NCERT Miscellaneous Solutions

Question 1:

Find the derivative of the following functions from first principle:
(i) $-x$ (ii) $(-x)^{-1}$ (iii) $\sin (x+1)$
(iv) $\cos \left(x-\frac{\pi}{8}\right)$

Answer
(i) Let $f(x)=-x$. Accordingly, $\mathrm{f}(\mathrm{x}+\mathrm{h})=-(\mathrm{x}+\mathrm{h})$

By first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-(x+h)-(-x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-x-h+x}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h} \\
& =\lim _{h \rightarrow 0}(-1)=-1 \\
\text { (ii) Let } & f(x)=(-x)^{-1}=\frac{1}{-x}=\frac{-1}{x} . \text { Accordingly, } f(x+h)=\frac{-1}{(x+h)}
\end{aligned}
$$

By first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-1}{x+h}-\left(\frac{-1}{x}\right)\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-1}{x+h}+\frac{1}{x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-x+(x+h)}{x(x+h)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-x+x+h}{x(x+h)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{h}{x(x+h)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{x(x+h)} \\
& =\frac{1}{x \cdot x}=\frac{1}{x^{2}}
\end{aligned}
$$

(iii) Let $f(x)=\sin (x+1)$. Accordingly, $\mathrm{f}(\mathrm{x}+\mathrm{h})=\sin (\mathrm{x}+\mathrm{h}+1)$

By first principle,

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
&=\lim _{h \rightarrow 0} \frac{1}{h}[\sin (x+h+1)-\sin (x+1)] \\
&=\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{x+h+1+x+1}{2}\right) \sin \left(\frac{x+h+1-x-1}{2}\right)\right] \\
&=\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{2 x+h+2}{2}\right) \sin \left(\frac{h}{2}\right)\right] \\
&=\lim _{h \rightarrow 0}\left[\cos \left(\frac{2 x+h+2}{2}\right) \cdot \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right] \\
&=\lim _{h \rightarrow 0} \cos \left(\frac{2 x+h+2}{2}\right) \cdot \lim _{\frac{h}{2} \rightarrow 0}^{\frac{\sin }{2}\left(\frac{h}{2}\right)} \quad\left[\text { As } \frac{h}{2}\right) \quad\left[0 \Rightarrow \frac{h}{2} \rightarrow 0\right] \\
&=\cos \left(\frac{2 x+0+2}{2}\right) \cdot 1 \quad\left[\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right] \\
&=\cos (x+1) \quad f(x+h)=\cos \left(x+h-\frac{\pi}{8}\right) \\
& f(x)=\cos \left(x-\frac{\pi}{8}\right) \cdot \text { Accordingly, } \\
& \text { (iv) Let }
\end{aligned}
$$

By first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\cos \left(x+h-\frac{\pi}{8}\right)-\cos \left(x-\frac{\pi}{8}\right)\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[-2 \sin \frac{\left(x+h-\frac{\pi}{8}+x-\frac{\pi}{8}\right)}{2} \sin \left(\frac{x+h-\frac{\pi}{8}-x+\frac{\pi}{8}}{2}\right)\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[-2 \sin \left(\frac{2 x+h-\frac{\pi}{4}}{2}\right) \sin \frac{h}{2}\right] \\
& =\lim _{h \rightarrow 0}\left[-\sin \left(\frac{\left.2 x+h-\frac{\pi}{4}\right)}{2}\right) \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right] \\
& =\lim _{h \rightarrow 0}\left[-\sin \left(\frac{2 x+h-\frac{\pi}{4}}{2}\right)\right] \cdot \lim _{\frac{h}{2} \rightarrow 0}^{\sin \left(\frac{h}{2}\right)} \\
& =-\sin \left(\frac{h}{2}\right) \\
2 & \left.2 x+0-\frac{\pi}{4}\right) \cdot 1
\end{aligned}
$$

Question 2:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(x+a)$
Answer
Let $f(x)=x+a$. Accordingly, $f(x+h)=x+h+a$
By first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x+h+a-x-a}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{h}{h}\right) \\
& =\lim _{h \rightarrow 0}(1) \\
& =1
\end{aligned}
$$

Question 3:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r
and s are fixed non-zero constants and m and n are integers): $(p x+q)\left(\frac{r}{x}+s\right)$
Answer

$$
\text { Let } f(x)=(p x+q)\left(\frac{r}{x}+s\right)
$$

By Leibnitz product rule,

$$
\begin{aligned}
f^{\prime}(x) & =(p x+q)\left(\frac{r}{x}+s\right)^{\prime}+\left(\frac{r}{x}+s\right)(p x+q)^{\prime} \\
& =(p x+q)\left(r x^{-1}+s\right)^{\prime}+\left(\frac{r}{x}+s\right)(p) \\
& =(p x+q)\left(-r x^{-2}\right)+\left(\frac{r}{x}+s\right) p \\
& =(p x+q)\left(\frac{-r}{x^{2}}\right)+\left(\frac{r}{x}+s\right) p \\
& =\frac{-p r}{x}-\frac{q r}{x^{2}}+\frac{p r}{x}+p s \\
& =p s-\frac{q r}{x^{2}}
\end{aligned}
$$

