Question 1:

A die is thrown 6 times. If 'getting an odd number' is a success, what is the probability of (i) 5 successes? (ii) at least 5 successes?
(iii) at most 5 successes?

Answer
The repeated tosses of a die are Bernoulli trials. Let X denote the number of successes of getting odd numbers in an experiment of 6 trials.
Probability of getting an odd number in a single throw of a die is, $\quad p=\frac{3}{6}=\frac{1}{2}$
$\therefore q=1-p=\frac{1}{2}$
X has a binomial distribution.
Therefore, $\mathrm{P}(\mathrm{X}=x)={ }^{n} \mathrm{C}_{n-x} q^{n-x} p^{x}$, where $n=0,1,2 \ldots n$
$={ }^{6} \mathrm{C}_{x}\left(\frac{1}{2}\right)^{6-x} \cdot\left(\frac{1}{2}\right)^{x}$
$={ }^{6} \mathrm{C}_{x}\left(\frac{1}{2}\right)^{6}$
(i) $P(5$ successes $)=P(X=5)$
$={ }^{6} \mathrm{C}_{5}\left(\frac{1}{2}\right)^{6}$
$=6 \cdot \frac{1}{64}$
$=\frac{3}{32}$
(ii) P (at least 5 successes) $=P(X \geq 5)$

$$
\begin{aligned}
& =\mathrm{P}(\mathrm{X}=5)+\mathrm{P}(\mathrm{X}=6) \\
& ={ }^{6} \mathrm{C}_{5}\left(\frac{1}{2}\right)^{6}+{ }^{6} \mathrm{C}_{6}\left(\frac{1}{2}\right)^{6} \\
& =6 \cdot \frac{1}{64}+1 \cdot \frac{1}{64} \\
& =\frac{7}{64}
\end{aligned}
$$

(iii) P (at most 5 successes $)=P(X \leq 5)$

$$
=1-\mathrm{P}(\mathrm{X}>5)
$$

$$
=1-\mathrm{P}(\mathrm{X}=6)
$$

$$
=1-{ }^{6} \mathrm{C}_{6}\left(\frac{1}{2}\right)^{6}
$$

$$
=1-\frac{1}{64}
$$

$$
=\frac{63}{64}
$$

Question 2:

A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.

Answer
The repeated tosses of a pair of dice are Bernoulli trials. Let X denote the number of times of getting doublets in an experiment of throwing two dice simultaneously four times.

Probability of getting doublets in a single throw of the pair of dice is
$p=\frac{6}{36}=\frac{1}{6}$
$\therefore q=1-p=1-\frac{1}{6}=\frac{5}{6}$
Clearly, X has the binomial distribution with $n=4, \quad p=\frac{1}{6}$, and $q=\frac{5}{6}$
$\therefore \mathrm{P}(\mathrm{X}=x)={ }^{n} \mathrm{C}_{x} q^{n-x} p^{x}$, where $x=0,1,2,3 \ldots n$
$={ }^{4} C_{x}\left(\frac{5}{6}\right)^{4-x} \cdot\left(\frac{1}{6}\right)^{x}$
$={ }^{4} \mathrm{C}_{x} \cdot \frac{5^{4-x}}{6^{4}}$
$\therefore \mathrm{P}(2$ successes $)=\mathrm{P}(\mathrm{X}=2)$
$={ }^{4} \mathrm{C}_{2} \cdot \frac{5^{4-2}}{6^{4}}$
$=6 \cdot \frac{25}{1296}$
$=\frac{25}{216}$

Question 3:

There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?
Answer
Let X denote the number of defective items in a sample of 10 items drawn successively.
Since the drawing is done with replacement, the trials are Bernoulli trials.
$\Rightarrow p=\frac{5}{100}=\frac{1}{20}$
$\therefore q=1-\frac{1}{20}=\frac{19}{20}$
X has a binomial distribution with $n=10$ and $p=\frac{1}{20}$
$\mathrm{P}(\mathrm{X}=x)={ }^{n} \mathrm{C}_{x} q^{n-x} p^{x}$, where $x=0,1,2 \ldots n$
$={ }^{10} \mathrm{C}_{x}\left(\frac{19}{20}\right)^{10-x} \cdot\left(\frac{1}{20}\right)^{x}$
$P($ not more than 1 defective item $)=P(X \leq 1)$

