Question 1:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis,

the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{36} + \frac{y^2}{16} = 1$ Answer

The given equation is $\frac{x^2}{36} + \frac{y^2}{16} = 1$

Here, the denominator of $\frac{x^2}{36}$ is greater than the denominator of $\frac{y^2}{16}$. Therefore, the major axis is along the *x*-axis, while the minor axis is along the *y*-axis.

On comparing the given equation with $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, we obtain a = 6 and b = 4.

$$\therefore c = \sqrt{a^2 - b^2} = \sqrt{36 - 16} = \sqrt{20} = 2\sqrt{5}$$

Therefore,

The coordinates of the foci are
$$(2\sqrt{5},0)$$
 and $(-2\sqrt{5},0)$

The coordinates of the vertices are (6, 0) and (-6, 0).

Length of major axis = 2a = 12

Length of minor axis = 2b = 8

Eccentricity,
$$e = \frac{c}{a} = \frac{2\sqrt{5}}{6} = \frac{\sqrt{5}}{3}$$

Length of latus rectum
$$=\frac{2b^2}{a}=\frac{2\times 16}{6}=\frac{16}{3}$$

Question 2:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis,

the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{4} + \frac{y^2}{25} = 1$ Answer $\frac{x^2}{4} + \frac{y^2}{25} = 1 \text{ or } \frac{x^2}{2^2} + \frac{y^2}{5^2} = 1$ The given equation is

Here, the denominator of $\frac{y^2}{25}$ is greater than the denominator of $\frac{x^2}{4}$. Therefore, the major axis is along the *y*-axis, while the minor axis is along the *x*-axis.

On comparing the given equation with $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, we obtain b = 2 and a = 5.

$$\therefore c = \sqrt{a^2 - b^2} = \sqrt{25 - 4} = \sqrt{21}$$

Therefore,

The coordinates of the foci are
$$(0, \sqrt{21})$$
 and $(0, -\sqrt{21})$

The coordinates of the vertices are (0, 5) and (0, -5)

Length of major axis = 2a = 10

Length of minor axis = 2b = 4

Eccentricity, $e = \frac{c}{a} = \frac{\sqrt{21}}{5}$

$$=\frac{2b^2}{a}=\frac{2\times 4}{5}=\frac{8}{5}$$

Length of latus rectum

Question 3:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis,

the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ Answer

 $\frac{x^2}{16} + \frac{y^2}{9} = 1 \text{ or } \frac{x^2}{4^2} + \frac{y^2}{3^2} = 1$ The given equation is $\frac{x^2}{16} + \frac{y^2}{9} = 1$

Here, the denominator of $\frac{x^2}{16}$ is greater than the denominator of $\frac{y^2}{9}$.

Therefore, the major axis is along the *x*-axis, while the minor axis is along the *y*-axis.

On comparing the given equation with $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, we obtain a = 4 and b = 3.

Class XI

$$\therefore c = \sqrt{a^2 - b^2} = \sqrt{16 - 9} = \sqrt{7}$$

Therefore,

The coordinates of the foci are $(\pm\sqrt{7},0)$.

The coordinates of the vertices are $(\pm 4, 0)$.

Length of major axis = 2a = 8

Length of minor axis = 2b = 6

Eccentricity, $e = \frac{c}{a} = \frac{\sqrt{7}}{4}$

Length of latus rectum
$$=\frac{2b^2}{a}=\frac{2\times 9}{4}=\frac{9}{2}$$

Question 4:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis,

the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{25} + \frac{y^2}{100} = 1$ Answer

The given equation is
$$\frac{x^2}{25} + \frac{y^2}{100} = 1$$
 or $\frac{x^2}{5^2} + \frac{y^2}{10^2} = 1$.

Here, the denominator of 100 is greater than the denominator of 25.

Therefore, the major axis is along the *y*-axis, while the minor axis is along the *x*-axis.

