Exercise 13.4

Question 1:

State which of the following are **not** the probability distributions of a random variable. Give reasons for your answer.

(i)

Х	0	1	2		
P (X)	0.4	0.4	0.2		
(ii)					
х	0	1	2	3	2
P (X)	0.1	0.5	0.2	- 0.1	0
(iii)					

Y	-1	0	1
P (Y)	0.6	0.1	0.2

(iv)

Z	3	2	1	0	-1
P (Z)	0.3	0.2	0.4	0.1	0.05

Answer

It is known that the sum of all the probabilities in a probability distribution is one.

(i) Sum of the probabilities = 0.4 + 0.4 + 0.2 = 1

Therefore, the given table is a probability distribution of random variables.

3

(ii) It can be seen that for X = 3, P(X) = -0.1

It is known that probability of any observation is not negative. Therefore, the given table is not a probability distribution of random variables.

(iii) Sum of the probabilities = $0.6 + 0.1 + 0.2 = 0.9 \neq 1$

Therefore, the given table is not a probability distribution of random variables.

(iv) Sum of the probabilities = $0.3 + 0.2 + 0.4 + 0.1 + 0.05 = 1.05 \neq 1$

Therefore, the given table is not a probability distribution of random variables.

Question 2:

An urn contains 5 red and 2 black balls. Two balls are randomly drawn. Let X represents the number of black balls. What are the possible values of X? Is X a random variable? Answer

The two balls selected can be represented as BB, BR, RB, RR, where B represents a black ball and R represents a red ball.

X represents the number of black balls.

∴X (BB) = 2

X (BR) = 1 X (RB) = 1 X (RR) = 0

Therefore, the possible values of X are 0, 1, and 2. Yes, X is a random variable.

Question 3:

Let X represents the difference between the number of heads and the number of tails obtained when a coin is tossed 6 times. What are possible values of X? Answer

A coin is tossed six times and X represents the difference between the number of heads and the number of tails.

$$\therefore X (6 H, 0T) = |6-0| = 6$$

X (5 H, 1 T)
$$= |5-1| = 4$$

X (4 H, 2 T)
$$= |4-2| = 2$$

X (3 H, 3 T) $= |3-3| = 0$
X (2 H, 4 T) $= |2-4| = 2$
X (1 H, 5 T) $= |1-5| = 4$
X (0H, 6 T) $= |0-6| = 6$

Thus, the possible values of X are 6, 4, 2, and 0.

Question 4:

Find the probability distribution of

(i) number of heads in two tosses of a coin

(ii) number of tails in the simultaneous tosses of three coins

(iii) number of heads in four tosses of a coin

Answer

(i) When one coin is tossed twice, the sample space is {HH, HT, TH, TT}

Let X represent the number of heads.

 \therefore X (HH) = 2, X (HT) = 1, X (TH) = 1, X (TT) = 0

Therefore, X can take the value of 0, 1, or 2. It is known that,

$$P(HH) = P(HT) = P(TH) = P(TT) = \frac{1}{4}$$

$$P(X = 0) = P(TT) = \frac{1}{4}$$

$$P(X = 1) = P(HT) + P(TH) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$P(X = 2) = P(HH) = \frac{1}{2}$$

Thus, the required probability distribution is as follows.

x	0	1	2	
P (X)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	

(ii) When three coins are tossed simultaneously, the sample space is

{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

Let X represent the number of tails.

It can be seen that X can take the value of 0, 1, 2, or 3.

$$P (X = 0) = P (HHH) = \frac{1}{8}$$

$$P (X = 1) = P (HHT) + P (HTH) + P (THH) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{3}{8}$$

$$P (X = 2) = P (HTT) + P (THT) + P (TTH) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{3}{8}$$

$$\frac{1}{1}$$

$$P(X = 3) = P(TTT) = \frac{8}{8}$$

Thus, the probability distribution is as follows.

