Miscellaneous Solutions

Question 1:

Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points $(3,5,-1),(4,3,-1)$.

Answer
Let $O A$ be the line joining the origin, $O(0,0,0)$, and the point, $A(2,1,1)$.
Also, let $B C$ be the line joining the points, $B(3,5,-1)$ and $C(4,3,-1)$.
The direction ratios of OA are 2,1 , and 1 and of $B C$ are $(4-3)=1,(3-5)=-2$, and $(-1+1)=0$
OA is perpendicular to BC , if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$\therefore a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=2 \times 1+1(-2)+1 \times 0=2-2=0$

Thus, $O A$ is perpendicular to $B C$.

Question 2:

If I_{1}, m_{1}, n_{1} and I_{2}, m_{2}, n_{2} are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are $m_{1} n_{2}-$ $m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2} m_{1}$.
Answer
It is given that I_{1}, m_{1}, n_{1} and I_{2}, m_{2}, n_{2} are the direction cosines of two mutually perpendicular lines. Therefore,
$l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0$
$l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=1$
$l_{2}^{2}+m_{2}^{2}+n_{2}^{2}=1$
Let l, m, n be the direction cosines of the line which is perpendicular to the line with direction cosines I_{1}, m_{1}, n_{1} and I_{2}, m_{2}, n_{2}.

$$
\begin{align*}
& \therefore l l_{1}+m m_{1}+n n_{1}=0 \\
& l_{2}+m m_{2}+n n_{2}=0 \\
& \therefore \frac{l}{m_{1} n_{2}-m_{2} n_{1}}=\frac{m}{n_{1} l_{2}-n_{2} l_{1}}=\frac{n}{l_{1} m_{2}-l_{2} m_{l}} \\
& \Rightarrow \frac{l^{2}}{\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}}=\frac{m^{2}}{\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}}=\frac{n^{2}}{\left(l_{1} m_{2}-l_{2} m_{l}\right)^{2}} \\
& \Rightarrow \frac{l^{2}}{\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}}=\frac{m^{2}}{\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}}=\frac{n^{2}}{\left(l_{1} m_{2}-l_{2} m_{2}\right)^{2}} \\
& =\frac{l^{2}+m^{2}+n^{2}}{\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{l}\right)^{2}} \tag{4}
\end{align*}
$$

l, m, n are the direction cosines of the line.

$$
\begin{equation*}
\therefore I^{2}+m^{2}+n^{2}=1 \ldots \tag{5}
\end{equation*}
$$

It is known that,

$$
\begin{aligned}
\left(l_{1}^{2}+m_{1}^{2}+n_{1}^{2}\right)\left(l_{2}^{2}+m_{2}^{2}+n_{2}^{2}\right)- & \left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right)^{2} \\
& =\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}
\end{aligned}
$$

From (1), (2), and (3), we obtain

$$
\begin{align*}
& \Rightarrow 1.1-0=\left(m_{1} n_{2}+m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2} \\
& \therefore\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}=1 \tag{6}
\end{align*}
$$

Substituting the values from equations (5) and (6) in equation (4), we obtain

$$
\begin{aligned}
& \frac{l^{2}}{\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}}=\frac{m^{2}}{\left(n_{2} l_{2}-n_{2} l_{1}\right)^{2}}=\frac{n^{2}}{\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}}=1 \\
& \Rightarrow l=m_{1} n_{2}-m_{2} n_{1}, m=n_{1} l_{2}-n_{2} l_{1}, n=l_{1} m_{2}-l_{2} m_{1}
\end{aligned}
$$

Thus, the direction cosines of the required line are $m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}$, and $l_{1} m_{2}-l_{2} m_{1}$.

Question 3:

Find the angle between the lines whose direction ratios are a, b, c and $b-c$,
$c-a, a-b$.
Answer
The angle Q between the lines with direction cosines, a, b, c and $b-c, c-a$, $a-b$, is given by,

$$
\begin{aligned}
& \cos Q=\left|\frac{a(b-c)+b(c-a)+c(a-b)}{\sqrt{a^{2}+b^{2}+c^{2}}+\sqrt{(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}}\right| \\
& \Rightarrow \cos Q=0 \\
& \Rightarrow Q=\cos ^{-1} 0 \\
& \Rightarrow Q=90^{\circ}
\end{aligned}
$$

Thus, the angle between the lines is 90°.