On comparing the given equation with
$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$
, we obtain $b = 5$ and $a = 10$.
 $\therefore c = \sqrt{a^2 - b^2} = \sqrt{100 - 25} = \sqrt{75} = 5\sqrt{3}$
Therefore,

The coordinates of the foci are $(0, \pm 5\sqrt{3})$. The coordinates of the vertices are $(0, \pm 10)$.

Length of major axis = 2a = 20

Length of minor axis = 2b = 10

Eccentricity,
$$e = \frac{c}{a} = \frac{5\sqrt{3}}{10} = \frac{\sqrt{3}}{2}$$

ength of latus rectum $= \frac{2b^2}{a} = \frac{2 \times 25}{10}$

Length of latus rectum

Question 5:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis,

- = 5

the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{49} + \frac{y^2}{36} = 1$ Answer

$$\frac{x^2}{49} + \frac{y^2}{36} = 1$$
 or $\frac{x^2}{7^2} + \frac{y^2}{6^2} = 1$

The given equation

 x^2 v^2 Here, the denominator of 49 is greater than the denominator of 36 .

Therefore, the major axis is along the *x*-axis, while the minor axis is along the *y*-axis.

On comparing the given equation with
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, we obtain $a = 7$ and $b = 6$.
 $\therefore c = \sqrt{a^2 - b^2} = \sqrt{49 - 36} = \sqrt{13}$

Therefore,

The coordinates of the foci are $(\pm\sqrt{13},0)$.

The coordinates of the vertices are $(\pm 7, 0)$.

Length of major axis = 2a = 14

Length of minor axis = 2b = 12

Eccentricity,
$$e = \frac{c}{a} = \frac{\sqrt{13}}{7}$$

Length of latus rectum $= \frac{2b^2}{a} = \frac{2 \times 36}{7} = \frac{72}{7}$

Question 6:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis,

 x^2

the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{100} + \frac{y^2}{400} = 1$ Answer

The given equation is $\frac{x^2}{100} + \frac{y^2}{400} = 1$ or $\frac{x^2}{10^2} + \frac{y^2}{20^2} = 1$ y^2

Here, the denominator of $\overline{400}$ is greater than the denominator of $\overline{100}$. Therefore, the major axis is along the *y*-axis, while the minor axis is along the *x*-axis.

On comparing the given equation with $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, we obtain b = 10 and a = 20. $\therefore c = \sqrt{a^2 - b^2} = \sqrt{400 - 100} = \sqrt{300} = 10\sqrt{3}$

Therefore,

The coordinates of the foci are $(0,\pm 10\sqrt{3})$

The coordinates of the vertices are $(0, \pm 20)$

Length of major axis = 2a = 40

Length of minor axis =
$$2b = 20$$

Eccentricity,
$$e = \frac{c}{a} = \frac{10\sqrt{3}}{20} = \frac{\sqrt{3}}{2}$$

Length of latus rectum $= \frac{2b^2}{a} = \frac{2 \times 100}{20} = 10$

Question 7:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $36x^2 + 4y^2 = 144$ Answer The given equation is $36x^2 + 4y^2 = 144$.

It can be written as

 x^2

$$36x^{2} + 4y^{2} = 144$$

Or, $\frac{x^{2}}{4} + \frac{y^{2}}{36} = 1$
Or, $\frac{x^{2}}{2^{2}} + \frac{y^{2}}{6^{2}} = 1$...(1)
 $\frac{y^{2}}{2}$

Here, the denominator of $\overline{6^2}$ is greater than the denominator of $\overline{2^2}$. Therefore, the major axis is along the *y*-axis, while the minor axis is along the *x*-axis.

On comparing equation (1) with
$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$
, we obtain $b = 2$ and $a = 6$.
 $\therefore c = \sqrt{a^2 - b^2} = \sqrt{36 - 4} = \sqrt{32} = 4\sqrt{2}$
Therefore,

$$\left(0, \pm 4\sqrt{2}\right)$$

The coordinates of the vertices are $(0, \pm 6)$.