X	0	1	2	3
P (X)	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

(iii) When a coin is tossed four times, the sample space is

 $\mathbf{S} = \begin{cases} \mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}, \, \mathbf{H}\mathbf{H}\mathbf{H}\mathbf{T}, \, \mathbf{H}\mathbf{H}\mathbf{T}\mathbf{H}, \, \mathbf{H}\mathbf{H}\mathbf{T}\mathbf{T}, \, \mathbf{H}\mathbf{T}\mathbf{H}\mathbf{H}, \, \mathbf{H}\mathbf{T}\mathbf{T}\mathbf{H}, \, \mathbf{H}\mathbf{T}\mathbf{T}\mathbf{T}, \, \mathbf{H}\mathbf{T}\mathbf{H}\mathbf{H}, \, \mathbf{T}\mathbf{H}\mathbf{H}\mathbf{H}, \, \mathbf{T}\mathbf{H}\mathbf{H}\mathbf{T}, \, \mathbf{T}\mathbf{H}\mathbf{T}\mathbf{H}, \, \mathbf{T}\mathbf{T}\mathbf{T}\mathbf{H}, \, \mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T} \\ \end{cases}$

Let X be the random variable, which represents the number of heads. It can be seen that X can take the value of 0, 1, 2, 3, or 4. $P (X = 0) = P (TTTT) = \frac{1}{16}$ P (X = 1) = P (TTTH) + P (TTHT) + P (THTT) + P (HTTT) $= \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{4}{16} = \frac{1}{4}$ P (X = 2) = P (HHTT) + P (THHT) + P (TTHH) + P (HTTH) + P (HTHT) + P (THTH) $= \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{6}{16} = \frac{3}{8}$ P (X = 3) = P (HHHT) + P (HHTH) + P (HTHH) P (THHH) $= \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{4}{16} = \frac{1}{4}$ $P (X = 4) = P (HHHH) = \frac{1}{16}$

Thus, the probability distribution is as follows.

X	0	1	2	3	4
P (X)	$\frac{1}{16}$	$\frac{1}{4}$	3 8	$\frac{1}{4}$	$\frac{1}{16}$

Question 5:

Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as

(i) number greater than 4

(ii) six appears on at least one die

Answer

When a die is tossed two times, we obtain $(6 \times 6) = 36$ number of observations.

Let X be the random variable, which represents the number of successes.

i. Here, success refers to the number greater than 4.

P (X = 0) = P (number less than or equal to 4 on both the tosses) = $\frac{4}{6} \times \frac{4}{6} = \frac{4}{9}$

P(X = 1) = P (number less than or equal to 4 on first toss and greater than 4 on second toss) + P (number greater than 4 on first toss and less than or equal to 4 on second toss)

$$=\frac{4}{6}\times\frac{2}{6}+\frac{4}{6}\times\frac{2}{6}=\frac{4}{9}$$

P(X = 2) = P (number greater than 4 on both the tosses)

$$=\frac{2}{6}\times\frac{2}{6}=\frac{1}{9}$$

Thus, the probability distribution is as follows.

x	1	1	2
P (X)	$\frac{4}{9}$	$\frac{4}{9}$	$\frac{1}{9}$

(ii) Here, success means six appears on at least one die.

P (Y = 0) = P (six does not appear on any of the dice) $= \frac{5}{6} \times \frac{5}{6} = \frac{25}{36}$

P(Y = 1) = P(six appears on at least one of the dice) = 36Thus, the required probability distribution is as follows.

Y	0	1
P (Y)	$\frac{25}{36}$	$\frac{11}{36}$

Question 6:

From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.

Answer

It is given that out of 30 bulbs, 6 are defective.

 \Rightarrow Number of non-defective bulbs = 30 - 6 = 24

4 bulbs are drawn from the lot with replacement.

