sqrt{a^{2}-b^{2}})^{2}$$
$$x^{2} + 2ax + a^{2} + y^{2} + 2by + b^{2} = a^{2} - b^{2}$$
$$x^{2} + y^{2} + 2ax + 2by + 2b^{2} = 0$$

Question 6:

Find the centre and radius of the circle $(x + 5)^2 + (y - 3)^2 = 36$

Answer

The equation of the given circle is $(x + 5)^2 + (y - 3)^2 = 36$. $(x + 5)^2 + (y - 3)^2 = 36$ $\Rightarrow \{x - (-5)\}^2 + (y - 3)^2 = 6^2$, which is of the form $(x - h)^2 + (y - k)^2 = r^2$, where h = -5, k = 3, and r = 6.

Thus, the centre of the given circle is (-5, 3), while its radius is 6.

Question 7:

Find the centre and radius of the circle $x^2 + y^2 - 4x - 8y - 45 = 0$

Answer

The equation of the given circle is $x^2 + y^2 - 4x - 8y - 45 = 0$. $x^2 + y^2 - 4x - 8y - 45 = 0$ $\Rightarrow (x^2 - 4x) + (y^2 - 8y) = 45$ $\Rightarrow \{x^2 - 2(x)(2) + 2^2\} + \{y^2 - 2(y)(4) + 4^2\} - 4 - 16 = 45$ $\Rightarrow (x - 2)^2 + (y - 4)^2 = 65$ $\Rightarrow (x - 2)^2 + (y - 4)^2 = (\sqrt{65})^2$, which is of the form $(x - h)^2 + (y - k)^2 = r^2$, where h = 2, k = 4, and $r = \sqrt{65}$.

Thus, the centre of the given circle is (2, 4), while its radius is $\sqrt{65}$.

Question 8:

Find the centre and radius of the circle $x^2 + y^2 - 8x + 10y - 12 = 0$ Answer The equation of the given circle is $x^2 + y^2 - 8x + 10y - 12 = 0$. $x^2 + y^2 - 8x + 10y - 12 = 0$

$$\Rightarrow (x^{2} - 8x) + (y^{2} + 10y) = 12$$

$$\Rightarrow \{x^{2} - 2(x)(4) + 4^{2}\} + \{y^{2} + 2(y)(5) + 5^{2}\} - 16 - 25 = 12$$

$$\Rightarrow (x - 4)^{2} + (y + 5)^{2} = 53$$

$$\Rightarrow (x - 4)^{2} + \{y - (-5)\}^{2} = (\sqrt{53})^{2}, \text{ which is of the form } (x - h)^{2} + (y - k)^{2} = r^{2}, \text{ where } h$$

$$= 4, k = -5, \text{ and } r = \sqrt{53}.$$

Thus, the centre of the given circle is (4, –5), while its radius is $\sqrt{53}$.

Question 9:

Find the centre and radius of the circle $2x^2 + 2y^2 - x = 0$

Answer

The equation of the given circle is $2x^2 + 2y^2 - x = 0$.

$$2x^{2} + 2y^{2} - x = 0$$

$$\Rightarrow (2x^{2} - x) + 2y^{2} = 0$$

$$\Rightarrow 2\left[\left(x^{2} - \frac{x}{2}\right) + y^{2}\right] = 0$$

$$\Rightarrow \left\{x^{2} - 2x\left(\frac{1}{4}\right) + \left(\frac{1}{4}\right)^{2}\right\} + y^{2} - \left(\frac{1}{4}\right)^{2} = 0$$

$$\Rightarrow \left(x - \frac{1}{4}\right)^{2} + (y - 0)^{2} = \left(\frac{1}{4}\right)^{2}, \text{ which is of the form } (x - h)^{2} + (y - k)^{2} = r^{2}, \text{ where } h = \frac{1}{4},$$

$$k = 0, \text{ and } r = \frac{1}{4}.$$

Thus, the centre of the given circle is $\left(\frac{1}{4}, 0\right), \text{ while its radius is } \frac{1}{4}.$

Question 10:

Find the equation of the circle passing through the points (4, 1) and (6, 5) and whose centre is on the line 4x + y = 16.

Answer

Let the equation of the required circle be $(x - h)^2 + (y - k)^2 = r^2$.