Question 4:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(a x+b)(c x+d)^{2}$ Answer
Let $f(x)=(a x+b)(c x+d)^{2}$
By Leibnitz product rule,

$$
\begin{aligned}
f^{\prime}(x) & =(a x+b) \frac{d}{d x}(c x+d)^{2}+(c x+d)^{2} \frac{d}{d x}(a x+b) \\
& =(a x+b) \frac{d}{d x}\left(c^{2} x^{2}+2 c d x+d^{2}\right)+(c x+d)^{2} \frac{d}{d x}(a x+b) \\
& =(a x+b)\left[\frac{d}{d x}\left(c^{2} x^{2}\right)+\frac{d}{d x}(2 c d x)+\frac{d}{d x} d^{2}\right]+(c x+d)^{2}\left[\frac{d}{d x} a x+\frac{d}{d x} b\right] \\
& =(a x+b)\left(2 c^{2} x+2 c d\right)+\left(c x+d^{2}\right) a \\
& =2 c(a x+b)(c x+d)+a(c x+d)^{2}
\end{aligned}
$$

Question 5:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{a x+b}{c x+d}$
Answer
Let $f(x)=\frac{a x+b}{c x+d}$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(c x+d) \frac{d}{d x}(a x+b)-(a x+b) \frac{d}{d x}(c x+d)}{(c x+d)^{2}} \\
& =\frac{(c x+d)(a)-(a x+b)(c)}{(c x+d)^{2}} \\
& =\frac{a c x+a d-a c x-b c}{(c x+d)^{2}} \\
& =\frac{a d-b c}{(c x+d)^{2}}
\end{aligned}
$$

Question 6:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
$\frac{1+\frac{1}{x}}{1-\frac{1}{x}}$
Answer
Let $f(x)=\frac{1+\frac{1}{x}}{1-\frac{1}{x}}=\frac{\frac{x+1}{x}}{\frac{x-1}{x}}=\frac{x+1}{x-1}$, where $x \neq 0$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(x-1) \frac{d}{d x}(x+1)-(x+1) \frac{d}{d x}(x-1)}{(x-1)^{2}}, x \neq 0,1 \\
& =\frac{(x-1)(1)-(x+1)(1)}{(x-1)^{2}}, x \neq 0,1 \\
& =\frac{x-1-x-1}{(x-1)^{2}}, x \neq 0,1 \\
& =\frac{-2}{(x-1)^{2}}, x \neq 0,1
\end{aligned}
$$

Question 7:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{1}{a x^{2}+b x+c}$ Answer
Let $f(x)=\frac{1}{a x^{2}+b x+c}$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(a x^{2}+b x+c\right) \frac{d}{d x}(1)-\frac{d}{d x}\left(a x^{2}+b x+c\right)}{\left(a x^{2}+b x+c\right)^{2}} \\
& =\frac{\left(a x^{2}+b x+c\right)(0)-(2 a x+b)}{\left(a x^{2}+b x+c\right)^{2}} \\
& =\frac{-(2 a x+b)}{\left(a x^{2}+b x+c\right)^{2}}
\end{aligned}
$$

Question 8:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{a x+b}{p x^{2}+q x+r}$
Answer
Let $f(x)=\frac{a x+b}{p x^{2}+q x+r}$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(p x^{2}+q x+r\right) \frac{d}{d x}(a x+b)-(a x+b) \frac{d}{d x}\left(p x^{2}+q x+r\right)}{\left(p x^{2}+q x+r\right)^{2}} \\
& =\frac{\left(p x^{2}+q x+r\right)(a)-(a x+b)(2 p x+q)}{\left(p x^{2}+q x+r\right)^{2}} \\
& =\frac{a p x^{2}+a q x+a r-2 a p x^{2}-a q x-2 b p x-b q}{\left(p x^{2}+q x+r\right)^{2}} \\
& =\frac{-a p x^{2}-2 b p x+a r-b q}{\left(p x^{2}+q x+r\right)^{2}}
\end{aligned}
$$

Question 9:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r
and s are fixed non-zero constants and m and n are integers): $\frac{p x^{2}+q x+r}{a x+b}$
Answer
Let $f(x)=\frac{p x^{2}+q x+r}{a x+b}$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(a x+b) \frac{d}{d x}\left(p x^{2}+q x+r\right)-\left(p x^{2}+q x+r\right) \frac{d}{d x}(a x+b)}{(a x+b)^{2}} \\
& =\frac{(a x+b)(2 p x+q)-\left(p x^{2}+q x+r\right)(a)}{(a x+b)^{2}} \\
& =\frac{2 a p x^{2}+a q x+2 b p x+b q-a p x^{2}-a q x-a r}{(a x+b)^{2}} \\
& =\frac{a p x^{2}+2 b p x+b q-a r}{(a x+b)^{2}}
\end{aligned}
$$

