Here, I = 35.5, C = 37, f = 26, h = 5, and N = 100

:. Median =
$$35.5 + \frac{50 - 37}{26} \times 5 = 35.5 + \frac{13 \times 5}{26} = 35.5 + 2.5 = 38$$

Thus, mean deviation about the median is given by,

M.D.(M) =
$$\frac{1}{N} \sum_{i=1}^{8} f_i |x_i - M| = \frac{1}{100} \times 735 = 7.35$$

Exercise 15.2

Question 1:

Find the mean and variance for the data 6, 7, 10, 12, 13, 4, 8, 12

Answer

6, 7, 10, 12, 13, 4, 8, 12

The following table is obtained.

Xi	$(x_i - \overline{x})$	$\left(x_i - \overline{x}\right)^2$		
6	-3	9		
7	-2	4		
10	-1	1		
12	3	9		
13	4	16		
4	-5	25		
8	-1	1		
12	3	9		
		74		

Variance
$$(\sigma^2) = \frac{1}{n} \sum_{i=1}^{8} (x_i - \overline{x})^2 = \frac{1}{8} \times 74 = 9.25$$

Question 2:

Find the mean and variance for the first n natural numbers Answer

The mean of first n natural numbers is calculated as follows.

$$Mean = \frac{Sum of all observations}{Number of observations}$$

$$\therefore \text{Mean} = \frac{\frac{n(n+1)}{2}}{n} = \frac{n+1}{2}$$

$$\text{Variance}(\sigma^2) = \frac{1}{n} \sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[x_i - \left(\frac{n+1}{2} \right) \right]^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \sum_{i=1}^{n} 2 \left(\frac{n+1}{2} \right) x_i + \frac{1}{n} \sum_{i=1}^{n} \left(\frac{n+1}{2} \right)^2$$

$$= \frac{1}{n} \frac{n(n+1)(2n+1)}{6} - \left(\frac{n+1}{n} \right) \left[\frac{n(n+1)}{2} \right] + \frac{(n+1)^2}{4n} \times n$$

$$= \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{2} + \frac{(n+1)^2}{4}$$

$$= \frac{(n+1)\left(\frac{2n+1}{6} \right) - \frac{(n+1)^2}{4}}{6}$$

$$= (n+1) \left[\frac{4n+2-3n-3}{12} \right]$$

$$= \frac{(n+1)(n-1)}{12}$$

$$= \frac{n^2-1}{12}$$

Question 3:

Find the mean and variance for the first 10 multiples of 3

Answer

The first 10 multiples of 3 are

Here, number of observations, n = 10

Mean,
$$\bar{x} = \frac{\sum_{i=1}^{10} x_i}{10} = \frac{165}{10} = 16.5$$

The following table is obtained.

Xi	$(x_i - \overline{x})$	$\left(x_i - \overline{x}\right)^2$	
3	-13.5	182.25	
6	-10.5	110.25	
9	-7.5	56.25	
12	-4.5	20.25	
15	-1.5 2.25		
18	1.5	2.25	
21	4.5	20.25	
24	7.5	56.25	
27	10.5	110.25	
30	13.5	182.25	
		742.5	

Variance
$$\left(\sigma^{2}\right) = \frac{1}{n} \sum_{i=1}^{10} \left(x_{i} - \overline{x}\right)^{2} = \frac{1}{10} \times 742.5 = 74.25$$

Question 4:

Find the mean and variance for the data

хi	6	10	14	18	24	28	30
f i	2	4	7	12	8	4	3

Answer

The data is obtained in tabular form as follows.

Xi	fi	f _i x _i	$x_i - \overline{x}$	$\left(x_i - \overline{x}\right)^2$	$f_i(x_i - \overline{x})^2$
6	2	12	-13	169	338
10	4	40	-9	81	324
14	7	98	-5	25	175
18	12	216	-1	1	12
24	8	192	5	25	200
28	4	112	9	81	324
30	3	90	11	121	363
	40	760			1736

$$\sum_{i=1}^{7} f_i x_i = 760$$

Here, N = 40,
$$\sum_{i=1}^{7} f_i x_i = 760$$

$$\therefore \overline{x} = \frac{\sum_{i=1}^{7} f_i x_i}{N} = \frac{760}{40} = 19$$

Variance
$$= (\sigma^2) = \frac{1}{N} \sum_{i=1}^{7} f_i (x_i - \overline{x})^2 = \frac{1}{40} \times 1736 = 43.4$$

Question 5:

Find the mean and variance for the data

хi	92	93	97	98	102	104	109
fi	3	2	3	2	6	3	3

Answer

The data is obtained in tabular form as follows.