Question 4:

Find the equation of a line parallel to x-axis and passing through the origin.
Answer
The line parallel to x-axis and passing through the origin is x-axis itself.
Let A be a point on x-axis. Therefore, the coordinates of A are given by $(a, 0,0)$, where
$a \in \mathrm{R}$.

Direction ratios of OA are $(a-0)=a, 0,0$
The equation of $O A$ is given by,
$\frac{x-0}{a}=\frac{y-0}{0}=\frac{z-0}{0}$
$\Rightarrow \frac{x}{1}=\frac{y}{0}=\frac{z}{0}=a$
Thus, the equation of line parallel to x-axis and passing through origin is
$\frac{x}{1}=\frac{y}{0}=\frac{z}{0}$

Question 5:

If the coordinates of the points A, B, C, D be $(1,2,3),(4,5,7),(-4,3,-6)$ and (2, 9, 2) respectively, then find the angle between the lines $A B$ and $C D$.
Answer
The coordinates of A, B, C, and D are $(1,2,3),(4,5,7),(-4,3,-6)$, and $(2,9,2)$ respectively.
The direction ratios of $A B$ are $(4-1)=3,(5-2)=3$, and $(7-3)=4$
The direction ratios of CD are $(2-(-4))=6,(9-3)=6$, and $(2-(-6))=8$
It can be seen that, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}=\frac{1}{2}$
Therefore, $A B$ is parallel to $C D$.
Thus, the angle between AB and CD is either 0° or 180°.

sQuestion 6:

If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular, find the value of k.

Answer
The direction of ratios of the lines, $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$, are -3 , $2 k, 2$ and $3 k, 1,-5$ respectively.
It is known that two lines with direction ratios, a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2}, are perpendicular, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$\therefore-3(3 k)+2 k \times 1+2(-5)=0$
$\Rightarrow-9 k+2 k-10=0$
$\Rightarrow 7 k=-10$
$\Rightarrow k=\frac{-10}{7}$

Therefore, for $k=-\frac{10}{7}$, the given lines are perpendicular to each other.

Question 7:

Find the vector equation of the plane passing through $(1,2,3)$ and perpendicular to the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0$
Answer
The position vector of the point $(1,2,3)$ is $\vec{r}_{1}=\hat{i}+2 \hat{j}+3 \hat{k}$
The direction ratios of the normal to the plane, $\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0$, are 1, 2, and -5 and the normal vector is $\vec{N}=\hat{i}+2 \hat{j}-5 \hat{k}$
The equation of a line passing through a point and perpendicular to the given plane is given by, $\vec{l}=\vec{r}+\lambda \vec{N}, \lambda \in R$
$\Rightarrow \vec{l}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}+2 \hat{j}-5 \hat{k})$

Question 8:

Find the equation of the plane passing through (a, b, c) and parallel to the plane
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$
Answer
Any plane parallel to the plane, $\vec{r}_{1} \cdot(\hat{i}+\hat{j}+\hat{k})=2$, is of the form
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=\lambda$
The plane passes through the point (a, b, c). Therefore, the position vector \vec{r} of this point is $\vec{r}=a \hat{i}+b \hat{j}+c \hat{k}$
Therefore, equation (1) becomes
$(a \hat{i}+b \hat{j}+c \hat{k}) \cdot(\hat{i}+\hat{j}+\hat{k})=\lambda$
$\Rightarrow a+b+c=\lambda$

Substituting $\lambda=a+b+c$ in equation (1), we obtain
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=a+b+c$
This is the vector equation of the required plane.
Substituting $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ in equation (2), we obtain
$(x \hat{i}+y \hat{j}+z \hat{k}) \cdot(\hat{i}+\hat{j}+\hat{k})=a+b+c$
$\Rightarrow x+y+z=a+b+c$

Question 9:

