NCERT Miscellaneous Solutions

Question 1:

Three vertices of a parallelogram $A B C D$ are $A(3,-1,2), B(1,2,-4)$ andC $(-1,1,2)$.
Find the coordinates of the fourth vertex.

Answer

The three vertices of a parallelogram $A B C D$ are given as $A(3,-1,2), B(1,2,-4)$, and C $(-1,1,2)$. Let the coordinates of the fourth vertex be $\mathrm{D}(x, y, z)$.

We know that the diagonals of a parallelogram bisect each other.
Therefore, in parallelogram $A B C D, A C$ and $B D$ bisect each other.
\therefore Mid-point of $A C=$ Mid-point of $B D$
$\Rightarrow\left(\frac{3-1}{2}, \frac{-1+1}{2}, \frac{2+2}{2}\right)=\left(\frac{x+1}{2}, \frac{y+2}{2}, \frac{z-4}{2}\right)$
$\Rightarrow(1,0,2)=\left(\frac{x+1}{2}, \frac{y+2}{2}, \frac{z-4}{2}\right)$
$\Rightarrow \frac{x+1}{2}=1, \frac{y+2}{2}=0$, and $\frac{z-4}{2}=2$
$\Rightarrow x=1, y=-2$, and $z=8$
Thus, the coordinates of the fourth vertex are $(1,-2,8)$.

Question 2:

Find the lengths of the medians of the triangle with vertices $A(0,0,6), B(0,4,0)$ and $(6,0,0)$.

Answer

Let $A D, B E$, and $C F$ be the medians of the given triangle $A B C$.

Since $A D$ is the median, D is the mid-point of $B C$.
\therefore Coordinates of point $D=\left(\frac{0+6}{2}, \frac{4+0}{2}, \frac{0+0}{2}\right)=(3,2,0)$
$\mathrm{AD}=\sqrt{(0-3)^{2}+(0-2)^{2}+(6-0)^{2}}=\sqrt{9+4+36}=\sqrt{49}=7$
Since BE is the median, E is the mid-point of AC .
\therefore Coordinates of point $\mathrm{E}=\left(\frac{0+6}{2}, \frac{0+0}{2}, \frac{6+0}{2}\right)=(3,0,3)$
$\mathrm{BE}=\sqrt{(3-0)^{2}+(0-4)^{2}+(3-0)^{2}}=\sqrt{9+16+9}=\sqrt{34}$
Since CF is the median, F is the mid-point of $A B$.
\therefore Coordinates of point $\mathrm{F}=\left(\frac{0+0}{2}, \frac{0+4}{2}, \frac{6+0}{2}\right)=(0,2,3)$
Length of $C F=\sqrt{(6-0)^{2}+(0-2)^{2}+(0-3)^{2}}=\sqrt{36+4+9}=\sqrt{49}=7$
Thus, the lengths of the medians of $\triangle A B C$ are $7, \sqrt{34}$, and 7 .

Question 3:

If the origin is the centroid of the triangle PQR with vertices $P(2 a, 2,6), Q(-4,3 b,-10)$ and $R(8,14,2 c)$, then find the values of a, b and c.

Answer

It is known that the coordinates of the centroid of the triangle, whose vertices are $\left(x_{1}\right.$,
$\left.y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$, are $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)$.
Therefore, coordinates of the centroid of $\triangle P Q R$
$=\left(\frac{2 a-4+8}{3}, \frac{2+3 b+14}{3}, \frac{6-10+2 c}{3}\right)=\left(\frac{2 a+4}{3}, \frac{3 b+16}{3}, \frac{2 c-4}{3}\right)$
It is given that origin is the centroid of $\triangle P Q R$.

$$
\begin{aligned}
& \therefore(0,0,0)=\left(\frac{2 a+4}{3}, \frac{3 b+16}{3}, \frac{2 c-4}{3}\right) \\
& \Rightarrow \frac{2 a+4}{3}=0, \frac{3 b+16}{3}=0 \text { and } \frac{2 c-4}{3}=0 \\
& \Rightarrow a=-2, b=-\frac{16}{3} \text { and } c=2
\end{aligned}
$$

Thus, the respective values of a, b, and c are $-2,-\frac{16}{3}$, and 2 .