Length of major axis = 2a = 12

Length of minor axis = 2b = 4

The coordinates of the foci are

Eccentricity,
$$e = \frac{c}{a} = \frac{4\sqrt{2}}{6} = \frac{2\sqrt{2}}{3}$$

Length of latus rectum $= \frac{2b^2}{a} = \frac{2 \times 4}{6} = \frac{4}{3}$

Question 8:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $16x^2 + y^2 = 16$ Answer The given equation is $16x^2 + y^2 = 16$.

It can be written as

$$16x^{2} + y^{2} = 16$$

Or, $\frac{x^{2}}{1} + \frac{y^{2}}{16} = 1$
Or, $\frac{x^{2}}{1^{2}} + \frac{y^{2}}{4^{2}} = 1$...(1)
 $\underline{y^{2}}$

Here, the denominator of $\overline{4^2}$ is greater than the denominator of $\overline{1^2}$. Therefore, the major axis is along the *y*-axis, while the minor axis is along the *x*-axis.

 x^2

On comparing equation (1) with
$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$
, we obtain $b = 1$ and $a = 4$.
 $\therefore c = \sqrt{a^2 - b^2} = \sqrt{16 - 1} = \sqrt{15}$

Therefore,

$$(0,\pm\sqrt{15})$$

 $\frac{1}{2}$

The coordinates of the vertices are $(0, \pm 4)$.

Length of major axis = 2a = 8

The coordinates of the foci are

Length of minor axis = 2b = 2

Eccentricity,
$$e = \frac{c}{a} = \frac{\sqrt{15}}{4}$$

Length of latus rectum $= \frac{2b^2}{a} = \frac{2 \times 1}{4} =$

Question 9:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $4x^2 + 9y^2 = 36$ Answer The given equation is $4x^2 + 9y^2 = 36$.

It can be written as

$$4x^{2} + 9y^{2} = 36$$

Or, $\frac{x^{2}}{9} + \frac{y^{2}}{4} = 1$
Or, $\frac{x^{2}}{3^{2}} + \frac{y^{2}}{2^{2}} = 1$...(1)
 x^{2}

Therefore, the major axis is along the *x*-axis, while the minor axis is along the *y*-axis.

On comparing the given equation with
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, we obtain $a = 3$ and $b = 2$.

$$\therefore c = \sqrt{a^2 - b^2} = \sqrt{9 - 4} = \sqrt{5}$$

Therefore,

The coordinates of the foci are
$$(\pm\sqrt{5},0)$$

Here, the denominator of $\overline{3^2}$ is greater than the denominator of $\overline{2^2}$

The coordinates of the vertices are $(\pm 3, 0)$.

Length of major axis = 2a = 6

Length of minor axis = 2b = 4

Eccentricity,
$$e = \frac{c}{a} = \frac{\sqrt{5}}{3}$$

Length of latus rectum $= \frac{2b^2}{a} = \frac{2 \times 4}{3} = \frac{8}{3}$

Question 10:

Find the equation for the ellipse that satisfies the given conditions: Vertices (±5, 0), foci $(\pm 4, 0)$

Answer

Vertices (±5, 0), foci (±4, 0)

Here, the vertices are on the *x*-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. semi-major axis , where a is the

 y^2

Accordingly, a = 5 and c = 4.

It is known that $a^2 = b^2 + c^2$. $\therefore 5^2 = b^2 + 4^2$ $\Rightarrow 25 = b^2 + 16$ $\Rightarrow b^2 = 25 - 16$ $\Rightarrow b = \sqrt{9} = 3$

Thus, the equation of the ellipse is $\frac{x^2}{5^2} + \frac{y^2}{3^2} = 1$ or $\frac{x^2}{25} + \frac{y^2}{9} = 1$.