Question 10:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{a}{x^{4}}-\frac{b}{x^{2}}+\cos x$ Answer
Let $f(x)=\frac{a}{x^{4}}-\frac{b}{x^{2}}+\cos x$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\frac{a}{x^{4}}\right)-\frac{d}{d x}\left(\frac{b}{x^{2}}\right)+\frac{d}{d x}(\cos x) \\
& =a \frac{d}{d x}\left(x^{-4}\right)-b \frac{d}{d x}\left(x^{-2}\right)+\frac{d}{d x}(\cos x) \\
& =a\left(-4 x^{-5}\right)-b\left(-2 x^{-3}\right)+(-\sin x) \quad\left[\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \text { and } \frac{d}{d x}(\cos x)=-\sin x\right] \\
& =\frac{-4 a}{x^{5}}+\frac{2 b}{x^{3}}-\sin x
\end{aligned}
$$

Question 11:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $4 \sqrt{x}-2$

Answer

$$
\begin{aligned}
& \text { Let } f(x)=4 \sqrt{x}-2 \\
& \begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}(4 \sqrt{x}-2)=\frac{d}{d x}(4 \sqrt{x})-\frac{d}{d x}(2) \\
& =4 \frac{d}{d x}\left(x^{\frac{1}{2}}\right)-0=4\left(\frac{1}{2} x^{\frac{1}{2}-1}\right) \\
& =\left(2 x^{-\frac{1}{2}}\right)=\frac{2}{\sqrt{x}}
\end{aligned}
\end{aligned}
$$

Question 12:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(a x+b)^{n}$
Answer

Let $f(x)=(a x+b)^{n}$. Accordingly, $f(x+h)=\{a(x+h)+b\}^{n}=(a x+a h+b)^{n}$
By first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(a x+a h+b)^{n}-(a x+b)^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(a x+b)^{n}\left(1+\frac{a h}{a x+b}\right)^{n}-(a x+b)^{n}}{h} \\
& =(a x+b)^{n} \lim _{h \rightarrow 0} \frac{\left(1+\frac{a h}{a x+b}\right)^{n}-1}{h} \\
& =(a x+b)^{n} \lim _{h \rightarrow 0} \frac{1}{n}\left[\left\{1+n\left(\frac{a h}{a x+b}\right)+\frac{n(n-1)}{\lfloor 2}\left(\frac{a h}{a x+b}\right)^{2}+\ldots\right\}-1\right]
\end{aligned}
$$

(Using binomial theorem)
$=(a x+b)^{n} \lim _{h \rightarrow 0} \frac{1}{h}\left[n\left(\frac{a h}{a x+b}\right)+\frac{n(n-1) a^{2} h^{2}}{\underline{2}(a x+b)^{2}}+\ldots(\right.$ Terms containing higher degrees of $\left.h)\right]$
$=(a x+b)^{n} \lim _{b \rightarrow 0}\left[\frac{n a}{(a x+b)}+\frac{n(n-1) a^{2} h}{\underline{2}(a x+b)^{2}}+\ldots\right]$
$=(a x+b)^{n}\left[\frac{n a}{(a x+b)}+0\right]$
$=n a \frac{(a x+b)^{n}}{(a x+b)}$
$=n a(a x+b)^{n-1}$

Question 13:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(a x+b)^{n}(c x+d)^{m}$
Answer
Let $f(x)=(a x+b)^{n}(c x+d)^{r n}$

By Leibnitz product rule,

$$
\begin{equation*}
f^{\prime}(x)=(a x+b)^{n} \frac{d}{d x}(c x+d)^{m}+(c x+d)^{m} \frac{d}{d x}(a x+b)^{n} \tag{1}
\end{equation*}
$$

Now, let $f_{1}(x)=(c x+d)^{m}$
$f_{1}(x+h)=(c x+c h+d)^{m}$
$f_{1}^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f_{1}(x+h)-f_{1}(x)}{h}$

$$
=\lim _{h \rightarrow 0} \frac{(c x+c h+d)^{m}-(c x+d)^{m}}{h}
$$

$$
=(c x+d)^{m} \lim _{h \rightarrow 0} \frac{1}{h}\left[\left(1+\frac{c h}{c x+d}\right)^{m}-1\right]
$$

$$
=(c x+d)^{m} \lim _{h \rightarrow 0} \frac{1}{h}\left[\left(1+\frac{m c h}{(c x+d)}+\frac{m(m-1)}{2} \frac{\left(c^{2} h^{2}\right)}{(c x+d)^{2}}+\ldots\right)-1\right]
$$

$$
=(c x+d)^{m} \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{m c h}{(c x+d)}+\frac{m(m-1) c^{2} h^{2}}{2(c x+d)^{2}}+\ldots(\text { Terms containing higher degrees of } h)\right]
$$

$$
=(c x+d)^{m} \lim _{h \rightarrow 0}\left[\frac{m c}{(c x+d)}+\frac{m(m-1) c^{2} h}{2(c x+d)^{2}}+\ldots\right]
$$

$$
=(c x+d)^{m}\left[\frac{m c}{c x+d}+0\right]
$$

$$
=\frac{m c(c x+d)^{m}}{(c x+d)}
$$

$$
\begin{equation*}
=m c(c x+d)^{m-1} \tag{2}
\end{equation*}
$$

$\frac{d}{d x}(c x+d)^{m t}=m c(c x+d)^{m-1}$
Similarly, $\frac{d}{d x}(a x+b)^{n}=n a(a x+b)^{n-1}$
Therefore, from (1), (2), and (3), we obtain

$$
\begin{aligned}
f^{\prime}(x) & =(a x+b)^{n}\left\{m c(c x+d)^{m-1}\right\}+(c x+d)^{m}\left\{n a(a x+b)^{n-1}\right\} \\
& =(a x+b)^{n-1}(c x+d)^{m-1}[m c(a x+b)+n a(c x+d)]
\end{aligned}
$$