$$
\begin{aligned}
& =\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1) \\
& ={ }^{10} \mathrm{C}_{0}\left(\frac{19}{20}\right)^{10} \cdot\left(\frac{1}{20}\right)^{0}+{ }^{10} \mathrm{C}_{1}\left(\frac{19}{20}\right)^{9} \cdot\left(\frac{1}{20}\right)^{1} \\
& =\left(\frac{19}{20}\right)^{10}+10\left(\frac{19}{20}\right)^{9} \cdot\left(\frac{1}{20}\right) \\
& =\left(\frac{19}{20}\right)^{9} \cdot\left[\frac{19}{20}+\frac{10}{20}\right] \\
& =\left(\frac{19}{20}\right)^{9} \cdot\left(\frac{29}{20}\right) \\
& =\left(\frac{29}{20}\right) \cdot\left(\frac{19}{20}\right)^{9}
\end{aligned}
$$

Question 4:

Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that
(i) all the five cards are spades?
(ii) only 3 cards are spades?
(iii) none is a spade?

Answer
Let X represent the number of spade cards among the five cards drawn. Since the drawing of card is with replacement, the trials are Bernoulli trials.
In a well shuffled deck of 52 cards, there are 13 spade cards.
$\Rightarrow p=\frac{13}{52}=\frac{1}{4}$
$\therefore q=1-\frac{1}{4}=\frac{3}{4}$
X has a binomial distribution with $n=5$ and $p=\frac{1}{4}$
$\mathrm{P}(\mathrm{X}=x)={ }^{n} \mathrm{C}_{x} q^{n-x} p^{x}$, where $x=0,1, \ldots n$

$$
={ }^{5} \mathrm{C}_{x}\left(\frac{3}{4}\right)^{5-x}\left(\frac{1}{4}\right)^{x}
$$

(i) P (all five cards are spades) $=P(X=5)$
$={ }^{5} \mathrm{C}_{5}\left(\frac{3}{4}\right)^{0} \cdot\left(\frac{1}{4}\right)^{5}$
$=1 \cdot \frac{1}{1024}$
$=\frac{1}{1024}$
(ii) P (only 3 cards are spades) $=P(X=3)$
$={ }^{5} \mathrm{C}_{3} \cdot\left(\frac{3}{4}\right)^{2} \cdot\left(\frac{1}{4}\right)^{3}$
$=10 \cdot \frac{9}{16} \cdot \frac{1}{64}$
$=\frac{45}{512}$
(iii) P (none is a spade) $=P(X=0)$
$={ }^{5} \mathrm{C}_{0} \cdot\left(\frac{3}{4}\right)^{5} \cdot\left(\frac{1}{4}\right)^{0}$
$=1 \cdot \frac{243}{1024}$
$=\frac{243}{1024}$

Question 5:

The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05 .
What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one
will fuse after 150 days of use.
Answer
Let X represent the number of bulbs that will fuse after 150 days of use in an experiment of 5 trials. The trials are Bernoulli trials.
It is given that, $p=0.05$
$\therefore q=1-p=1-0.05=0.95$
X has a binomial distribution with $n=5$ and $p=0.05$
$\therefore \mathrm{P}(\mathrm{X}=x)={ }^{n} \mathrm{C}_{x} q^{n-x} p^{x}$, where $x=1,2, \ldots n$

$$
={ }^{5} \mathrm{C}_{x}(0.95)^{5-x} \cdot(0.05)^{x}
$$

(i) P (none) $=P(X=0)$
$={ }^{5} \mathrm{C}_{0}(0.95)^{5} \cdot(0.05)^{0}$
$=1 \times(0.95)^{5}$
$=(0.95)^{5}$
(ii) P (not more than one) $=\mathrm{P}(\mathrm{X} \leq 1)$
$=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)$
$={ }^{5} \mathrm{C}_{0}(0.95)^{5} \times(0.05)^{0}+{ }^{5} \mathrm{C}_{1}(0.95)^{4} \times(0.05)^{1}$
$=1 \times(0.95)^{5}+5 \times(0.95)^{4} \times(0.05)$
$=(0.95)^{5}+(0.25)(0.95)^{4}$
$=(0.95)^{4}[0.95+0.25]$
$=(0.95)^{4} \times 1.2$
(iii) $\mathrm{P}($ more than 1$)=\mathrm{P}(\mathrm{X}>1)$
$=1-\mathrm{P}(\mathrm{X} \leq 1)$
$=1-\mathrm{P}($ not more than 1$)$
$=1-(0.95)^{4} \times 1.2$
(iv) P (at least one) $=P(X \geq 1)$
$=1-\mathrm{P}(\mathrm{X}<1)$
$=1-\mathrm{P}(\mathrm{X}=0)$
$=1-{ }^{5} \mathrm{C}_{0}(0.95)^{5} \times(0.05)^{0}$
$=1-1 \times(0.95)^{5}$
$=1-(0.95)^{5}$