Xi	fi	f _i x _i	$x_i - \overline{x}$	$\left(x_i - \overline{x}\right)^2$	$f_i(x_i - \overline{x})^2$
92	3	276	-8	64	192
93	2	186	-7	49	98
97	3	291	-3	9	27
98	2	196	-2	4	8
102	6	612	2	4	24
104	3	312	4	16	48
109	3	327	9	81	243
	22	2200			640

$$\sum_{i=1}^{7} f_i x_i = 2200$$
 Here, N = 22,

$$\therefore x = \frac{1}{N} \sum_{i=1}^{7} f_i x_i = \frac{1}{22} \times 2200 = 100$$

Variance
$$\left(\sigma^{2}\right) = \frac{1}{N} \sum_{i=1}^{7} f_{i} (x_{i} - \overline{x})^{2} = \frac{1}{22} \times 640 = 29.09$$

Question 6:

Find the mean and standard deviation using short-cut method.

Xi	60	61	62	63	64	65	66	67	68
f _i	2	1	12	29	25	12	10	4	5

Answer

The data is obtained in tabular form as follows.

Xi	fi	$f_i = \frac{x_i - 64}{1}$	y _i ²	f _i y _i	$f_i y_i^2$
60	2	-4	16	-8	32
61	1	-3	9	-3	9
62	12	-2	4	-24	48
63	29	-1	1	-29	29
64	25	0	0	0	0
65	12	1	1	12	12
66	10	2	4	20	40
67	4	3	9	12	36
68	5	4	16	20	80
	100	220		0	286

Variance,
$$\sigma^{2} = \frac{h^{2}}{N^{2}} \left[N \sum_{i=1}^{9} f_{i} y_{i}^{2} - (\sum_{i=1}^{9} f_{i} y_{i})^{2} \right]$$
$$= \frac{1}{100^{2}} [100 \times 286 - 0]$$
$$= 2.86$$

 \therefore S tan dard deviation $(\sigma) = \sqrt{2.86} = 1.69$

Question 7:

Find the mean and variance for the following frequency distribution.

Classes	0-30	30-60	60-90	90-120	120-150	150-180	180-210
---------	------	-------	-------	--------	---------	---------	---------

Frequencies	2	3	5	10	3	5	2

Answer

Class	Frequency f_i	Mid-point x_i	$y_i = \frac{x_i - 105}{30}$	y _i ²	f _i y _i	f _i y _i ²
0-30	2	15	-3	9	-6	18
30-60	3	45	-2	4	-6	12
60-90	5	75	-1	1	-5	5
90-120	10	105	0	0	0	0
120-150	3	135	1	1	3	3
150-180	5	165	2	4	10	20
180-210	2	195	3	9	6	18
	30				2	76

$$\frac{1}{x} = A + \frac{\sum_{i=1}^{7} f_i y_i}{N} \times h = 105 + \frac{2}{30} \times 30 = 105 + 2 = 107$$
We since $(-2) = h^2 \left[N \sum_{i=1}^{7} f_i y_i + \frac{2}{30} \left(\sum_{i=1}^{7} f_i y_i \right)^2 \right]$

Variance
$$(\sigma^2) = \frac{h^2}{N^2} \left[N \sum_{i=1}^7 f_i y_i^2 - \left(\sum_{i=1}^7 f_i y_i \right)^2 \right]$$

$$= \frac{(30)^2}{(30)^2} \left[30 \times 76 - (2)^2 \right]$$

$$= 2280 - 4$$

$$= 2276$$

Question 8:

Find the mean and variance for the following frequency distribution.