Let X be the random variable that denotes the number of defective bulbs in the selected bulbs.

$$\stackrel{.}{\to} P (X = 0) = P (4 \text{ non-defective and 0 defective}) = {}^{4}C_{0} \cdot \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5} = \frac{256}{625}$$

$$P (X = 1) = P (3 \text{ non-defective and 1 defective}) = {}^{4}C_{1} \cdot \left(\frac{1}{5}\right) \cdot \left(\frac{4}{5}\right)^{3} = \frac{256}{625}$$

$$P (X = 2) = P (2 \text{ non-defective and 2 defective}) = {}^{4}C_{2} \cdot \left(\frac{1}{5}\right)^{2} \cdot \left(\frac{4}{5}\right)^{2} = \frac{96}{625}$$

$$P (X = 3) = P (1 \text{ non-defective and 3 defective}) = {}^{4}C_{3} \cdot \left(\frac{1}{5}\right)^{3} \cdot \left(\frac{4}{5}\right) = \frac{16}{625}$$

$$P (X = 4) = P (0 \text{ non-defective and 4 defective}) = {}^{4}C_{4} \cdot \left(\frac{1}{5}\right)^{4} \cdot \left(\frac{4}{5}\right)^{0} = \frac{1}{625}$$

Therefore, the required probability distribution is as follows.

X	0	1	2	3	4
P (X)	$\frac{256}{625}$	$\frac{256}{625}$	$\frac{96}{625}$	$\frac{16}{625}$	$\frac{1}{625}$

Question 7:

A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.

Answer

Let the probability of getting a tail in the biased coin be *x*.

 \therefore P (T) = x

 \Rightarrow P (H) = 3x

For a biased coin, P (T) + P (H) = 1 $\Rightarrow x + 3x = 1$ $\Rightarrow 4x = 1$ $\Rightarrow x = \frac{1}{4}$

 $\therefore P(T) = \frac{1}{4} \text{ and } P(H) = \frac{3}{4}$

When the coin is tossed twice, the sample space is {HH, TT, HT, TH}. Let X be the random variable representing the number of tails.

∴ P (X = 0) = P (no tail) = P (H) × P (H) = $\frac{3}{4} \times \frac{3}{4} = \frac{9}{16}$

P (X = 1) = P (one tail) = P (HT) + P (TH) = $\frac{3}{4} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{3}{4}$ = $\frac{3}{16} + \frac{3}{16}$ = $\frac{3}{8}$ P (X = 2) = P (two tails) = P (TT) = $\frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$

Therefore, the required probability distribution is as follows.

Class XII

 X
 0
 1
 2

 P (X)
 $\frac{9}{16}$ $\frac{3}{8}$ $\frac{1}{16}$

Question 8:

A random variable X has the following probability distribution.

Х	0	1	2	3	4	5	6	7
P (X)	0	k	2 <i>k</i>	2 <i>k</i>	3 <i>k</i>	<i>k</i> ²	2 <i>k</i> ²	$7k^2 + k$

Determine

(i) k
(ii) P (X < 3)
(iii) P (X > 6)
(iv) P (0 < X < 3)

Answer

(i) It is known that the sum of probabilities of a probability distribution of random variables is one.

$$\therefore 0 + k + 2k + 2k + 3k + k^{2} + 2k^{2} + (7k^{2} + k) = 1$$
$$\Rightarrow 10k^{2} + 9k - 1 = 0$$
$$\Rightarrow (10k - 1)(k + 1) = 0$$
$$\Rightarrow k = -1, \frac{1}{10}$$

k = -1 is not possible as the probability of an event is never negative.

$$k = \frac{1}{10}$$

(ii) P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)

= 0 + k + 2k= 3k = 3× $\frac{1}{10}$ = $\frac{3}{10}$ (iii) P (X > 6) = P (X = 7) = 7k² + k = 7× $\left(\frac{1}{10}\right)^{2} + \frac{1}{10}$ = $\frac{7}{100} + \frac{1}{10}$ = $\frac{17}{100}$ (iv) P (0 < X < 3) = P (X = 1) + P (X = 2) = k + 2k = 3k = 3× $\frac{1}{10}$

Question 9:

The random variable X has probability distribution P(X) of the following form, where k is some number:

$$P(X) = \begin{cases} k, \text{ if } x = 0\\ 2k, \text{ if } x = 1\\ 3k, \text{ if } x = 2\\ 0, \text{ otherwise} \end{cases}$$

(a) Determine the value of k.