Question 6:

A bag consists of 10 balls each marked with one of the digits 0 to 9 . If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0 ?
Answer
Let X denote the number of balls marked with the digit 0 among the 4 balls drawn.
Since the balls are drawn with replacement, the trials are Bernoulli trials.
X has a binomial distribution with $n=4$ and $p=\frac{1}{10}$
$\therefore q=1-p=1-\frac{1}{10}=\frac{9}{10}$

$$
\begin{aligned}
\therefore \mathrm{P}(\mathrm{X}=x) & ={ }^{n} \mathrm{C}_{x} q^{n-x} \cdot p^{x}, x=1,2, \ldots n \\
& ={ }^{4} \mathrm{C}_{x}\left(\frac{9}{10}\right)^{4-x} \cdot\left(\frac{1}{10}\right)^{x}
\end{aligned}
$$

$P($ none marked with 0$)=P(X=0)$

$$
={ }^{4} \mathrm{C}_{0}\left(\frac{9}{10}\right)^{4} \cdot\left(\frac{1}{10}\right)^{0}
$$

$$
=1 \cdot\left(\frac{9}{10}\right)^{4}
$$

$$
=\left(\frac{9}{10}\right)^{4}
$$

Question 7:

In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers 'true'; if it falls tails, he answers 'false'. Find the probability that he answers at least 12 questions correctly.
Answer
Let X represent the number of correctly answered questions out of 20 questions.

The repeated tosses of a coin are Bernoulli trails. Since "head" on a coin represents the true answer and "tail" represents the false answer, the correctly answered questions are Bernoulli trials.
$\therefore p=\frac{\frac{1}{2}}{2}$
$\therefore q=1-p=1-\frac{1}{2}=\frac{1}{2}$
X has a binomial distribution with $n=20$ and $p=\frac{1}{2}$
$\therefore \mathrm{P}(\mathrm{X}=x)={ }^{n} \mathrm{C}_{x} q^{n-x} p^{x}$, where $x=0,1,2, \ldots n$

$$
\begin{aligned}
& ={ }^{20} \mathrm{C}_{x}\left(\frac{1}{2}\right)^{20-x} \cdot\left(\frac{1}{2}\right)^{x} \\
& ={ }^{20} \mathrm{C}_{x}\left(\frac{1}{2}\right)^{20}
\end{aligned}
$$

P (at least 12 questions answered correctly) $=P(X \geq 12)$
$=\mathrm{P}(\mathrm{X}=12)+\mathrm{P}(\mathrm{X}=13)+\ldots+\mathrm{P}(\mathrm{X}=20)$
$={ }^{20} \mathrm{C}_{12}\left(\frac{1}{2}\right)^{20}+{ }^{20} \mathrm{C}_{13}\left(\frac{1}{2}\right)^{20}+\ldots+{ }^{20} \mathrm{C}_{20}\left(\frac{1}{2}\right)^{20}$
$=\left(\frac{1}{2}\right)^{20} \cdot\left[{ }^{20} \mathrm{C}_{12}+{ }^{20} \mathrm{C}_{13}+\ldots+{ }^{20} \mathrm{C}_{20}\right]$

Question 8:

Suppose X has a binomial distribution $B\left(6, \frac{1}{2}\right)$. Show that $X=3$ is the most likely outcome.
(Hint: $\mathrm{P}(\mathrm{X}=3)$ is the maximum among all $\left.\mathrm{P}\left(x_{i}\right), x_{i}=0,1,2,3,4,5,6\right)$
Answer
X is the random variable whose binomial distribution is $B\left(6, \frac{1}{2}\right)$.
Therefore, $n=6$ and $p=\frac{1}{2}$
$\therefore q=1-p=1-\frac{1}{2}=\frac{1}{2}$
Then, $\mathrm{P}(\mathrm{X}=x)={ }^{n} \mathrm{C}_{x} q^{n-x} p^{x}$

$$
\begin{aligned}
& ={ }^{6} \mathrm{C}_{x}\left(\frac{1}{2}\right)^{6-x} \cdot\left(\frac{1}{2}\right)^{x} \\
& ={ }^{6} \mathrm{C}_{x}\left(\frac{1}{2}\right)^{6}
\end{aligned}
$$

It can be seen that $\mathrm{P}(\mathrm{X}=x)$ will be maximum, if ${ }^{6} \mathrm{C}_{x}$ will be maximum.
Then, ${ }^{6} \mathrm{C}_{0}={ }^{6} \mathrm{C}_{6}=\frac{6!}{0!\cdot 6!}=1$
${ }^{6} \mathrm{C}_{1}={ }^{6} \mathrm{C}_{5}=\frac{6!}{1!\cdot 5!}=6$
${ }^{6} \mathrm{C}_{2}={ }^{6} \mathrm{C}_{4}=\frac{6!}{2!\cdot 4!}=15$
${ }^{6} \mathrm{C}_{3}=\frac{6!}{3!\cdot 3!}=20$
The value of ${ }^{6} \mathrm{C}_{3}$ is maximum. Therefore, for $x=3, \mathrm{P}(\mathrm{X}=\mathrm{x})$ is maximum.
Thus, $X=3$ is the most likely outcome.

Question 9:

On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?
Answer
The repeated guessing of correct answers from multiple choice questions are Bernoulli trials. Let X represent the number of correct answers by guessing in the set of 5 multiple choice questions.

Probability of getting a correct answer is, $p=\frac{1}{3}$
$\therefore q=1-p=1-\frac{1}{3}=\frac{2}{3}$
Clearly, X has a binomial distribution with $n=5$ and $p=\frac{1}{3}$

$$
\begin{aligned}
\therefore \mathrm{P}(\mathrm{X}=x) & ={ }^{n} \mathrm{C}_{x} q^{n-x} p^{x} \\
& ={ }^{5} \mathrm{C}_{x}\left(\frac{2}{3}\right)^{5-x} \cdot\left(\frac{1}{3}\right)^{x}
\end{aligned}
$$

P (guessing more than 4 correct answers) $=P(X \geq 4)$
$=P(X=4)+P(X=5)$
$={ }^{5} \mathrm{C}_{4}\left(\frac{2}{3}\right) \cdot\left(\frac{1}{3}\right)^{4}+{ }^{5} \mathrm{C}_{5}\left(\frac{1}{3}\right)^{5}$
$=5 \cdot \frac{2}{3} \cdot \frac{1}{81}+1 \cdot \frac{1}{243}$
$=\frac{10}{243}+\frac{1}{243}$
$=\frac{11}{243}$

Question 10:

A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is $\frac{1}{100}$. What is the probability that he will in a prize (a) at least once (b) exactly once (c) at least twice?
Answer
Let X represent the number of winning prizes in 50 lotteries. The trials are Bernoulli trials.