Question 14:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\sin (x+a)$
Answer

$$
\begin{aligned}
& \text { Let } f(x)=\sin (x+a) \\
& f(x+h)=\sin (x+h+a)
\end{aligned}
$$

By first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x+h+a)-\sin (x+a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{x+h+a+x+a}{2}\right) \sin \left(\frac{x+h+a-x-a}{2}\right)\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{2 x+2 a+h}{2}\right) \sin \left(\frac{h}{2}\right)\right] \\
& =\lim _{h \rightarrow 0}\left[\cos \left(\frac{2 x+2 a+h}{2}\right)\left\{\frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right\}\right] \\
& =\lim _{h \rightarrow 0} \cos \left(\frac{2 x+2 a+h}{2}\right) \lim _{\frac{h}{2} \rightarrow 0}\left\{\frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right\} \quad\left[\text { As } h \rightarrow 0 \Rightarrow \frac{h}{2} \rightarrow 0\right] \\
& =\cos \left(\frac{2 x+2 a}{2}\right) \times 1 \\
& =\cos (x+a)
\end{aligned}
$$

Question 15:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\operatorname{cosec} x \cot x$
Answer
Let $f(x)=\operatorname{cosec} x \cot x$

By Leibnitz product rule,

$$
\begin{equation*}
f^{\prime}(x)=\operatorname{cosec} x(\cot x)^{\prime}+\cot x(\operatorname{cosec} x)^{\prime} \tag{1}
\end{equation*}
$$

Let $f_{1}(x)=\cot x$. Accordingly, $f_{1}(x+h)=\cot (x+h)$
By first principle,

$$
\begin{aligned}
f_{1}^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f_{1}(x+h)-f_{1}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\cot (x+h)-\cot x}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{\cos (x+h)}{\sin (x+h)}-\frac{\cos x}{\sin x}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin x \cos (x+h)-\cos x \sin (x+h)}{\sin x \sin (x+h)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x-x-h)}{\sin x \sin (x+h)}\right] \\
& =\frac{1}{\sin x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (-h)}{\sin (x+h)}\right] \\
& =\frac{-1}{\sin x} \cdot\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right)\left(\lim _{h \rightarrow 0} \frac{1}{\sin (x+h)}\right) \\
& =\frac{-1}{\sin x} \cdot 1 \cdot\left(\frac{1}{\sin (x+0)}\right) \\
& =\frac{-1}{\sin 2} \\
& =-\operatorname{cosec}{ }^{2} x
\end{aligned}
$$

$$
\begin{equation*}
\therefore(\cot x)^{\prime}=-\operatorname{cosec}^{2} x \tag{2}
\end{equation*}
$$

Now, let $f_{2}(x)=\operatorname{cosec} x$. Accordingly, $f_{2}(x+h)=\operatorname{cosec}(x+h)$
By first principle,

$$
\begin{aligned}
f_{2}^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f_{2}(x+h)-f_{2}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[\operatorname{cosec}(x+h)-\operatorname{cosec} x]
\end{aligned}
$$

$$
\begin{align*}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\sin (x+h)}-\frac{1}{\sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin x-\sin (x+h)}{\sin x \sin (x+h)}\right] \\
& =\frac{1}{\sin x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{x+x+h}{2}\right) \sin \left(\frac{x-x-h}{2}\right)}{\sin (x+h)}\right] \\
& =\frac{1}{\sin x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{2 x+h}{2}\right) \sin \left(\frac{-h}{2}\right)}{\sin (x+h)}\right] \\
& =\frac{1}{\sin x} \cdot \lim _{h \rightarrow 0}\left[\frac{-\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \cdot \frac{\cos \left(\frac{2 x+h}{2}\right)}{\sin (x+h)}\right] \\
& =\frac{-1}{\sin x} \cdot \lim _{h \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \cdot \lim _{h \rightarrow 0} \frac{\cos \left(\frac{2 x+h}{2}\right)}{\sin (x+h)} \\
& =\frac{-1}{\sin x} \cdot 1 \cdot \frac{\cos \left(\frac{2 x+0}{2}\right)}{\sin (x+0)} \\
& =\frac{-1}{\sin x} \cdot \frac{\cos x}{\sin x} \\
& =-\cos \operatorname{ecx} x \cdot \cot x \tag{3}
\end{align*}
$$

$\therefore(\operatorname{cosec} x)^{\prime}=-\operatorname{cosec} x \cdot \cot x$
From (1), (2), and (3), we obtain

$$
\begin{aligned}
f^{\prime}(x) & =\operatorname{cosec} x\left(-\operatorname{cosec}^{2} x\right)+\cot x(-\operatorname{cosec} x \cot x) \\
& =-\operatorname{cosec}^{3} x-\cot ^{2} x \operatorname{cosec} x
\end{aligned}
$$

Question 16:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{\cos x}{1+\sin x}$ Answer