Since the circle passes through points (4, 1) and (6, 5), $(4 - h)^2 + (1 - k)^2 = r^2 \dots (1)$ $(6 - h)^2 + (5 - k)^2 = r^2 \dots (2)$ Since the centre (*h*, k) of the circle lies on line 4x + y = 16, $4h + k = 16 \dots (3)$ From equations (1) and (2), we obtain $(4 - h)^{2} + (1 - k)^{2} = (6 - h)^{2} + (5 - k)^{2}$ $\Rightarrow 16 - 8h + h^{2} + 1 - 2k + k^{2} = 36 - 12h + h^{2} + 25 - 10k + k^{2}$ $\Rightarrow 16 - 8h + 1 - 2k = 36 - 12h + 25 - 10k$ $\Rightarrow 4h + 8k = 44$ \Rightarrow h + 2k = 11 ... (4) On solving equations (3) and (4), we obtain h = 3 and k = 4. On substituting the values of h and k in equation (1), we obtain $(4-3)^2 + (1-4)^2 = r^2$ $\Rightarrow (1)^{2} + (-3)^{2} = r^{2}$ $\Rightarrow 1 + 9 = r^2$ $\Rightarrow r^2 = 10$ $\Rightarrow r = \sqrt{10}$ Thus, the equation of the required circle is

$$(x-3)^{2} + (y-4)^{2} = (\sqrt{10})^{2}$$
$$x^{2} - 6x + 9 + y^{2} - 8y + 16 = 10$$
$$x^{2} + y^{2} - 6x - 8y + 15 = 0$$

Question 11:

Find the equation of the circle passing through the points (2, 3) and (-1, 1) and whose centre is on the line x - 3y - 11 = 0.

Answer

Let the equation of the required circle be $(x - h)^2 + (y - k)^2 = r^2$.

Since the circle passes through points (2, 3) and (-1, 1),

$$(2 - h)^{2} + (3 - k)^{2} = r^{2} \dots (1)$$

 $(-1 - h)^2 + (1 - k)^2 = r^2 \dots (2)$

Since the centre (*h*, k) of the circle lies on line x - 3y - 11 = 0,

 $h - 3k = 11 \dots (3)$ From equations (1) and (2), we obtain $(2 - h)^{2} + (3 - k)^{2} = (-1 - h)^{2} + (1 - k)^{2}$ $\Rightarrow 4 - 4h + h^{2} + 9 - 6k + k^{2} = 1 + 2h + h^{2} + 1 - 2k + k^{2}$ $\Rightarrow 4 - 4h + 9 - 6k = 1 + 2h + 1 - 2k$ $\Rightarrow 6h + 4k = 11 \dots (4)$

On solving equations (3) and (4), we obtain $h = \frac{7}{2}$ and $k = \frac{-5}{2}$.

On substituting the values of h and k in equation (1), we obtain

$$\left(2-\frac{7}{2}\right)^2 + \left(3+\frac{5}{2}\right)^2 = r^2$$
$$\Rightarrow \left(\frac{4-7}{2}\right)^2 + \left(\frac{6+5}{2}\right)^2 = r^2$$
$$\Rightarrow \left(\frac{-3}{2}\right)^2 + \left(\frac{11}{2}\right)^2 = r^2$$
$$\Rightarrow \frac{9}{4} + \frac{121}{4} = r^2$$
$$\Rightarrow \frac{130}{4} = r^2$$

Thus, the equation of the required circle is

$$\left(x - \frac{7}{2}\right)^{2} + \left(y + \frac{5}{2}\right)^{2} = \frac{130}{4}$$

$$\left(\frac{2x - 7}{2}\right)^{2} + \left(\frac{2y + 5}{2}\right)^{2} = \frac{130}{4}$$

$$4x^{2} - 28x + 49 + 4y^{2} + 20y + 25 = 130$$

$$4x^{2} + 4y^{2} - 28x + 20y - 56 = 0$$

$$4(x^{2} + y^{2} - 7x + 5y - 14) = 0$$

$$x^{2} + y^{2} - 7x + 5y - 14 = 0$$

Question 12:

Find the equation of the circle with radius 5 whose centre lies on x-axis and passes through the point (2, 3).

Answer

Let the equation of the required circle be $(x - h)^2 + (y - k)^2 = r^2$.

Since the radius of the circle is 5 and its centre lies on the *x*-axis, k = 0 and r = 5.

Now, the equation of the circle becomes $(x - h)^2 + y^2 = 25$.