Find the shortest distance between lines $\vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k})$
and $\vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k})$.
Answer
The given lines are
$\vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k})$
$\vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k})$
It is known that the shortest distance between two lines, $\vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\lambda \vec{b}_{2}$, is given by
$d=\left|\frac{\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|$
Comparing $\vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\lambda \vec{b}_{2}$ to equations (1) and (2), we obtain
$\vec{a}_{1}=6 \hat{i}+2 \hat{j}+2 \hat{k}$
$\vec{b}_{1}=\hat{i}-2 \hat{j}+2 \hat{k}$
$\vec{a}_{2}=-4 \hat{i}-\hat{k}$
$\vec{b}_{2}=3 \hat{i}-2 \hat{j}-2 \hat{k}$
$\Rightarrow \vec{a}_{2}-\vec{a}_{1}=(-4 \hat{i}-\hat{k})-(6 \hat{i}+2 \hat{j}+2 \hat{k})=-10 \hat{i}-2 \hat{j}-3 \hat{k}$
$\Rightarrow \vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 3 & -2 & -2\end{array}\right|=(4+4) \hat{i}-(-2-6) \hat{j}+(-2+6) \hat{k}=8 \hat{i}+8 \hat{j}+4 \hat{k}$
$\therefore\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{(8)^{2}+(8)^{2}+(4)^{2}}=12$
$\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)=(8 \hat{i}+8 \hat{j}+4 \hat{k}) \cdot(-10 \hat{i}-2 \hat{j}-3 \hat{k})=-80-16-12=-108$
Substituting all the values in equation (1), we obtain
$d=\left|\frac{-108}{12}\right|=9$
Therefore, the shortest distance between the two given lines is 9 units.

Question 10:

Find the coordinates of the point where the line through $(5,1,6)$ and
$(3,4,1)$ crosses the YZ-plane
Answer
It is known that the equation of the line passing through the points, $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}\right.$,
$\left.y_{2}, z_{2}\right)$, is $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
The line passing through the points, $(5,1,6)$ and $(3,4,1)$, is given by,
$\frac{x-5}{3-5}=\frac{y-1}{4-1}=\frac{z-6}{1-6}$
$\Rightarrow \frac{x-5}{-2}=\frac{y-1}{3}=\frac{z-6}{-5}=k$ (say)
$\Rightarrow x=5-2 k, y=3 k+1, z=6-5 k$
Any point on the line is of the form ($5-2 k, 3 k+1,6-5 k$).
The equation of $Y Z$-plane is $x=0$
Since the line passes through YZ-plane,
$5-2 k=0$
$\Rightarrow k=\frac{5}{2}$
$\Rightarrow 3 k+1=3 \times \frac{5}{2}+1=\frac{17}{2}$
$6-5 k=6-5 \times \frac{5}{2}=\frac{-13}{2}$
Therefore, the required point is $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$.

Question 11:

Find the coordinates of the point where the line through $(5,1,6)$ and $(3,4,1)$ crosses the $Z X$ - plane.
Answer
It is known that the equation of the line passing through the points, $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}\right.$,
$\left.y_{2}, z_{2}\right)$, is $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
The line passing through the points, $(5,1,6)$ and $(3,4,1)$, is given by,
$\frac{x-5}{3-5}=\frac{y-1}{4-1}=\frac{z-6}{1-6}$
$\Rightarrow \frac{x-5}{-2}=\frac{y-1}{3}=\frac{z-6}{-5}=k$ (say)
$\Rightarrow x=5-2 k, y=3 k+1, z=6-5 k$
Any point on the line is of the form ($5-2 k, 3 k+1,6-5 k$).
Since the line passes through ZX-plane,
$3 k+1=0$
$\Rightarrow k=-\frac{1}{3}$
$\Rightarrow 5-2 k=5-2\left(-\frac{1}{3}\right)=\frac{17}{3}$
$6-5 \mathrm{k}=6-5\left(-\frac{1}{3}\right)=\frac{23}{3}$
Therefore, the required point is $\left(\frac{17}{3}, 0, \frac{23}{3}\right)$.