Question 11:

Find the equation for the ellipse that satisfies the given conditions: Vertices (0, \pm 13), foci (0, \pm 5) Answer

Vertices (0, ±13), foci (0, ±5)

Here, the vertices are on the *y*-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, where *a* is the semi-major axis.

Accordingly, a = 13 and c = 5.

It is known that $a^2 = b^2 + c^2$. $\therefore 13^2 = b^2 + 5^2$ $\Rightarrow 169 = b^2 + 25$ $\Rightarrow b^2 = 169 - 25$

 $\Rightarrow b = \sqrt{144} = 12$

Thus, the equation of the ellipse is $\frac{x^2}{12^2} + \frac{y^2}{13^2} = 1$ or $\frac{x^2}{144} + \frac{y^2}{169} = 1$.

Question 12:

Find the equation for the ellipse that satisfies the given conditions: Vertices (± 6 , 0), foci (± 4 , 0) Answer Vertices (± 6 , 0), foci (± 4 , 0) Here, the vertices are on the *x*-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where *a* is the semi-major axis.

Accordingly, a = 6, c = 4.

It is known that $a^2 = b^2 + c^2$.

 $\therefore 6^2 = b^2 + 4^2$ $\Rightarrow 36 = b^2 + 16$ $\Rightarrow b^2 = 36 - 16$

$$\Rightarrow b = \sqrt{20}$$

 $\frac{x^2}{6^2} + \frac{y^2}{\left(\sqrt{20}\right)^2} = 1 \text{ or } \frac{x^2}{36} + \frac{y^2}{20} = 1$

Thus, the equation of the ellipse is

Question 13:

Find the equation for the ellipse that satisfies the given conditions: Ends of major axis $(\pm 3, 0)$, ends of minor axis $(0, \pm 2)$

Answer

Ends of major axis $(\pm 3, 0)$, ends of minor axis $(0, \pm 2)$

Here, the major axis is along the *x*-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where *a* is the

semi-major axis.

Accordingly, a = 3 and b = 2.

Thus, the equation of the ellipse is
$$\frac{x^2}{3^2} + \frac{y^2}{2^2} = 1$$
 i.e., $\frac{x^2}{9} + \frac{y^2}{4} = 1$.

Question 14:

Find the equation for the ellipse that satisfies the given conditions: Ends of major axis

 $(0, \pm \sqrt{5})$, ends of minor axis (±1, 0)

Answer

Ends of major axis $(0, \pm \sqrt{5})$, ends of minor axis $(\pm 1, 0)$ Here, the major axis is along the *y*-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, where *a* is the semi-major axis.

Accordingly, $a = \sqrt{5}$ and b = 1.

$$\frac{x^2}{1^2} + \frac{y^2}{\left(\sqrt{5}\right)^2} = 1 \text{ or } \frac{x^2}{1} + \frac{y^2}{5} = 1$$

Thus, the equation of the ellipse is

Question 15:

Find the equation for the ellipse that satisfies the given conditions: Length of major axis 26, foci $(\pm 5, 0)$

Answer

Length of major axis = 26; foci = $(\pm 5, 0)$.

Since the foci are on the *x*-axis, the major axis is along the *x*-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where *a* is the semi-major axis.

Accordingly, $2a = 26 \Rightarrow a = 13$ and c = 5.

It is known that $a^2 = b^2 + c^2$.

$$\therefore 13^2 = b^2 + 5^2$$

$$\Rightarrow 169 = b^2 + 25$$

$$\Rightarrow b^2 = 169 - 25$$

$$\Rightarrow b = \sqrt{144} = 12$$

Thus, the equation of the ellipse is $\frac{x^2}{13^2} + \frac{y^2}{12^2} = 1$ or $\frac{x^2}{169} + \frac{y^2}{144} = 1$.