It is given that the circle passes through point (2, 3).

$$\therefore (2-h)^{2} + 3^{2} = 25$$

$$\Rightarrow (2-h)^{2} = 25 - 9$$

$$\Rightarrow (2-h)^{2} = 16$$

$$\Rightarrow 2-h = \pm \sqrt{16} = \pm 4$$

If $2-h = 4$, then $h = -2$.
If $2-h = -4$, then $h = 6$.
When $h = -2$, the equation of the circle becomes
 $(x + 2)^{2} + y^{2} = 25$
 $x^{2} + 4x + 4 + y^{2} = 25$
 $x^{2} + y^{2} + 4x - 21 = 0$
When $h = 6$, the equation of the circle becomes
 $(x - 6)^{2} + y^{2} = 25$
 $x^{2} - 12x + 36 + y^{2} = 25$
 $x^{2} + y^{2} - 12x + 11 = 0$

Question 13:

Find the equation of the circle passing through (0, 0) and making intercepts a and b on the coordinate axes.

Answer

Let the equation of the required circle be $(x - h)^2 + (y - k)^2 = r^2$. Since the centre of the circle passes through (0, 0),

$$(0 - h)^2 + (0 - k)^2 = r^2$$

 $\Rightarrow h^2 + k^2 = r^2$

The equation of the circle now becomes $(x - h)^2 + (y - k)^2 = h^2 + k^2$.

It is given that the circle makes intercepts a and b on the coordinate axes. This means that the circle passes through points (a, 0) and (0, b). Therefore,

 $(a - h)^2 + (0 - k)^2 = h^2 + k^2 \dots (1)$

а

b

$$(0 - h)^{2} + (b - k)^{2} = h^{2} + k^{2} \dots (2)$$

From equation (1), we obtain
$$a^{2} - 2ah + h^{2} + k^{2} = h^{2} + k^{2}$$
$$\Rightarrow a^{2} - 2ah = 0$$
$$\Rightarrow a(a - 2h) = 0$$
$$\Rightarrow a = 0 \text{ or } (a - 2h) = 0$$

However, $a \neq 0$; hence, $(a - 2h) = 0 \Rightarrow h = 2$. From equation (2), we obtain $h^2 + b^2 - 2bk + k^2 = h^2 + k^2$ $\Rightarrow b^2 - 2bk = 0$ $\Rightarrow b(b - 2k) = 0$ $\Rightarrow b = 0 \text{ or}(b - 2k) = 0$

However, $b \neq 0$; hence, $(b - 2k) = 0 \Rightarrow k = \frac{1}{2}$. Thus, the equation of the required circle is

$$\left(x - \frac{a}{2}\right)^2 + \left(y - \frac{b}{2}\right)^2 = \left(\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2$$
$$\Rightarrow \left(\frac{2x - a}{2}\right)^2 + \left(\frac{2y - b}{2}\right)^2 = \frac{a^2 + b^2}{4}$$
$$\Rightarrow 4x^2 - 4ax + a^2 + 4y^2 - 4by + b^2 = a^2 + b^2$$
$$\Rightarrow 4x^2 + 4y^2 - 4ax - 4by = 0$$
$$\Rightarrow x^2 + y^2 - ax - by = 0$$

Question 14:

Find the equation of a circle with centre (2, 2) and passes through the point (4, 5). Answer

The centre of the circle is given as (h, k) = (2, 2).

Since the circle passes through point (4, 5), the radius (r) of the circle is the distance between the points (2, 2) and (4, 5).

$$\therefore r = \sqrt{(2-4)^2 + (2-5)^2} = \sqrt{(-2)^2 + (-3)^2} = \sqrt{4+9} = \sqrt{13}$$

Thus, the equation of the circle is

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$
$$(x-2)^{2} + (y-2)^{2} = (\sqrt{13})^{2}$$
$$x^{2} - 4x + 4 + y^{2} - 4y + 4 = 13$$
$$x^{2} + y^{2} - 4x - 4y - 5 = 0$$

Question 15:

Does the point (-2.5, 3.5) lie inside, outside or on the circle $x^2 + y^2 = 25$?

Answer

The equation of the given circle is $x^2 + y^2 = 25$.

$$x^{2} + y^{2} = 25$$

⇒ $(x - 0)^{2} + (y - 0)^{2} = 5^{2}$, which is of the form $(x - h)^{2} + (y - k)^{2} = r^{2}$, where $h = 0$, $k = 0$, and $r = 5$.
∴Centre = $(0, 0)$ and radius = 5
Distance between point (-2.5, 3.5) and centre $(0, 0)$

$$= \sqrt{(-2.5 - 0)^{2} + (3.5 - 0)^{2}}$$

$$= \sqrt{(-2.5-0)^{\circ} + (3.5-0)}$$

= $\sqrt{6.25+12.25}$
= $\sqrt{18.5}$
= 4.3 (approx.) < 5

Since the distance between point (-2.5, 3.5) and centre (0, 0) of the circle is less than the radius of the circle, point (-2.5, 3.5) lies inside the circle.