Question 12:

Find the coordinates of the point where the line through $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane $2 x+y+z=7$).
Answer
It is known that the equation of the line through the points, $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$, is
$\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
Since the line passes through the points, $(3,-4,-5)$ and $(2,-3,1)$, its equation is given by,
$\frac{x-3}{2-3}=\frac{y+4}{-3+4}=\frac{z+5}{1+5}$
$\Rightarrow \frac{x-3}{-1}=\frac{y+4}{1}=\frac{z+5}{6}=k$ (say)
$\Rightarrow x=3-k, y=k-4, z=6 k-5$
Therefore, any point on the line is of the form ($3-k, k-4,6 k-5$).
This point lies on the plane, $2 x+y+z=7$
$\therefore 2(3-k)+(k-4)+(6 k-5)=7$
$\Rightarrow 5 k-3=7$
$\Rightarrow k=2$
Hence, the coordinates of the required point are (3-2,2-4,6×2-5) i.e., (1, -2, 7).

Question 13:

Find the equation of the plane passing through the point $(-1,3,2)$ and perpendicular to each of the planes $x+2 y+3 z=5$ and $3 x+3 y+z=0$.
Answer
The equation of the plane passing through the point $(-1,3,2)$ is
$a(x+1)+b(y-3)+c(z-2)=0$
where, a, b, c are the direction ratios of normal to the plane.

It is known that two planes, $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ and $a_{2} x+b_{2} y+c_{2} z+d_{2}=0$, are perpendicular, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
Plane (1) is perpendicular to the plane, $x+2 y+3 z=5$
$\therefore a \cdot 1+b \cdot 2+c \cdot 3=0$
$\Rightarrow a+2 b+3 c=0$
Also, plane (1) is perpendicular to the plane, $3 x+3 y+z=0$
$\therefore a \cdot 3+b \cdot 3+c \cdot 1=0$
$\Rightarrow 3 a+3 b+c=0$
From equations (2) and (3), we obtain
$\frac{a}{2 \times 1-3 \times 3}=\frac{b}{3 \times 3-1 \times 1}=\frac{c}{1 \times 3-2 \times 3}$
$\Rightarrow \frac{a}{-7}=\frac{b}{8}=\frac{c}{-3}=k$ (say)
$\Rightarrow a=-7 k, b=8 k, c=-3 k$
Substituting the values of a, b, and c in equation (1), we obtain
$-7 k(x+1)+8 k(y-3)-3 k(z-2)=0$
$\Rightarrow(-7 x-7)+(8 y-24)-3 z+6=0$
$\Rightarrow-7 x+8 y-3 z-25=0$
$\Rightarrow 7 x-8 y+3 z+25=0$
This is the required equation of the plane.

Question 14:

If the points $(1,1, p)$ and $(-3,0,1)$ be equidistant from the plane $\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$, then find the value of p.

Answer

The position vector through the point $(1,1, p)$ is $\vec{a}_{1}=\hat{i}+\hat{j}+p \hat{k}$
Similarly, the position vector through the point $(-3,0,1)$ is $\vec{a}_{2}=-4 \hat{i}+\hat{k}$

The equation of the given plane is $\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$
It is known that the perpendicular distance between a point whose position vector is
$\vec{a}_{\text {and the plane, }} \vec{r} \cdot \vec{N}=d$, is given by, $\quad D=\frac{|\vec{a} \cdot \vec{N}-d|}{|\vec{N}|}$
Here, $\vec{N}=3 \hat{i}+4 \hat{j}-12 \hat{k}$ and $d=-13$
Therefore, the distance between the point $(1,1, p)$ and the given plane is
$D_{1}=\frac{|(\hat{i}+\hat{j}+p \hat{k}) \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13|}{|3 \hat{i}+4 \hat{j}-12 \hat{k}|}$
$\Rightarrow D_{1}=\frac{|3+4-12 p+13|}{\sqrt{3^{2}+4^{2}+(-12)^{2}}}$
$\Rightarrow D_{1}=\frac{|20-12 p|}{13}$
Similarly, the distance between the point $(-3,0,1)$ and the given plane is
$D_{2}=\frac{|(-3 \hat{i}+\hat{k}) \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13|}{|3 \hat{i}+4 \hat{j}-12 \hat{k}|}$
$\Rightarrow D_{2}=\frac{|-9-12+13|}{\sqrt{3^{2}+4^{2}+(-12)^{2}}}$
$\Rightarrow D_{2}=\frac{8}{13}$
It is given that the distance between the required plane and the points, $(1,1, p)$ and $(-3,0,1)$, is equal.
$\therefore D_{1}=D_{2}$
$\Rightarrow \frac{|20-12 p|}{13}=\frac{8}{13}$
$\Rightarrow 20-12 p=8$ or $-(20-12 p)=8$
$\Rightarrow 12 p=12$ or $12 p=28$
$\Rightarrow p=1$ or $p=\frac{7}{3}$