Let $f(x)=\frac{\cos x}{1+\sin x}$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(1+\sin x) \frac{d}{d x}(\cos x)-(\cos x) \frac{d}{d x}(1+\sin x)}{(1+\sin x)^{2}} \\
& =\frac{(1+\sin x)(-\sin x)-(\cos x)(\cos x)}{(1+\sin x)^{2}} \\
& =\frac{-\sin x-\sin ^{2} x-\cos ^{2} x}{(1+\sin x)^{2}} \\
& =\frac{-\sin x-\left(\sin ^{2} x+\cos ^{2} x\right)}{(1+\sin x)^{2}} \\
& =\frac{-\sin x-1}{(1+\sin x)^{2}} \\
& =\frac{-(1+\sin x)}{(1+\sin x)^{2}} \\
& =\frac{-1}{(1+\sin x)}
\end{aligned}
$$

Question 17:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{\sin x+\cos x}{\sin x-\cos x}$
Answer
Let $f(x)=\frac{\sin x+\cos x}{\sin x-\cos x}$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(\sin x-\cos x) \frac{d}{d x}(\sin x+\cos x)-(\sin x+\cos x) \frac{d}{d x}(\sin x-\cos x)}{(\sin x-\cos x)^{2}} \\
& =\frac{(\sin x-\cos x)(\cos x-\sin x)-(\sin x+\cos x)(\cos x+\sin x)}{(\sin x-\cos x)^{2}} \\
& =\frac{-(\sin x-\cos x)^{2}-(\sin x+\cos x)^{2}}{(\sin x-\cos x)^{2}} \\
& =\frac{-\left[\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x+\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x\right]}{(\sin x-\cos x)^{2}} \\
& =\frac{-[1+1]}{(\sin x-\cos x)^{2}} \\
& =\frac{-2}{(\sin x-\cos x)^{2}}
\end{aligned}
$$

Question 18:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{\frac{\sec x-1}{\sec x+1}}{}$
Answer
Let $f(x)=\frac{\sec x-1}{\sec x+1}$
$f(x)=\frac{\frac{1}{\cos x}-1}{\frac{1}{\cos x}+1}=\frac{1-\cos x}{1+\cos x}$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(1+\cos x) \frac{d}{d x}(1-\cos x)-(1-\cos x) \frac{d}{d x}(1+\cos x)}{(1+\cos x)^{2}} \\
& =\frac{(1+\cos x)(\sin x)-(1-\cos x)(-\sin x)}{(1+\cos x)^{2}} \\
& =\frac{\sin x+\cos x \sin x+\sin x-\sin x \cos x}{(1+\cos x)^{2}} \\
& =\frac{2 \sin x}{(1+\cos x)^{2}} \\
& =\frac{2 \sin x}{\left(1+\frac{1}{\sec x}\right)^{2}}=\frac{2 \sin x}{\frac{(\sec x+1)^{2}}{\sec ^{2} x}} \\
& =\frac{2 \sin x \sec { }^{2} x}{(\sec x+1)^{2}} \\
& =\frac{2 \sin x}{\cos x} \sec x \\
& =\frac{2 \sec x+1)^{2}}{(\sec x+1)^{2}}
\end{aligned}
$$

Question 19:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\sin ^{n} x$
Answer
Let $y=\sin ^{n} x$.
Accordingly, for $n=1, y=\sin x$.
$\therefore \frac{d y}{d x}=\cos x$, i.e., $\frac{d}{d x} \sin x=\cos x$
For $n=2, y=\sin ^{2} x$.

$$
\begin{align*}
\therefore \frac{d y}{d x} & =\frac{d}{d x}(\sin x \sin x) \\
& =(\sin x)^{\prime} \sin x+\sin x(\sin x)^{\prime} \quad \quad \text { [By Leibnitz product rule] } \\
& =\cos x \sin x+\sin x \cos x \\
& =2 \sin x \cos x \tag{1}
\end{align*}
$$

For $n=3, y=\sin ^{3} x$.

$$
\begin{array}{rlrl}
\therefore \frac{d y}{d x} & =\frac{d}{d x}\left(\sin x \sin ^{2} x\right) & \\
& =(\sin x)^{\prime} \sin ^{2} x+\sin x\left(\sin ^{2} x\right)^{\prime} & & \text { [By Leibnitz product rule] } \\
& =\cos x \sin ^{2} x+\sin x(2 \sin x \cos x) & & \text { [Using (1)] } \\
& =\cos x \sin ^{2} x+2 \sin ^{2} x \cos x & \\
& =3 \sin ^{2} x \cos x &
\end{array}
$$

We assert that $\frac{d}{d x}\left(\sin ^{n} x\right)=n \sin ^{(n-1)} x \cos x$
Let our assertion be true for $n=k$.
i.e., $\frac{d}{d x}\left(\sin ^{k} x\right)=k \sin ^{(k-1)} x \cos x$

Consider

$$
\begin{array}{rlr}
\frac{d}{d x}\left(\sin ^{k+1} x\right) & =\frac{d}{d x}\left(\sin x \sin ^{k} x\right) & \\
& =(\sin x)^{\prime} \sin ^{k} x+\sin x\left(\sin ^{k} x\right)^{\prime} & \text { [By Leibnitz product rule] } \\
& =\cos x \sin ^{k} x+\sin x\left(k \sin ^{(k-1)} x \cos x\right) & \text { [Using (2)] } \\
& =\cos x \sin ^{k} x+k \sin ^{k} x \cos x & \\
& =(k+1) \sin ^{k} x \cos x &
\end{array}
$$