Classes	0-10	10-20	20-30	30-40	40-50
Frequencies	5	8	15	16	6

Answer

Class	Frequency f_i	Mid-point x_i	$y_i = \frac{x_i - 25}{10}$	y _i ²	f _i y _i	$f_i y_i^2$
0-10	5	5	-2	4	-10	20
10-20	8	15	-1	1	-8	8
20-30	15	25	0	0	0	0
30-40	16	35	1	1	16	16
40-50	6	45	2	4	12	24
	50				10	68

$$\frac{1}{x} = A + \frac{\sum_{i=1}^{5} f_i y_i}{N} \times h = 25 + \frac{10}{50} \times 10 = 25 + 2 = 27$$
Wariance $(\sigma^2) = \frac{h^2}{N^2} \left[N \sum_{i=1}^{5} f_i y_i^2 - \left(\sum_{i=1}^{5} f_i y_i \right)^2 \right]$

$$= \frac{(10)^2}{(50)^2} \left[50 \times 68 - (10)^2 \right]$$

$$= \frac{1}{25} \left[3400 - 100 \right] = \frac{3300}{25}$$

=132

Question 9:Find the mean, variance and standard deviation using short-cut method

	ricarry variance a			_				
Height in cms	No. of children							
70-75	3							
75-80	4							
80-85	7							
85-90	7							
90-95	15							
95-100	9							
95-100 100-105	9	Answer						
				Mid-				
100-105	6	Answer Class Interva	Frequenc y f _i	Mid- poin t x_i	$y_i = \frac{x_i - 92.5}{5}$	y i 2	f _i y	<i>f_iy_i</i> 2
100-105	6	Class		poin	$y_{i} = \frac{x_{i} - 92.5}{5}$			
100-105	6	Class Interva	y f _i	poin t x_i	,	2	<i>i</i>	2
100-105	6	Class Interva I	y f _i	poin t <i>x</i> _i 72.5	-4	16	- 12	48
100-105	6	Class Interva I 70-75	y f _i 3	poin t <i>x_i</i> 72.5	-4 -3	16	- 12 - 12	48

95-100	9	97.5	1	1	9	9
100-105	6	102. 5	2	4	12	24
105-110	6	107. 5	3	9	18	54
110-115	3	112. 5	4	16	12	48
	60				6	25 4

Variance
$$(\sigma^2) = \frac{h^2}{N^2} \left[N \sum_{i=1}^9 f_i y_i^2 - \left(\sum_{i=1}^9 f_i y_i \right)^2 \right]$$

$$= \frac{(5)^2}{(60)^2} \left[60 \times 254 - (6)^2 \right]$$

$$= \frac{25}{3600} (15204) = 105.58$$

 \therefore Standard deviation (σ) = $\sqrt{105.58}$ = 10.27

Question 10:

The diameters of circles (in mm) drawn in a design are given below:

Diameters	No. of children
33-36	15
37-40	17
41-44	21

45-48	22
49-52	25

Answer

Class Interval	Frequency f_i	Mid-point x_i	$y_i = \frac{x_i - 42.5}{4}$	f _i ²	f _i y _i	$f_i y_i^2$
32.5-36.5	15	34.5	-2	4	-30	60
36.5-40.5	17	38.5	-1	1	-17	17
40.5-44.5	21	42.5	0	0	0	0
44.5-48.5	22	46.5	1	1	22	22
48.5-52.5	25	50.5	2	4	50	100
	100				25	199

Here, N = 100, h = 4

Let the assumed mean, A, be 42.5.

$$\overline{x} = A + \frac{\sum_{i=1}^{5} f_i y_i}{N} \times h = 42.5 + \frac{25}{100} \times 4 = 43.5$$
Mean,

Variance
$$(\sigma^2) = \frac{h^2}{N^2} \left[N \sum_{i=1}^5 f_i y_i^2 - \left(\sum_{i=1}^5 f_i y_i \right)^2 \right]$$

$$= \frac{16}{10000} \left[100 \times 199 - (25)^2 \right]$$

$$= \frac{16}{10000} \left[19900 - 625 \right]$$

$$= \frac{16}{10000} \times 19275$$

$$= 30.84$$

 \therefore S tan dard deviation (σ) = 5.55

Exercise 15.3

Question 1:

From the data given below state which group is more variable, A or B?

Marks	10-20	20-30	30-40	40-50	50-60	60-70	70-80
Group A	9	17	32	33	40	10	9