$$Variance(\sigma^{2}) = \frac{h^{2}}{N^{2}} \left[N \sum_{i=1}^{5} f_{i} y_{i}^{2} - \left(\sum_{i=1}^{5} f_{i} y_{i} \right)^{2} \right]$$
$$= \frac{16}{10000} \left[100 \times 199 - (25)^{2} \right]$$
$$= \frac{16}{10000} \left[19900 - 625 \right]$$
$$= \frac{16}{10000} \times 19275$$
$$= 30.84$$

 \therefore S tan dard deviation (σ) = 5.55

Exercise 15.3

Question 1:

From the data given below state which group is more variable, A or B?

Marks	10-20	20-30	30-40	40-50	50-60	60-70	70-80
Group A	9	17	32	33	40	10	9

Group B	10	20	30	25	43	15	7

Answer

Firstly, the standard deviation of group A is calculated as follows.

Marks	Group A f _i	Mid-point <i>x_i</i>	$y_i = \frac{x_i - 45}{10}$	y i ²	f _i y _i	f _i y _i ²
10-20	9	15	-3	9	-27	81
20-30	17	25	-2	4	-34	68
30-40	32	35	-1	1	-32	32
40-50	33	45	0	0	0	0
50-60	40	55	1	1	40	40
60-70	10	65	2	4	20	40
70-80	9	75	3	9	27	81
	150				-6	342

Here, *h* = 10, N = 150, A = 45

$$Mean = A + \frac{\sum_{i=1}^{7} x_i}{N} \times h = 45 + \frac{(-6) \times 10}{150} = 45 - 0.4 = 44.6$$

$$\sigma_1^2 = \frac{h^2}{N^2} \left(N \sum_{i=1}^{7} f_i y_i^2 - \left(\sum_{i=1}^{7} f_i y_i \right)^2 \right)$$

$$= \frac{100}{22500} \left(150 \times 342 - (-6)^2 \right)$$

$$= \frac{1}{225} (51264)$$

$$= 227.84$$

 \therefore Stan dard deviation (σ_1) = $\sqrt{227.84}$ = 15.09

The standard deviation of group B is calculated as follows.

Marks	Group B f _i	Mid-point <i>x_i</i>	$\mathbf{y}_{i} = \frac{\mathbf{x}_{i} - 45}{10}$	y i ²	f _i y _i	f _i y _i ²
10-20	10	15	-3	9	-30	90
20-30	20	25	-2	4	-40	80
30-40	30	35	-1	1	-30	30
40-50	25	45	0	0	0	0
50-60	43	55	1	1	43	43
60-70	15	65	2	4	30	60
70-80	7	75	3	9	21	63
	150				-6	366

$$Mean = A + \frac{\sum_{i=1}^{7} f_i y_i}{N} \times h = 45 + \frac{(-6) \times 10}{150} = 45 - 0.4 = 44.6$$

$$\sigma_2^2 = \frac{h^2}{N^2} \left[N \sum_{i=1}^{7} f_i y_i^2 - \left(\sum_{i=1}^{7} f_i y_i \right)^2 \right]$$

$$= \frac{100}{22500} \left[150 \times 366 - (-6)^2 \right]$$

$$= \frac{1}{225} \left[54864 \right] = 243.84$$

 \therefore Stan dard deviation $(\sigma_2) = \sqrt{243.84} = 15.61$

Since the mean of both the groups is same, the group with greater standard deviation will be more variable.

Thus, group B has more variability in the marks.

Question 2:

From the prices of shares X and Y below, find out which is more stable in value:

Class XI

Maths

Х	35	54	52	53	56	58	52	50	51	49
Y	108	107	105	105	106	107	104	103	104	101

Answer

The prices of the shares X are

35, 54, 52, 53, 56, 58, 52, 50, 51, 49

Here, the number of observations, N = 10 $\,$

: Mean,
$$\overline{x} = \frac{1}{N} \sum_{i=1}^{10} x_i = \frac{1}{10} \times 510 = 51$$

The following table is obtained corresponding to shares X.