Thus, our assertion is true for $n=k+1$.
Hence, by mathematical induction, $\frac{d}{d x}\left(\sin ^{n} x\right)=n \sin ^{(n-1)} x \cos x$

Question 20:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{a+b \sin x}{c+d \cos x}$ Answer

$$
\text { Let } f(x)=\frac{a+b \sin x}{c+d \cos x}
$$

By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(c+d \cos x) \frac{d}{d x}(a+b \sin x)-(a+b \sin x) \frac{d}{d x}(c+d \cos x)}{(c+d \cos x)^{2}} \\
& =\frac{(c+d \cos x)(b \cos x)-(a+b \sin x)(-d \sin x)}{(c+d \cos x)^{2}} \\
& =\frac{c b \cos x+b d \cos ^{2} x+a d \sin x+b d \sin ^{2} x}{(c+d \cos x)^{2}} \\
& =\frac{b c \cos x+a d \sin x+b d\left(\cos ^{2} x+\sin ^{2} x\right)}{(c+d \cos x)^{2}} \\
& =\frac{b c \cos x+a d \sin x+b d}{(c+d \cos x)^{2}}
\end{aligned}
$$

Question 21:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{\sin (x+a)}{\cos x}$
Answer
Let $f(x)=\frac{\sin (x+a)}{\cos x}$
By quotient rule,

$$
\begin{align*}
& f^{\prime}(x)=\frac{\cos x \frac{d}{d x}[\sin (x+a)]-\sin (x+a) \frac{d}{d x} \cos x}{\cos ^{2} x} \\
& f^{\prime}(x)=\frac{\cos x \frac{d}{d x}[\sin (x+a)]-\sin (x+a)(-\sin x)}{\cos ^{2} x} \tag{i}
\end{align*}
$$

Let $g(x)=\sin (x+a)$. Accordingly, $g(x+h)=\sin (x+h+a)$
By first principle,

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[\sin (x+h+a)-\sin (x+a)] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{x+h+a+x+a}{2}\right) \sin \left(\frac{x+h+a-x-a}{2}\right)\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{2 x+2 a+h}{2}\right) \sin \left(\frac{h}{2}\right)\right] \\
& =\lim _{h \rightarrow 0}\left[\cos \left(\frac{2 x+2 a+h}{2}\right)\left\{\frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right\}\right] \\
& =\lim _{h \rightarrow 0} \cos \left(\frac{2 x+2 a+h}{2}\right) \cdot \lim _{\frac{h}{2} \rightarrow 0}\left\{\frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right\} \quad\left[\text { As } h \rightarrow 0 \Rightarrow \frac{h}{2} \rightarrow 0\right] \\
& =\left(\cos \frac{2 x+2 a}{2}\right) \times 1 \quad\left[\lim _{h \rightarrow 0} \frac{\sin h}{h}=1\right] \\
& =\cos (x+a)
\end{aligned}
$$

From (i) and (ii), we obtain

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\cos x \cdot \cos (x+a)+\sin x \sin (x+a)}{\cos ^{2} x} \\
& =\frac{\cos (x+a-x)}{\cos ^{2} x} \\
& =\frac{\cos a}{\cos ^{2} x}
\end{aligned}
$$

Question 22:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $x^{4}(5 \sin x-3 \cos x)$
Answer
Let $f(x)=x^{4}(5 \sin x-3 \cos x)$
By product rule,

$$
\begin{aligned}
f^{\prime}(x) & =x^{4} \frac{d}{d x}(5 \sin x-3 \cos x)+(5 \sin x-3 \cos x) \frac{d}{d x}\left(x^{4}\right) \\
& =x^{4}\left[5 \frac{d}{d x}(\sin x)-3 \frac{d}{d x}(\cos x)\right]+(5 \sin x-3 \cos x) \frac{d}{d x}\left(x^{4}\right) \\
& =x^{4}[5 \cos x-3(-\sin x)]+(5 \sin x-3 \cos x)\left(4 x^{3}\right) \\
& =x^{3}[5 x \cos x+3 x \sin x+20 \sin x-12 \cos x]
\end{aligned}
$$

Question 23:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\left(x^{2}+1\right) \cos x$
Answer
Let $f(x)=\left(x^{2}+1\right) \cos x$
By product rule,

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{2}+1\right) \frac{d}{d x}(\cos x)+\cos x \frac{d}{d x}\left(x^{2}+1\right) \\
& =\left(x^{2}+1\right)(-\sin x)+\cos x(2 x) \\
& =-x^{2} \sin x-\sin x+2 x \cos x
\end{aligned}
$$

Question 24:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\left(a x^{2}+\sin x\right)(p+q \cos$ x)