Question 4:

Find the coordinates of a point on y-axis which are at a distance of $5 \sqrt{2}$ from the point P $(3,-2,5)$.

Answer

If a point is on the y-axis, then x-coordinate and the z-coordinate of the point are zero. Let $A(0, b, 0)$ be the point on the y-axis at a distance of $5 \sqrt{2}$ from point $P(3,-2,5)$.
Accordingly, $\mathrm{AP}=5 \sqrt{2}$
$\therefore \mathrm{AP}^{2}=50$
$\Rightarrow(3-0)^{2}+(-2-b)^{2}+(5-0)^{2}=50$
$\Rightarrow 9+4+b^{2}+4 b+25=50$
$\Rightarrow b^{2}+4 b-12=0$
$\Rightarrow b^{2}+6 b-2 b-12=0$
$\Rightarrow(b+6)(b-2)=0$
$\Rightarrow b=-6$ or 2
Thus, the coordinates of the required points are $(0,2,0)$ and $(0,-6,0)$.

Question 5:

A point R with x-coordinate 4 lies on the line segment joining the pointsP $(2,-3,4)$ and $Q(8,0,10)$. Find the coordinates of the point R.
[Hint suppose R divides PQ in the ratio k : 1 . The coordinates of the point R are given by

$$
\left.\left(\frac{8 k+2}{k+1}, \frac{-3}{k+1}, \frac{10 k+4}{k+1}\right)\right]
$$

Answer
The coordinates of points P and Q are given as $P(2,-3,4)$ and $Q(8,0,10)$.
Let R divide line segment PQ in the ratio $k: 1$.
Hence, by section formula, the coordinates of point R are given by
$\left(\frac{k(8)+2}{k+1}, \frac{k(0)-3}{k+1}, \frac{k(10)+4}{k+1}\right)=\left(\frac{8 k+2}{k+1}, \frac{-3}{k+1}, \frac{10 k+4}{k+1}\right)$
It is given that the x-coordinate of point R is 4 .
$\therefore \frac{8 k+2}{k+1}=4$
$\Rightarrow 8 k+2=4 k+4$
$\Rightarrow 4 k=2$
$\Rightarrow k=\frac{1}{2}$

Therefore, the coordinates of point R are

$$
\left(4, \frac{-3}{\frac{1}{2}+1}, \frac{10\left(\frac{1}{2}\right)+4}{\frac{1}{2}+1}\right)=(4,-2,6)
$$

Question 6:

If A and B be the points $(3,4,5)$ and $(-1,3,-7)$, respectively, find the equation of the set of points P such that $P^{2}+\mathrm{PB}^{2}=k^{2}$, where k is a constant.

Answer

The coordinates of points A and B are given as $(3,4,5)$ and $(-1,3,-7)$ respectively. Let the coordinates of point P be (x, y, z).
On using distance formula, we obtain

$$
\begin{aligned}
\mathrm{PA}^{2} & =(x-3)^{2}+(y-4)^{2}+(z-5)^{2} \\
& =x^{2}+9-6 x+y^{2}+16-8 y+z^{2}+25-10 z \\
& =x^{2}-6 x+y^{2}-8 y+z^{2}-10 z+50 \\
\mathrm{~PB}^{2} & =(x+1)^{2}+(y-3)^{2}+(z+7)^{2} \\
& =x^{2}+2 x+y^{2}-6 y+z^{2}+14 z+59
\end{aligned}
$$

Now, if $\mathrm{PA}^{2}+\mathrm{PB}^{2}=k^{2}$, then

$$
\begin{aligned}
& \left(x^{2}-6 x+y^{2}-8 y+z^{2}-10 z+50\right)+\left(x^{2}+2 x+y^{2}-6 y+z^{2}+14 z+59\right)=k^{2} \\
& \Rightarrow 2 x^{2}+2 y^{2}+2 z^{2}-4 x-14 y+4 z+109=k^{2} \\
& \Rightarrow 2\left(x^{2}+y^{2}+z^{2}-2 x-7 y+2 z\right)=k^{2}-109 \\
& \Rightarrow x^{2}+y^{2}+z^{2}-2 x-7 y+2 z=\frac{k^{2}-109}{2}
\end{aligned}
$$

Thus, the required equation is $x^{2}+y^{2}+z^{2}-2 x-7 y+2 z=\frac{k^{2}-109}{2}$.

