Exercise 12.3

Question 1:

Find the coordinates of the point which divides the line segment joining the points (-2, 3,5) and ($1,-4,6$) in the ratio (i) $2: 3$ internally, (ii) $2: 3$ externally.

Answer

(i) The coordinates of point R that divides the line segment joining points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ internally in the ratio m : n are
$\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}, \frac{m z_{2}+n z_{1}}{m+n}\right)$.
Let $\mathrm{R}(x, y, z)$ be the point that divides the line segment joining points($-2,3,5$) and (1, $-4,6$) internally in the ratio $2: 3$
$x=\frac{2(1)+3(-2)}{2+3}, y=\frac{2(-4)+3(3)}{2+3}$, and $z=\frac{2(6)+3(5)}{2+3}$
i.e., $x=\frac{-4}{5}, y=\frac{1}{5}$, and $z=\frac{27}{5}$

Thus, the coordinates of the required point are $\left(-\frac{4}{5}, \frac{1}{5}, \frac{27}{5}\right)$.
(ii) The coordinates of point R that divides the line segment joining points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ externally in the ratio m : n are

$$
\left(\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}, \frac{m z_{2}-n z_{1}}{m-n}\right)
$$

Let $\mathrm{R}(x, y, z)$ be the point that divides the line segment joining points($-2,3,5$) and (1, $-4,6$) externally in the ratio $2: 3$
$x=\frac{2(1)-3(-2)}{2-3}, y=\frac{2(-4)-3(3)}{2-3}$, and $z=\frac{2(6)-3(5)}{2-3}$
i.e., $x=-8, y=17$, and $z=3$

Thus, the coordinates of the required point are $(-8,17,3)$.

Question 2:

Given that $P(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$ are collinear. Find the ratio in which Q divides PR.

Answer
Let point $Q(5,4,-6)$ divide the line segment joining points $P(3,2,-4)$ and $R(9,8,-$ 10) in the ratio $k: 1$.

Therefore, by section formula,

$$
\begin{aligned}
& (5,4,-6)=\left(\frac{k(9)+3}{k+1}, \frac{k(8)+2}{k+1}, \frac{k(-10)-4}{k+1}\right) \\
& \Rightarrow \frac{9 k+3}{k+1}=5 \\
& \Rightarrow 9 k+3=5 k+5 \\
& \Rightarrow 4 k=2 \\
& \Rightarrow k=\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

Thus, point Q divides PR in the ratio 1:2.

Question 3:

Find the ratio in which the YZ-plane divides the line segment formed by joining the points ($-2,4,7$) and (3, $-5,8$).
Answer
Let the $Y Z$ planedivide the line segment joining points $(-2,4,7)$ and $(3,-5,8)$ in the ratio $k: 1$.

Hence, by section formula, the coordinates of point of intersection are given by

$$
\left(\frac{k(3)-2}{k+1}, \frac{k(-5)+4}{k+1}, \frac{k(8)+7}{k+1}\right)
$$

On the $Y Z$ plane, the x-coordinate of any point is zero.

$$
\begin{aligned}
& \frac{3 k-2}{k+1}=0 \\
& \Rightarrow 3 k-2=0 \\
& \Rightarrow k=\frac{2}{3}
\end{aligned}
$$

Thus, the YZ plane divides the line segment formed by joining the given points in the ratio 2:3.

Question 4:

Using section formula, show that the points $A(2,-3,4), B(-1,2,1)$ and $C\left(0, \frac{1}{3}, 2\right)$ are collinear.

Answer

The given points are $A(2,-3,4), B(-1,2,1)$, and $\mathrm{C}\left(0, \frac{1}{3}, 2\right)$. Let P be a point that divides AB in the ratio $k: 1$.
Hence, by section formula, the coordinates of P are given by
$\left(\frac{k(-1)+2}{k+1}, \frac{k(2)-3}{k+1}, \frac{k(1)+4}{k+1}\right)$
Now, we find the value of k at which point P coincides with point C.
By taking $\frac{-k+2}{k+1}=0$, we obtain $k=2$.
For $k=2$, the coordinates of point P are $\left(0, \frac{1}{3}, 2\right)$.
i.e., $\mathrm{C}\left(0, \frac{1}{3}, 2\right)$ is a point that divides AB externally in the ratio $2: 1$ and is the same as point P.

Hence, points A, B, and C are collinear.

Question 5:

Find the coordinates of the points which trisect the line segment joining the points P (4, $2,-6)$ and $\mathrm{Q}(10,-16,6)$.

Answer
Let A and B be the points that trisect the line segment joining points $P(4,2,-6)$ and Q $(10,-16,6)$

Point A divides PQ in the ratio 1:2. Therefore, by section formula, the coordinates of point A are given by

$$
\left(\frac{1(10)+2(4)}{1+2}, \frac{1(-16)+2(2)}{1+2}, \frac{1(6)+2(-6)}{1+2}\right)=(6,-4,-2)
$$

Point B divides PQ in the ratio 2:1. Therefore, by section formula, the coordinates of point B are given by

$$
\left(\frac{2(10)+1(4)}{2+1}, \frac{2(-16)+1(2)}{2+1}, \frac{2(6)-1(6)}{2+1}\right)=(8,-10,2)
$$

Thus, $(6,-4,-2)$ and $(8,-10,2)$ are the points that trisect the line segment joining points $P(4,2,-6)$ and $Q(10,-16,6)$.