Xi	$\left(x_{i}-\overline{x} ight)$	$\left(x_{i}\text{-}\overline{x}\right)^{2}$
35	-16	256
54	3	9
52	1	1
53	2	4
56	5	25
58	7	49
52	1	1
50	-1	1
51	0	0
49	-2	4
		350

101

Variance
$$(\sigma_1^2) = \frac{1}{N} \sum_{i=1}^{10} (xi - \overline{x})^2 = \frac{1}{10} \times 350 = 35$$

 \therefore Stan dard deviation $(\sigma_1) = \sqrt{35} = 5.91$
C.V. (Shares X) $= \frac{\sigma_1}{\overline{x}} \times 100 = \frac{5.91}{51} \times 100 = 11.58$
The prices of share Y are
108, 107, 105, 105, 106, 107, 104, 103, 104,

: Mean,
$$\overline{y} = \frac{1}{N} \sum_{i=1}^{N} y_i = \frac{1}{10} \times 1050 = 105$$

The following table is obtained corresponding to shares Y.

y i	$\left(y_{i}\text{-}\overline{y}\right)$	$\left(y_{i}{-}\overline{y}\right)^{2}$
108	3	9
107	2	4
105	0	0
105	0	0
106	1	1
107	2	4
104	-1	1
103	-2	4
104	-1	1
101	-4	16
		40

Variance
$$(\sigma_2^2) = \frac{1}{N} \sum_{i=1}^{10} (y_i - \overline{y})^2 = \frac{1}{10} \times 40 = 4$$

 \therefore S tan dard deviation $(\sigma_2) = \sqrt{4} = 2$

:. C.V.(Shares Y) =
$$\frac{\sigma_2}{\overline{y}} \times 100 = \frac{2}{105} \times 100 = 1.9 = 11.58$$

C.V. of prices of shares X is greater than the C.V. of prices of shares Y.

Thus, the prices of shares Y are more stable than the prices of shares X.

Question 3:

An analysis of monthly wages paid to workers in two firms A and B, belonging to the same industry, gives the following results:

	Firm A	Firm B
No. of wage earners	586	648
Mean of monthly wages	Rs 5253	Rs 5253
Variance of the distribution of wages	100	121

(i) Which firm A or B pays larger amount as monthly wages?

(ii) Which firm, A or B, shows greater variability in individual wages?

Answer

(i) Monthly wages of firm A = Rs 5253

Number of wage earners in firm A = 586

 \therefore Total amount paid = Rs 5253 × 586

Monthly wages of firm B = Rs 5253

Number of wage earners in firm B = 648

 \therefore Total amount paid = Rs 5253 × 648

Thus, firm B pays the larger amount as monthly wages as the number of wage earners in firm B are more than the number of wage earners in firm A.

(ii) Variance of the distribution of wages in firm $A^{(\sigma_1^2)} = 100$

 \div Standard deviation of the distribution of wages in firm

A ((σ_1) = $\sqrt{100} = 10$

Variance of the distribution of wages in firm $B(\sigma_2^2)_{= 121}$

: Standard deviation of the distribution of wages in firm $B(\sigma_2^2) = \sqrt{121} = 11$

The mean of monthly wages of both the firms is same i.e., 5253. Therefore, the firm with greater standard deviation will have more variability.

Thus, firm B has greater variability in the individual wages.

Question 4:

The following is the record of goals scored by team A in a football session:

No. of goals scored	0	1	2	3	4
No. of matches	1	9	7	5	3

For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent? Answer

The mean and the standard deviation of goals scored by team A are calculated as follows.