Question 15:

Find the equation of the plane passing through the line of intersection of the planes
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and parallel to x-axis.
Answer
The given planes are
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1$
$\Rightarrow \vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})-1=0$
$\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$
The equation of any plane passing through the line of intersection of these planes is
$[\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})-1]+\lambda[\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4]=0$
$\vec{r} \cdot[(2 \lambda+1) \hat{i}+(3 \lambda+1) \hat{j}+(1-\lambda) \hat{k}]+(4 \lambda+1)=0$
Its direction ratios are $(2 \lambda+1),(3 \lambda+1)$, and $(1-\lambda)$.
The required plane is parallel to x-axis. Therefore, its normal is perpendicular to x-axis.
The direction ratios of x-axis are 1,0 , and 0 .
$\therefore 1 .(2 \lambda+1)+0(3 \lambda+1)+0(1-\lambda)=0$
$\Rightarrow 2 \lambda+1=0$
$\Rightarrow \lambda=-\frac{1}{2}$
Substituting $\lambda=-\frac{1}{2}$ in equation (1), we obtain
$\Rightarrow \vec{r} \cdot\left[-\frac{1}{2} \hat{j}+\frac{3}{2} \hat{k}\right]+(-3)=0$
$\Rightarrow \vec{r}(\hat{j}-3 \hat{k})+6=0$

Therefore, its Cartesian equation is $y-3 z+6=0$
This is the equation of the required plane.

Question 16:

If O be the origin and the coordinates of P be $(1,2,-3)$, then find the equation of the plane passing through P and perpendicular to $O P$.
Answer
The coordinates of the points, O and P, are ($0,0,0$) and ($1,2,-3$) respectively.
Therefore, the direction ratios of OP are $(1-0)=1,(2-0)=2$, and $(-3-0)=-3$ It is known that the equation of the plane passing through the point $\left(x_{1}, y_{1} z_{1}\right)$ is $a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$ where, a, b, and c are the direction ratios of normal.

Here, the direction ratios of normal are 1,2 , and -3 and the point P is $(1,2,-3)$.
Thus, the equation of the required plane is
$1(x-1)+2(y-2)-3(z+3)=0$
$\Rightarrow x+2 y-3 z-14=0$

Question 17:

Find the equation of the plane which contains the line of intersection of the planes
$\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0 \quad \vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0$ and which is perpendicular to the plane
$\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$

Answer

The equations of the given planes are
$\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0$
$\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0$
The equation of the plane passing through the line intersection of the plane given in equation (1) and equation (2) is

$$
\begin{align*}
& {[\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4]+\lambda[\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5]=0} \\
& \vec{r} \cdot[(2 \lambda+1) \hat{i}+(\lambda+2) \hat{j}+(3-\lambda) \hat{k}]+(5 \lambda-4)=0 \tag{3}
\end{align*}
$$