(b) Find P(X < 2), $P(X \ge 2)$, $P(X \ge 2)$.

Answer

(a) It is known that the sum of probabilities of a probability distribution of random variables is one.

 $\therefore k + 2k + 3k + 0 = 1$

 $\Rightarrow 6k = 1$

 $\Rightarrow k = \frac{1}{6}$

(b)
$$P(X < 2) = P(X = 0) + P(X = 1)$$

= $k + 2k$
= $3k$
= $\frac{3}{6}$
= $\frac{1}{2}$
 $P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$
= $k + 2k + 3k$
= $6k$
= $\frac{6}{6}$
= 1

$$P(X \ge 2) = P(X = 2) + P(X > 2)$$
$$= 3k + 0$$
$$= 3k$$
$$= \frac{3}{6}$$
$$= \frac{1}{2}$$

Question 10:

Find the mean number of heads in three tosses of a fair coin.

Answer

Let X denote the success of getting heads.

Therefore, the sample space is

 $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$

It can be seen that X can take the value of 0, 1, 2, or 3.

$$\therefore P(X = 0) = P(TTT)$$
$$= P(T) \cdot P(T) \cdot P(T)$$
$$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$
$$= \frac{1}{8}$$

 $\therefore P (X = 1) = P (HHT) + P (HTH) + P (THH)$

$$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$
$$= \frac{3}{8}$$

 $\therefore P(X = 2) = P(HHT) + P(HTH) + P(THH)$

$$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$
$$= \frac{3}{8}$$
$$\therefore P(X = 3) = P(HHH)$$
$$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$
$$= \frac{1}{8}$$

Therefore, the required probability distribution is as follows.

1

(_i)								
$P(X) = \frac{1}{8} \left[\frac{3}{8} \right] \left[\frac{3}{8} \right] \left[\frac{3}{8} \right] \left[\frac{1}{8} \right]$ Mean of X E(X), $\mu = \sum X_i P(X_i)$ $= 0 \times \frac{1}{8} + 1 \times \frac{3}{8} + 2 \times \frac{3}{8} + 3 \times \frac{1}{8}$ $= \frac{3}{8} + \frac{3}{4} + \frac{3}{8}$ $= \frac{3}{2}$								

Question 11:

Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.

Answer

Here, X represents the number of sixes obtained when two dice are thrown simultaneously. Therefore, X can take the value of 0, 1, or 2.

25 \therefore P (X = 0) = P (not getting six on any of the dice) = 36 P(X = 1) = P(six on first die and no six on second die) + P(no six on first die and six on second die)

$$= 2 \left(\frac{1}{6} \times \frac{5}{6} \right) = \frac{10}{36}$$

P(X = 2) = P(six on both the dice) = 36

Therefore, the required probability distribution is as follows.

x	0	1	2
P(X)	$\frac{25}{36}$	$\frac{10}{36}$	$\frac{1}{36}$

Then, expectation of X = E(X) = $\sum X_i P(X_i)$

$$= 0 \times \frac{25}{36} + 1 \times \frac{10}{36} + 2 \times \frac{1}{36}$$
$$= \frac{1}{3}$$

Question 12:

Two numbers are selected at random (without replacement) from the first six positive integers. Let X denotes the larger of the two numbers obtained. Find E(X).

Answer

The two positive integers can be selected from the first six positive integers without replacement in $6 \times 5 = 30$ ways

X represents the larger of the two numbers obtained. Therefore, X can take the value of 2, 3, 4, 5, or 6.