Question 16:

Find the equation for the ellipse that satisfies the given conditions: Length of minor axis 16, foci (0, ±6)

Answer

Length of minor axis = 16; foci = $(0, \pm 6)$.

Since the foci are on the y-axis, the major axis is along the y-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, where *a* is the semi-major axis.

Accordingly, $2b = 16 \Rightarrow b = 8$ and c = 6.

It is known that $a^2 = b^2 + c^2$.

 $\therefore a^2 = 8^2 + 6^2 = 64 + 36 = 100$ $\Rightarrow a = \sqrt{100} = 10$

$$\frac{x^2}{8^2} + \frac{y^2}{10^2} = 1 \text{ or } \frac{x^2}{64} + \frac{y^2}{100} = 1$$

Thus, the equation of the ellipse is

Question 17:

Find the equation for the ellipse that satisfies the given conditions: Foci $(\pm 3, 0)$, a = 4Answer

Foci (±3, 0), a = 4

Since the foci are on the *x*-axis, the major axis is along the *x*-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where *a* is the semi-major axis.

Accordingly, c = 3 and a = 4.

It is known that $a^2 = b^2 + c^2$.

$$\therefore 4^2 = b^2 + 3^2$$
$$\Rightarrow 16 = b^2 + 9$$
$$\Rightarrow b^2 = 16 - 9 = 7$$

Thus, the equation of the ellipse is $\frac{x^2}{16} + \frac{y^2}{7} = 1$

Question 18:

Find the equation for the ellipse that satisfies the given conditions: b = 3, c = 4, centre at the origin; foci on the *x* axis.

Answer

It is given that b = 3, c = 4, centre at the origin; foci on the x axis.

Since the foci are on the *x*-axis, the major axis is along the *x*-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where *a* is the semi-major axis.

Accordingly, b = 3, c = 4.

It is known that $a^2 = b^2 + c^2$.

$$\therefore a^2 = 3^2 + 4^2 = 9 + 16 = 25$$
$$\Rightarrow a = 5$$

Thus, the equation of the ellipse is
$$\frac{x^2}{5^2} + \frac{y^2}{3^2} = 1$$
 or $\frac{x^2}{25} + \frac{y^2}{9} = 1$.

Question 19:

Find the equation for the ellipse that satisfies the given conditions: Centre at (0, 0), major axis on the *y*-axis and passes through the points (3, 2) and (1, 6).

Answer

Since the centre is at (0, 0) and the major axis is on the *y*-axis, the equation of the ellipse will be of the form

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \qquad \dots (1)$$

Where, a is the semi-major axis

The ellipse passes through points (3, 2) and (1, 6). Hence,

$$\frac{9}{b^2} + \frac{4}{a^2} = 1 \qquad \dots(2)$$
$$\frac{1}{b^2} + \frac{36}{a^2} = 1 \qquad \dots(3)$$

On solving equations (2) and (3), we obtain $b^2 = 10$ and $a^2 = 40$.

$$\frac{x^2}{10} + \frac{y^2}{40} = 1 \text{ or } 4x^2 + y^2 = 40$$

Thus, the equation of the ellipse is 10

Question 20:

Find the equation for the ellipse that satisfies the given conditions: Major axis on the x-axis and passes through the points (4, 3) and (6, 2).

Answer

Since the major axis is on the *x*-axis, the equation of the ellipse will be of the form

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad \dots (1)$$

Where, a is the semi-major axis

The ellipse passes through points (4, 3) and (6, 2). Hence,

$$\frac{16}{a^2} + \frac{9}{b^2} = 1 \qquad \dots(2)$$
$$\frac{36}{a^2} + \frac{4}{b^2} = 1 \qquad \dots(3)$$

On solving equations (2) and (3), we obtain $a^2 = 52$ and $b^2 = 13$.

$$\frac{x^2}{52} + \frac{y^2}{13} = 1 \text{ or } x^2 + 4y^2 = 52$$

Thus, the equation of the ellipse is 52