The plane in equation (3) is perpendicular to the plane, $\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$
$\therefore 5(2 \lambda+1)+3(\lambda+2)-6(3-\lambda)=0$
$\Rightarrow 19 \lambda-7=0$
$\Rightarrow \lambda=\frac{7}{19}$
Substituting $\lambda=\frac{7}{19}$ in equation (3), we obtain
$\Rightarrow \vec{r} \cdot\left[\frac{33}{19} \hat{i}+\frac{45}{19} \hat{j}+\frac{50}{19} \hat{k}\right] \frac{-41}{19}=0$
$\Rightarrow \vec{r} \cdot(33 \hat{i}+45 \hat{j}+50 \hat{k})-41=0$
This is the vector equation of the required plane.
The Cartesian equation of this plane can be obtained by substituting $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ in equation (3).
$(x \hat{i}+y \hat{j}+z \hat{k}) \cdot(33 \hat{i}+45 \hat{j}+50 \hat{k})-41=0$
$\Rightarrow 33 x+45 y+50 z-41=0$

Question 18:

Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line

$$
\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k}) \text { and the plane } \vec{r}^{\vec{i} \cdot(\hat{i}-\hat{j}+\hat{k})=5}
$$

Answer
The equation of the given line is
$\vec{r} \cdot=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$
The equation of the given plane is
$\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$
Substituting the value of \vec{r} from equation (1) in equation (2), we obtain

$$
\begin{aligned}
& {[2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})] \cdot(\hat{i}-\hat{j}+\hat{k})=5} \\
& \Rightarrow[(3 \lambda+2) \hat{i}+(4 \lambda-1) \hat{j}+(2 \lambda+2) \hat{k}] \cdot(\hat{i}-\hat{j}+\hat{k})=5 \\
& \Rightarrow(3 \lambda+2)-(4 \lambda-1)+(2 \lambda+2)=5 \\
& \Rightarrow \lambda=0
\end{aligned}
$$

Substituting this value in equation (1), we obtain the equation of the line as
$\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}$
This means that the position vector of the point of intersection of the line and the plane
is $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}$
This shows that the point of intersection of the given line and plane is given by the coordinates, $(2,-1,2)$. The point is $(-1,-5,-10)$.

The distance d between the points, $(2,-1,2)$ and $(-1,-5,-10)$, is
$d=\sqrt{(-1-2)^{2}+(-5+1)^{2}+(-10-2)^{2}}=\sqrt{9+16+144}=\sqrt{169}=13$

Question 19:

Find the vector equation of the line passing through $(1,2,3)$ and parallel to the planes

$$
\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})=5 \text { and } \vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6
$$

Answer
Let the required line be parallel to vector \vec{b} given by,
$\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$
The position vector of the point $(1,2,3)$ is $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$
The equation of line passing through $(1,2,3)$ and parallel to \vec{b} is given by,
$\vec{r}=\vec{a}+\lambda \vec{b}$
$\Rightarrow \vec{r}(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)$
The equations of the given planes are
$\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$
$\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$
The line in equation (1) and plane in equation (2) are parallel. Therefore, the normal to the plane of equation (2) and the given line are perpendicular.
$\Rightarrow(\hat{i}-\hat{j}+2 \hat{k}) \cdot \lambda\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)=0$
$\Rightarrow \lambda\left(b_{1}-b_{2}+2 b_{3}\right)=0$
$\Rightarrow b_{1}-b_{2}+2 b_{3}=0$
Similarly, $(3 \hat{i}+\hat{j}+\hat{k}) \cdot \lambda\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)=0$
$\Rightarrow \lambda\left(3 b_{1}+b_{2}+b_{3}\right)=0$
$\Rightarrow 3 b_{1}+b_{2}+b_{3}=0$
From equations (4) and (5), we obtain
$\frac{b_{1}}{(-1) \times 1-1 \times 2}=\frac{b_{2}}{2 \times 3-1 \times 1}=\frac{b_{3}}{1 \times 1-3(-1)}$
$\Rightarrow \frac{b_{1}}{-3}=\frac{b_{2}}{5}=\frac{b_{3}}{4}$
Therefore, the direction ratios of \vec{b} are $-3,5$, and 4 .
$\therefore \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}=-3 \hat{i}+5 \hat{j}+4 \hat{k}$
Substituting the value of \vec{b} in equation (1), we obtain
$\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(-3 \hat{i}+5 \hat{j}+4 \hat{k})$
This is the equation of the required line.