For X = 2, the possible observations are (1, 2) and (2, 1).

$$\therefore P(X=2) = \frac{2}{30} = \frac{1}{15}$$

For X = 3, the possible observations are (1, 3), (2, 3), (3, 1), and (3, 2).

$$\therefore P(X=3) = \frac{4}{30} = \frac{2}{15}$$

For X = 4, the possible observations are (1, 4), (2, 4), (3, 4), (4, 3), (4, 2), and (4, 1).

$$\therefore P(X=4) = \frac{6}{30} = \frac{1}{5}$$

For X = 5, the possible observations are (1, 5), (2, 5), (3, 5), (4, 5), (5, 4), (5, 3), (5, 2), and (5, 1).

$$\therefore P(X=5) = \frac{8}{30} = \frac{4}{15}$$

For X = 6, the possible observations are (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 4), (6, 3), (6, 2), and (6, 1).

$$\therefore P(X=6) = \frac{10}{30} = \frac{1}{3}$$

Therefore, the required probability distribution is as follows.

x	2	3	4	5	6		
P(X)	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{1}{5}$	$\frac{4}{15}$	$\frac{1}{3}$		
Then, $E(X) = \sum X_i P(X_i)$							

$$= 2 \cdot \frac{1}{15} + 3 \cdot \frac{2}{15} + 4 \cdot \frac{1}{5} + 5 \cdot \frac{4}{15} + 6 \cdot \frac{1}{3}$$
$$= \frac{2}{15} + \frac{2}{5} + \frac{4}{5} + \frac{4}{3} + 2$$
$$= \frac{70}{15}$$
$$= \frac{14}{3}$$

Question 13:

Let X denotes the sum of the numbers obtained when two fair dice are rolled. Find the variance and standard deviation of X.

Answer

When two fair dice are rolled, $6 \times 6 = 36$ observations are obtained.

$$P(X = 2) = P(1, 1) = \frac{1}{36}$$

Class XII	Chapter 13 – Probability	Maths
P(X = 3) = P (1, 2) + P(2, 1)	$=\frac{2}{36}=\frac{1}{18}$	
P(X = 4) = P(1, 3) + P(2, 2) + P(2, 3)		
P(X = 5) = P(1, 4) + P(2, 3) -	+ P(3, 2) + P(4, 1) = $\frac{4}{36} = \frac{1}{9}$	
	+ P(3, 3) + P(4, 2) + P(5, 1) = $\frac{5}{36}$	
P(X = 7) = P(1, 6) + P(2, 5) -	+ P(3, 4) + P(4, 3) + P(5, 2) + P(6, 1) = $\frac{6}{36} = \frac{1}{6}$	
	+ P(4, 4) + P(5, 3) + P(6, 2) = $\frac{5}{36}$	
P(X = 9) = P(3, 6) + P(4, 5) -	+ P(5, 4) + P(6, 3) = $\frac{4}{36} = \frac{1}{9}$	
P(X = 10) = P(4, 6) + P(5, 5)	+ P(6, 4) = $\frac{36}{36} = \frac{12}{12}$	
P(X = 11) = P(5, 6) + P(6, 5)	$=\frac{2}{36}=\frac{1}{18}$	
$P(X = 12) = P(6, 6) = \frac{1}{36}$		

Therefore, the required probability distribution is as follows.

x	2	3	4	5	6	7	8	9	10	11	12
P(X)	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{5}{36}$	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$