Clearly, X has a binomial distribution with $n=50$ and $p=\frac{1}{100}$
$\therefore q=1-p=1-\frac{1}{100}=\frac{99}{100}$
$\therefore \mathrm{P}(\mathrm{X}=x)={ }^{n} \mathrm{C}_{x} q^{n-x} p^{x}={ }^{50} \mathrm{C}_{x}\left(\frac{99}{100}\right)^{50-x} \cdot\left(\frac{1}{100}\right)^{x}$
(a) P (winning at least once $)=P(X \geq 1)$
$=1-\mathrm{P}(\mathrm{X}<1)$
$=1-\mathrm{P}(\mathrm{X}=0)$
$=1-{ }^{50} \mathrm{C}_{0}\left(\frac{99}{100}\right)^{50}$
$=1-1 \cdot\left(\frac{99}{100}\right)^{50}$
$=1-\left(\frac{99}{100}\right)^{50}$
(b) P (winning exactly once $)=P(X=1)$
$={ }^{50} \mathrm{C}_{1}\left(\frac{99}{100}\right)^{49} \cdot\left(\frac{1}{100}\right)^{1}$
$=50\left(\frac{1}{100}\right)\left(\frac{99}{100}\right)^{49}$
$=\frac{1}{2}\left(\frac{99}{100}\right)^{49}$
(c) P (at least twice) $=P(X \geq 2)$
$=1-\mathrm{P}(\mathrm{X}<2)$
$=1-\mathrm{P}(\mathrm{X} \leq 1)$
$=1-[\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)]$
$=[1-\mathrm{P}(\mathrm{X}=0)]-\mathrm{P}(\mathrm{X}=1)$
$=1-\left(\frac{99}{100}\right)^{50}-\frac{1}{2} \cdot\left(\frac{99}{100}\right)^{49}$
$=1-\left(\frac{99}{100}\right)^{49} \cdot\left[\frac{99}{100}+\frac{1}{2}\right]$
$=1-\left(\frac{99}{100}\right)^{49} \cdot\left(\frac{149}{100}\right)$
$=1-\left(\frac{149}{100}\right)\left(\frac{99}{100}\right)^{49}$

Question 11:

Find the probability of getting 5 exactly twice in 7 throws of a die.
Answer
The repeated tossing of a die are Bernoulli trials. Let X represent the number of times of getting 5 in 7 throws of the die.
Probability of getting 5 in a single throw of the die, $p=\frac{1}{6}$
$\therefore q=1-p=1-\frac{1}{6}=\frac{5}{6}$
Clearly, X has the probability distribution with $n=7$ and $p=\frac{1}{6}$
$\therefore \mathrm{P}(\mathrm{X}=x)={ }^{n} \mathrm{C}_{x} q^{n-x} p^{x}={ }^{7} \mathrm{C}_{x}\left(\frac{5}{6}\right)^{7-x} \cdot\left(\frac{1}{6}\right)^{x}$
P (getting 5 exactly twice $)=P(X=2)$
$={ }^{7} \mathrm{C}_{2}\left(\frac{5}{6}\right)^{5} \cdot\left(\frac{1}{6}\right)^{2}$
$=21 \cdot\left(\frac{5}{6}\right)^{5} \cdot \frac{1}{36}$
$=\left(\frac{7}{12}\right)\left(\frac{5}{6}\right)^{5}$

Question 12:

Find the probability of throwing at most 2 sixes in 6 throws of a single die.
Answer
The repeated tossing of the die are Bernoulli trials. Let X represent the number of times of getting sixes in 6 throws of the die.

Probability of getting six in a single throw of die, $p=\frac{1}{6}$
$\therefore q=1-p=1-\frac{1}{6}=\frac{5}{6}$
Clearly, X has a binomial distribution with $n=6$
$\therefore \mathrm{P}(\mathrm{X}=x)={ }^{n} \mathrm{C}_{x} q^{n-x} p^{x}={ }^{6} \mathrm{C}_{x}\left(\frac{5}{6}\right)^{6-x} \cdot\left(\frac{1}{6}\right)^{x}$
$P($ at most 2 sixes $)=P(X \leq 2)$

$$
\begin{aligned}
& =\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2) \\
& ={ }^{6} \mathrm{C}_{0}\left(\frac{5}{6}\right)^{6}+{ }^{6} \mathrm{C}_{1} \cdot\left(\frac{5}{6}\right)^{5} \cdot\left(\frac{1}{6}\right)+{ }^{6} \mathrm{C}_{2}\left(\frac{5^{4}}{6}\right) \cdot\left(\frac{1}{6}\right)^{2} \\
& =1 \cdot\left(\frac{5}{6}\right)^{6}+6 \cdot \frac{1}{6} \cdot\left(\frac{5}{6}\right)^{5}+15 \cdot \frac{1}{36} \cdot\left(\frac{5}{6}\right)^{4} \\
& =\left(\frac{5}{6}\right)^{6}+\left(\frac{5}{6}\right)^{5}+\frac{5}{12} \cdot\left(\frac{5}{6}\right)^{4} \\
& =\left(\frac{5}{6}\right)^{4}\left[\left(\frac{5}{6}\right)^{2}+\left(\frac{5}{6}\right)+\left(\frac{5}{12}\right)\right] \\
& =\left(\frac{5}{6}\right)^{4} \cdot\left[\frac{25}{36}+\frac{5}{6}+\frac{5}{12}\right] \\
& =\left(\frac{5}{6}\right)^{4} \cdot\left[\frac{25+30+15}{36}\right] \\
& =\frac{70}{36} \cdot\left(\frac{5}{6}\right)^{4} \\
& =\frac{35}{18} \cdot\left(\frac{5}{6}\right)^{4}
\end{aligned}
$$