Answer
Let $f(x)=\left(a x^{2}+\sin x\right)(p+q \cos x)$

By product rule,

$$
\begin{aligned}
f^{\prime}(x) & =\left(a x^{2}+\sin x\right) \frac{d}{d x}(p+q \cos x)+(p+q \cos x) \frac{d}{d x}\left(a x^{2}+\sin x\right) \\
& =\left(a x^{2}+\sin x\right)(-q \sin x)+(p+q \cos x)(2 a x+\cos x) \\
& =-q \sin x\left(a x^{2}+\sin x\right)+(p+q \cos x)(2 a x+\cos x)
\end{aligned}
$$

Question 25:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(x+\cos x)(x-\tan x)$
Answer
Let $f(x)=(x+\cos x)(x-\tan x)$
By product rule,

$$
\begin{align*}
& \begin{aligned}
& \begin{aligned}
f^{\prime}(x) & =(x+\cos x) \frac{d}{d x}(x-\tan x)+(x-\tan x) \frac{d}{d x}(x+\cos x) \\
& =(x+\cos x)\left[\frac{d}{d x}(x)-\frac{d}{d x}(\tan x)\right]+(x-\tan x)(1-\sin x)
\end{aligned} \\
&=(x+\cos x)\left[1-\frac{d}{d x} \tan x\right]+(x-\tan x)(1-\sin x)
\end{aligned} \\
& \text { Let } g(x)=\tan x . \text { Accordingly, } g(x+h)=\tan (x+h)
\end{align*}
$$

By first principle,

$$
\begin{align*}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{\tan (x+h)-\tan x}{h}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h) \cos x-\sin x \cos (x+h)}{\cos (x+h) \cos x}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h-x)}{\cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin h}{\cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right) \cdot\left(\lim _{h \rightarrow 0} \frac{1}{\cos (x+h)}\right) \\
& =\frac{1}{\cos x} \cdot 1 \cdot \frac{1}{\cos (x+0)} \\
& =\frac{1}{\cos x^{2} x} \\
& =\sec ^{2} x \tag{ii}
\end{align*}
$$

Therefore, from (i) and (ii), we obtain

$$
\begin{aligned}
f^{\prime}(x) & =(x+\cos x)\left(1-\sec ^{2} x\right)+(x-\tan x)(1-\sin x) \\
& =(x+\cos x)\left(-\tan ^{2} x\right)+(x-\tan x)(1-\sin x) \\
& =-\tan ^{2} x(x+\cos x)+(x-\tan x)(1-\sin x)
\end{aligned}
$$

Question 26:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{4 x+5 \sin x}{3 x+7 \cos x}$
Answer

Let $f(x)=\frac{4 x+5 \sin x}{3 x+7 \cos x}$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(3 x+7 \cos x) \frac{d}{d x}(4 x+5 \sin x)-(4 x+5 \sin x) \frac{d}{d x}(3 x+7 \cos x)}{(3 x+7 \cos x)^{2}} \\
& =\frac{(3 x+7 \cos x)\left[4 \frac{d}{d x}(x)+5 \frac{d}{d x}(\sin x)\right]-(4 x+5 \sin x)\left[3 \frac{d}{d x} x+7 \frac{d}{d x} \cos x\right]}{(3 x+7 \cos x)^{2}} \\
& =\frac{(3 x+7 \cos x)(4+5 \cos x)-(4 x+5 \sin x)(3-7 \sin x)}{(3 x+7 \cos x)^{2}} \\
& =\frac{12 x+15 x \cos x+28 \cos x+35 \cos ^{2} x-12 x+28 x \sin x-15 \sin x+35 \sin ^{2} x}{(3 x+7 \cos x)^{2}} \\
& =\frac{15 x \cos x+28 \cos x+28 x \sin x-15 \sin x+35\left(\cos ^{2} x+\sin ^{2} x\right)}{(3 x+7 \cos x)^{2}} \\
& =\frac{35+15 x \cos x+28 \cos x+28 x \sin x-15 \sin x}{(3 x+7 \cos x)^{2}}
\end{aligned}
$$

Question 27:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
$x^{2} \cos \left(\frac{\pi}{4}\right)$
$\sin x$
Answer
Let $f(x)=\frac{x^{2} \cos \left(\frac{\pi}{4}\right)}{\sin x}$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\cos \frac{\pi}{4} \cdot\left[\frac{\sin x \frac{d}{d x}\left(x^{2}\right)-x^{2} \frac{d}{d x}(\sin x)}{\sin ^{2} x}\right] \\
& =\cos \frac{\pi}{4} \cdot\left[\frac{\sin x \cdot 2 x-x^{2} \cos x}{\sin ^{2} x}\right] \\
& =\frac{x \cos \frac{\pi}{4}[2 \sin x-x \cos x]}{\sin ^{2} x}
\end{aligned}
$$

Question 28:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{x}{1+\tan x}$
Answer
Let $f(x)=\frac{x}{1+\tan x}$

$$
\begin{align*}
& f^{\prime}(x)=\frac{(1+\tan x) \frac{d}{d x}(x)-x \frac{d}{d x}(1+\tan x)}{(1+\tan x)^{2}} \\
& f^{\prime}(x)=\frac{(1+\tan x)-x \cdot \frac{d}{d x}(1+\tan x)}{(1+\tan x)^{2}} \tag{i}
\end{align*}
$$