Then, E(X) = ∑X_i · P(X_i)
= 2×
$$\frac{1}{36}$$
 + 3× $\frac{1}{18}$ + 4× $\frac{1}{12}$ + 5× $\frac{1}{9}$ + 6× $\frac{5}{36}$ + 7× $\frac{1}{6}$
+ 8× $\frac{5}{36}$ + 9× $\frac{1}{9}$ + 10× $\frac{1}{12}$ + 11× $\frac{1}{18}$ + 12× $\frac{1}{36}$
= $\frac{1}{18}$ + $\frac{1}{6}$ + $\frac{1}{3}$ + $\frac{5}{9}$ + $\frac{5}{6}$ + $\frac{7}{6}$ + $\frac{10}{9}$ + 1 + $\frac{5}{6}$ + $\frac{11}{18}$ + $\frac{1}{3}$
= 7
E(X²) = ∑X_i² · P(X_i)
= 4× $\frac{1}{36}$ + 9× $\frac{1}{18}$ + 16× $\frac{1}{12}$ + 25× $\frac{1}{9}$ + 36× $\frac{5}{36}$ + 49× $\frac{1}{6}$
+ 64× $\frac{5}{36}$ + 81× $\frac{1}{9}$ + 100× $\frac{1}{12}$ + 121× $\frac{1}{18}$ + 144× $\frac{1}{36}$
= $\frac{1}{9}$ + $\frac{1}{2}$ + $\frac{4}{3}$ + $\frac{25}{9}$ + 5 + $\frac{49}{6}$ + $\frac{80}{9}$ + 9 + $\frac{25}{3}$ + $\frac{121}{18}$ + 4
= $\frac{987}{18}$ = $\frac{329}{6}$ = 54.833
Then, Var(X) = E(X²) - [E(X)]²
= 54.833 - (7)²
= 54.833 - 49
= 5.833
∴ Standard deviation = $\sqrt{Var(X)}$
= $\sqrt{5.833}$
= 2.415

Question 14:

A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 and 20 years. One student is selected in such a manner that each has the same chance of being chosen and the age X of the selected student is recorded. What is the probability distribution of the random variable X? Find mean, variance and standard deviation of X.

Answer

Class XII

1

There are 15 students in the class. Each student has the same chance to be chosen.

Therefore, the probability of each student to be selected is $\overline{15}$.

The given information can be compiled in the frequency table as follows.

x	14	15	16	17	18	19	20	21		
f	2	1	2	3	1	2	3	1		
$P(X = 14) = \frac{2}{15}, P(X = 15) = \frac{1}{15}, P(X = 16) = \frac{2}{15}, P(X = 16) = \frac{3}{15},$										
P()	< = 1	8) =	$\frac{1}{15}$, F	P(X =	19)	$\frac{2}{15}$, P(X	= 20	$(x) = \frac{3}{15}, P(X = 21)$	$\frac{1}{15}$

Therefore, the probability distribution of random variable X is as follows.

x	14	15	16	17	18	19	20	21
f	$\frac{2}{15}$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{3}{15}$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{3}{15}$	$\frac{1}{15}$

Then, mean of X = E(X)

$$= \sum X_{i} P(X_{i})$$

$$= 14 \times \frac{2}{15} + 15 \times \frac{1}{15} + 16 \times \frac{2}{15} + 17 \times \frac{3}{15} + 18 \times \frac{1}{15} + 19 \times \frac{2}{15} + 20 \times \frac{3}{15} + 21 \times \frac{1}{15}$$

$$= \frac{1}{15} (28 + 15 + 32 + 51 + 18 + 38 + 60 + 21)$$

$$= \frac{263}{15}$$

$$= 17.53$$

$$E(X^{2}) = \sum X_{i}^{2} P(X_{i})$$

$$= (14)^{2} \cdot \frac{2}{15} + (15)^{2} \cdot \frac{1}{15} + (16)^{2} \cdot \frac{2}{15} + (17)^{2} \cdot \frac{3}{15} + (18)^{2} \cdot \frac{1}{15} + (19)^{2} \cdot \frac{2}{15} + (20)^{2} \cdot \frac{3}{15} + (21)^{2} \cdot \frac{1}{15}$$

$$= \frac{1}{15} \cdot (392 + 225 + 512 + 867 + 324 + 722 + 1200 + 441)$$

$$= \frac{4683}{15}$$

$$= 312.2$$

$$\therefore \text{ Variance}(X) = E(X^{2}) - [E(X)]^{2}$$

$$= 312.2 - (\frac{263}{15})^{2}$$

$$= 312.2 - (\frac{263}{15})^{2}$$

$$= 312.2 - 307.4177$$

$$= 4.7823$$

$$\approx 4.78$$
Standard derivation = $\sqrt{\text{Variance}(X)}$

$$= \sqrt{4.78}$$

$$= 2.186 \approx 2.19$$

Question 15:

In a meeting, 70% of the members favour and 30% oppose a certain proposal. A member is selected at random and we take X = 0 if he opposed, and X = 1 if he is in favour. Find E(X) and Var(X).