Question 20:

Find the vector equation of the line passing through the point $(1,2,-4)$ and
perpendicular to the two lines: $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$
Answer
Let the required line be parallel to the vector \vec{b} given by, $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$

The position vector of the point $(1,2,-4)$ is $\vec{a}=\hat{i}+2 \hat{j}-4 \hat{k}$
The equation of the line passing through $(1,2,-4)$ and parallel to vector \vec{b} is
$\vec{r}=\vec{a}+\lambda \vec{b}$
$\Rightarrow \vec{r}(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)$
The equations of the lines are
$\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$
$\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$
Line (1) and line (2) are perpendicular to each other.
$\therefore 3 b_{1}-16 b_{2}+7 b_{3}=0$
Also, line (1) and line (3) are perpendicular to each other.
$\therefore 3 b_{1}+8 b_{2}-5 b_{3}=0$
From equations (4) and (5), we obtain
$\frac{b_{1}}{(-16)(-5)-8 \times 7}=\frac{b_{2}}{7 \times 3-3(-5)}=\frac{b_{3}}{3 \times 8-3(-16)}$
$\Rightarrow \frac{b_{1}}{24}=\frac{b_{2}}{36}=\frac{b_{3}}{72}$
$\Rightarrow \frac{b_{1}}{2}=\frac{b_{2}}{3}=\frac{b_{3}}{6}$
\therefore Direction ratios of \vec{b} are 2,3 , and 6 .
$\therefore \vec{b}=2 \hat{i}+3 \hat{j}+6 \hat{k}$
Substituting $\vec{b}=2 \hat{i}+3 \hat{j}+6 \hat{k}$ in equation (1), we obtain
$\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$
This is the equation of the required line.

Question 21:

Prove that if a plane has the intercepts a, b, c and is at a distance of P units from the
origin, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$
Answer
The equation of a plane having intercepts a, b, c with x, y, and z axes respectively is given by,
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
The distance (p) of the plane from the origin is given by,
$p=\left|\frac{\frac{0}{a}+\frac{0}{b}+\frac{0}{c}-1}{\sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2}}}\right|$
$\Rightarrow p=\frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}$
$\Rightarrow p^{2}=\frac{1}{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}$
$\Rightarrow \frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}$

Question 22:

Distance between the two planes: $2 x+3 y+4 z=4$ and $4 x+6 y+8 z=12$ is
(A)2 units (B)4 units (C)8 units
(D) $\frac{2}{\sqrt{29}}$ units

Answer
The equations of the planes are
$2 x+3 y+4 z=4$
$4 x+6 y+8 z=12$
$\Rightarrow 2 x+3 y+4 z=6$
It can be seen that the given planes are parallel.
It is known that the distance between two parallel planes, $a x+b y+c z=d_{1}$ and $a x+b y$ $+c z=d_{2}$, is given by,
$D=\left|\frac{d_{2}-d_{1}}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|$
$\Rightarrow D=\left|\frac{6-4}{\sqrt{(2)^{2}+(3)^{2}+(4)^{2}}}\right|$
$D=\frac{2}{\sqrt{29}}$
Thus, the distance between the lines is $\frac{2}{\sqrt{29}}$ units.
Hence, the correct answer is D.

Question 23:

The planes: $2 x-y+4 z=5$ and $5 x-2.5 y+10 z=6$ are
(A) Perpendicular (B) Parallel (C) intersect y-axis
(C) passes through $\left(0,0, \frac{5}{4}\right)$

Answer
The equations of the planes are
$2 x-y+4 z=5 \ldots$ (1)
$5 x-2.5 y+10 z=6 \ldots$ (2)
It can be seen that,
$\frac{a_{1}}{a_{2}}=\frac{2}{5}$
$\frac{b_{1}}{b_{2}}=\frac{-1}{-2.5}=\frac{2}{5}$
$\frac{c_{1}}{c_{2}}=\frac{4}{10}=\frac{2}{5}$
$\therefore \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$

Therefore, the given planes are parallel.
Hence, the correct answer is B.