Question 13:

It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles, 9 are defective?
Answer
The repeated selections of articles in a random sample space are Bernoulli trails. Let X denote the number of times of selecting defective articles in a random sample space of 12 articles.
Clearly, X has a binomial distribution with $n=12$ and $p=10 \%=\frac{10}{100}=\frac{1}{10}$
$\therefore q=1-p=1-\frac{1}{10}=\frac{9}{10}$
$\therefore \mathrm{P}(\mathrm{X}=x)={ }^{n} \mathrm{C}_{x} q^{n-x} p^{x}={ }^{12} \mathrm{C}_{x}\left(\frac{9}{10}\right)^{12-x} \cdot\left(\frac{1}{10}\right)^{x}$
P (selecting 9 defective articles) $={ }^{12} C_{9}\left(\frac{9}{10}\right)^{3}\left(\frac{1}{10}\right)^{9}$
$=220 \cdot \frac{9^{3}}{10^{3}} \cdot \frac{1}{10^{9}}$
$=\frac{22 \times 9^{3}}{10^{11}}$

Question 14:

In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is
(A) 10^{-1}
(B) $\left(\frac{1}{2}\right)^{5}$
(C) $\left(\frac{9}{10}\right)^{5}$
(D) $\frac{9}{10}$

Answer
The repeated selections of defective bulbs from a box are Bernoulli trials. Let X denote the number of defective bulbs out of a sample of 5 bulbs.

Probability of getting a defective bulb, $p=\frac{10}{100}=\frac{1}{10}$
$\therefore q=1-p=1-\frac{1}{10}=\frac{9}{10}$
Clearly, X has a binomial distribution with $n=5$ and $p=\frac{1}{10}$
$\therefore \mathrm{P}(\mathrm{X}=x)={ }^{n} \mathrm{C}_{x} q^{n-x} p^{x}={ }^{5} \mathrm{C}_{x}\left(\frac{9}{10}\right)^{5-x}\left(\frac{1}{10}\right)^{x}$
P (none of the bulbs is defective) $=P(X=0)$
$={ }^{5} \mathrm{C}_{0} \cdot\left(\frac{9}{10}\right)^{5}$
$=1 \cdot\left(\frac{9}{10}\right)^{5}$
$=\left(\frac{9}{10}\right)^{5}$
The correct answer is C.

Question 15:

The probability that a student is not a swimmer is $\frac{1}{5}$. Then the probability that out of five students, four are swimmers is
(A) ${ }^{5} \mathrm{C}_{4}\left(\frac{4}{5}\right)^{4} \frac{1}{5}$ (B) $\left(\frac{4}{5}\right)^{4} \frac{1}{5}$
(C) ${ }^{5} \mathrm{C}_{1} \frac{1}{5}\left(\frac{4}{5}\right)^{4}$
(D) None of these

Answer
The repeated selection of students who are swimmers are Bernoulli trials. Let X denote the number of students, out of 5 students, who are swimmers.
Probability of students who are not swimmers, $q=\frac{1}{5}$
$\therefore p=1-q=1-\frac{1}{5}=\frac{4}{5}$
Clearly, X has a binomial distribution with $n=5$ and $p=\frac{4}{5}$
$\mathrm{P}(\mathrm{X}=x)={ }^{n} \mathrm{C}_{x} q^{n-x} p^{x}={ }^{5} \mathrm{C}_{x}\left(\frac{1}{5}\right)^{5-x} \cdot\left(\frac{4}{5}\right)^{x}$
P (four students are swimmers $)=P(X=4)={ }^{5} \mathrm{C}_{4}\left(\frac{1}{5}\right) \cdot\left(\frac{4}{5}\right)^{4}$
Therefore, the correct answer is A.