Let $g(x)=1+\tan x$. Accordingly, $g(x+h)=1+\tan (x+h)$.
By first principle,

$$
\begin{align*}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{1+\tan (x+h)-1-\tan x}{h}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h) \cos x-\sin x \cos (x+h)}{\cos (x+h) \cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h-x)}{\cos (x+h) \cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin h}{\cos (x+h) \cos x}\right] \\
& =\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right) \cdot\left(\lim _{h \rightarrow 0} \frac{1}{\cos (x+h) \cos x}\right) \\
& =1 \times \frac{1}{\cos s^{2} x}=\sec ^{2} x \\
\Rightarrow \frac{d}{d x} & (1+\tan x)=\sec ^{2} x \tag{ii}
\end{align*}
$$

From (i) and (ii), we obtain

$$
f^{\prime}(x)=\frac{1+\tan x-x \sec ^{2} x}{(1+\tan x)^{2}}
$$

Question 29:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers $):(x+\sec x)(x-\tan x)$ Answer
Let $f(x)=(x+\sec x)(x-\tan x)$
By product rule,

$$
\begin{align*}
f^{\prime}(x) & =(x+\sec x) \frac{d}{d x}(x-\tan x)+(x-\tan x) \frac{d}{d x}(x+\sec x) \\
& =(x+\sec x)\left[\frac{d}{d x}(x)-\frac{d}{d x} \tan x\right]+(x-\tan x)\left[\frac{d}{d x}(x)+\frac{d}{d x} \sec x\right] \\
& =(x+\sec x)\left[1-\frac{d}{d x} \tan x\right]+(x-\tan x)\left[1+\frac{d}{d x} \sec x\right] \tag{i}
\end{align*}
$$

Let $f_{1}(x)=\tan x, f_{2}(x)=\sec x$
Accordingly, $f_{1}(x+h)=\tan (x+h)$ and $f_{2}(x+h)=\sec (x+h)$

$$
\begin{align*}
f_{1}^{\prime}(x) & =\lim _{h \rightarrow 0}\left(\frac{f_{1}(x+h)-f_{1}(x)}{h}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{\tan (x+h)-\tan x}{h}\right) \\
& =\lim _{h \rightarrow 0}\left[\frac{\tan (x+h)-\tan x}{h}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h) \cos x-\sin x \cos (x+h)}{\cos (x+h) \cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h-x)}{\cos (x+h) \cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin h}{\cos (x+h) \cos x}\right] \\
& =\left(\lim _{h \rightarrow 0} \frac{\sin ^{2} h}{h}\right) \cdot\left(\lim _{h \rightarrow 0} \frac{1}{\cos (x+h) \cos x}\right) \\
& =1 \times \frac{1}{\cos ^{2} x}=\sec ^{2} x \\
\Rightarrow \frac{d}{d x} & \tan x=\sec ^{2} x \tag{ii}
\end{align*}
$$

$$
\begin{align*}
& f_{2}^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f_{2}(x+h)-f_{2}(x)}{h}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{\sec (x+h)-\sec x}{h}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\cos (x+h)}-\frac{1}{\cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos x-\cos (x+h)}{\cos (x+h) \cos x}\right] \\
& =\frac{1}{\cos x} . \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{x+x+h}{2}\right) \cdot \sin \left(\frac{x-x-h}{2}\right)}{\cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{2 x+h}{2}\right) \cdot \sin \left(\frac{-h}{2}\right)}{\cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0}\left[\frac{\sin \left(\frac{2 x+h}{2}\right)\left\{\frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}}\right\}}{\cos (x+h)}\right\} \\
& =\sec x \cdot \frac{\left\{\lim _{h \rightarrow 0} \sin \left(\frac{2 x+h}{2}\right)\right\}\left\{\lim _{\frac{h}{2} \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}}\right\}}{\lim _{h \rightarrow 0} \cos (x+h)} \\
& =\sec x \cdot \frac{\sin x \cdot 1}{\cos x} \\
& \Rightarrow \frac{d}{d x} \sec x=\sec x \tan x \tag{iii}
\end{align*}
$$

From (i), (ii), and (iii), we obtain

$$
f^{\prime}(x)=(x+\sec x)\left(1-\sec ^{2} x\right)+(x-\tan x)(1+\sec x \tan x)
$$

Question 30:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{x}{\sin ^{n} x}$
Answer
Let $f(x)=\frac{x}{\sin ^{n} x}$
By quotient rule,
$f^{\prime}(x)=\frac{\sin ^{n} x \frac{d}{d x} x-x \frac{d}{d x} \sin ^{n} x}{\sin ^{2 n} x}$
It can be easily shown that $\frac{d}{d x} \sin ^{n} x=n \sin ^{n-1} x \cos x$
Therefore,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\sin ^{n} x \frac{d}{d x} x-x \frac{d}{d x} \sin ^{n} x}{\sin ^{2 n} x} \\
& =\frac{\sin ^{n} x \cdot 1-x\left(n \sin ^{n-1} x \cos x\right)}{\sin ^{2 n} x} \\
& =\frac{\sin ^{n-1} x(\sin x-n x \cos x)}{\sin ^{2 n} x} \\
& =\frac{\sin x-n x \cos x}{\sin ^{n+1} x}
\end{aligned}
$$