No. of goals scored	No. of matches	f _i x _i	x _i ²	$f_i x_i^2$
0	1	0	0	0
1	9	9	1	9
2	7	14	4	28
3	5	15	9	45
4	3	12	16	48
	25	50		130

Mean =
$$\frac{\sum_{i=1}^{5} f_i x_i}{\sum_{i=1}^{5} f_i} = \frac{50}{25} = 2$$

Thus, the mean of both the teams is same.

$$\sigma = \frac{1}{N} \sqrt{N \sum f_i x_i^2 - (\sum f_i x_i)^2}$$

= $\frac{1}{25} \sqrt{25 \times 130 - (50)^2}$
= $\frac{1}{25} \sqrt{750}$
= $\frac{1}{25} \times 27.38$
= 1.09

The standard deviation of team B is 1.25 goals.

The average number of goals scored by both the teams is same i.e., 2. Therefore, the team with lower standard deviation will be more consistent.

Thus, team A is more consistent than team B.

Question 5:

The sum and sum of squares corresponding to length x (in cm) and weight y (in gm) of 50 plant products are given below:

$$\sum_{i=1}^{50} x_i = 212, \quad \sum_{i=1}^{50} {x_i}^2 = 902.8, \quad \sum_{i=1}^{50} y_i = 261, \quad \sum_{i=1}^{50} y_i^2 = 1457.6$$

Which is more varying, the length or weight?

Answer

$$\sum_{i=1}^{50} x_i = 212, \sum_{i=1}^{50} {x_i}^2 = 902.8$$

Here, N = 50

$$\frac{1}{x} = \frac{\sum_{i=1}^{50} y_i}{N} = \frac{212}{50} = 4.24$$

.: Mean,

$$Variance(\sigma_{1}^{2}) = \frac{1}{N} \sum_{i=1}^{50} (x_{i} - \overline{x})^{2}$$

$$= \frac{1}{50} \sum_{i=1}^{50} (x_{i} - 4.24)^{2}$$

$$= \frac{1}{50} \sum_{i=1}^{50} \left[x_{i}^{2} - 8.48x_{i} + 17.97 \right]$$

$$= \frac{1}{50} \left[\sum_{i=1}^{50} x_{i}^{2} - 8.48 \sum_{i=1}^{50} x_{i} + 17.97 \times 50 \right]$$

$$= \frac{1}{50} \left[902.8 - 8.48 \times (212) + 898.5 \right]$$

$$= \frac{1}{50} \left[1801.3 - 1797.76 \right]$$

$$= \frac{1}{50} \times 3.54$$

$$= 0.07$$

 \therefore Stan dard deviation, σ_1 (Length) = $\sqrt{0.07} = 0.26$ $\therefore \text{C.V.}(\text{Length}) = \frac{\text{S tan dard deviation}}{\text{Mean}} \times 100 = \frac{0.26}{4.24} \times 100 = 6.13$ $\sum_{i=1}^{50} y_i = 261, \ \sum_{i=1}^{50} y_i^2 = 1457.6$ $\stackrel{-}{y} = \frac{1}{N} \sum_{i=1}^{50} y_i = \frac{1}{50} \times 261 = 5.22$ Mean,

Variance
$$(\sigma_2^2) = \frac{1}{N} \sum_{i=1}^{50} (y_i - \overline{y})^2$$

 $= \frac{1}{50} \sum_{i=1}^{50} (y_i - 5.22)^2$
 $= \frac{1}{50} \sum_{i=1}^{50} [y_i^2 - 10.44y_i + 27.24]$
 $= \frac{1}{50} [\sum_{i=1}^{50} y_i^2 - 10.44 \sum_{i=1}^{50} y_i + 27.24 \times 50]$
 $= \frac{1}{50} [1457.6 - 10.44 \times (261) + 1362]$
 $= \frac{1}{50} [2819.6 - 2724.84]$
 $= \frac{1}{50} \times 94.76$
 $= 1.89$

 \therefore S tan dard deviation, σ_2 (Weight) = $\sqrt{1.89} = 1.37$

$$\therefore \text{ C.V.}(\text{Weight}) = \frac{\text{S tan dard deviation}}{\text{Mean}} \times 100 = \frac{1.37}{5.22} \times 100 = 26.24$$

Thus, C.V. of weights is greater than the C.V. of lengths. Therefore, weights vary more than the lengths.