Answer

$$\frac{30}{100} = 0.3$$

It is given that P(X = 0) = 30% = 100

$$P(X=1) = 70\% = \frac{70}{100} = 0.7$$

Therefore, the probability distribution is as follows.

x	0	1
P(X)	0.3	0.7

Then,
$$E(X) = \sum X_i P(X_i)$$

= 0×0.3+1×0.7
= 0.7
 $E(X^2) = \sum X_i^2 P(X_i)$
= 0²×0.3+(1)²×0.7
= 0.7
It is known that, Var (X) = $E(X^2) - [E(X)]^2$
= 0.7 - (0.7)²
= 0.7 - 0.49
= 0.21

Question 16:

The mean of the numbers obtained on throwing a die having written 1 on three faces, 2 on two faces and 5 on one face is

(A) 1 (B) 2 (C) 5 (D)
$$\frac{8}{3}$$

Answer

Let X be the random variable representing a number on the die.

The total number of observations is six.

$$\therefore P(X=1) = \frac{3}{6} = \frac{1}{2}$$
$$P(X=2) = \frac{2}{6} = \frac{1}{3}$$
$$P(X=5) = \frac{1}{6}$$

Therefore, the probability distribution is as follows.

x	1	2	5			
P(X)	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$			
Mean = E(X) = $\sum p_i x_i$						

$$= \frac{1}{2} \times 1 + \frac{1}{3} \times 2 + \frac{1}{6} \cdot 5$$
$$= \frac{1}{2} + \frac{2}{3} + \frac{5}{6}$$
$$= \frac{3+4+5}{6}$$
$$= \frac{12}{6}$$
$$= 2$$

The correct answer is B.

Question 17:

Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of E(X) is

(A)
$$\frac{37}{221}$$
 (B) $\frac{5}{13}$ (C) $\frac{1}{13}$ (D) $\frac{2}{13}$

Answer

Let X denote the number of aces obtained. Therefore, X can take any of the values of 0, 1, or 2.

In a deck of 52 cards, 4 cards are aces. Therefore, there are 48 non-ace cards.

∴ P (X = 0) = P (0 ace and 2 non-ace cards) =
$$\frac{{}^{4}C_{0} \times {}^{48}C_{2}}{{}^{52}C_{2}} = \frac{1128}{1326}$$

$$P (X = 1) = P (1 \text{ ace and } 1 \text{ non-ace cards}) = \frac{\frac{{}^{4}C_{1} \times {}^{48}C_{1}}{{}^{52}C_{2}} = \frac{192}{1326}}{\frac{{}^{4}C_{2} \times {}^{48}C_{0}}{{}^{52}C_{2}} = \frac{\frac{{}^{4}C_{2} \times {}^{48}C_{0}}{{}^{52}C_{2}} = \frac{6}{1326}}{Thus, the probability distribution is as follows.}$$

X 0 1 2		x	0	1	2
----------------	--	---	---	---	---

Class XII

P(X)	$\frac{1128}{1326}$	$\frac{192}{1326}$	$\frac{6}{1326}$				
Then,	Then, E(X) = $\sum p_i x_i$						
$= 0 \times \frac{1128}{1326} + 1 \times \frac{192}{1326} + 2 \times \frac{6}{1326}$							
$=\frac{204}{1326}$							
$=\frac{2}{13}$							

Therefore, the correct answer is D.