Here, $I=35.5, \mathrm{C}=37, f=26, h=5$, and $\mathrm{N}=100$
\therefore Median $=35.5+\frac{50-37}{26} \times 5=35.5+\frac{13 \times 5}{26}=35.5+2.5=38$
Thus, mean deviation about the median is given by,

$$
\text { M.D. }(\mathrm{M})=\frac{1}{\mathrm{~N}} \sum_{i=1}^{8} f_{i}\left|x_{i}-\mathrm{M}\right|=\frac{1}{100} \times 735=7.35
$$

Exercise 15.2

Question 1:

Find the mean and variance for the data $6,7,10,12,13,4,8,12$
Answer
$6,7,10,12,13,4,8,12$
Mean, $\overline{\mathrm{x}}=\frac{\sum_{\mathrm{i}=1}^{8} \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}=\frac{6+7+10+12+13+4+8+12}{8}=\frac{72}{8}=9$
The following table is obtained.

x_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$
6	-3	9
7	-2	4
10	-1	1
12	3	9
13	4	16
4	-5	25
8	-1	1
12	3	9
		74

$\operatorname{Variance}\left(\sigma^{2}\right)=\frac{1}{n} \sum_{i=1}^{8}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{8} \times 74=9.25$

Question 2:

Find the mean and variance for the first n natural numbers
Answer
The mean of first n natural numbers is calculated as follows.
Mean $=\frac{\text { Sum of all observations }}{\text { Number of observations }}$

$$
\begin{aligned}
\therefore \text { Mean }= & \frac{\frac{n(n+1)}{2}}{n}=\frac{n+1}{2} \\
\text { Variance }\left(\sigma^{2}\right) & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left[x_{i}-\left(\frac{n+1}{2}\right)\right]^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n} \sum_{i=1}^{n} 2\left(\frac{n+1}{2}\right) x_{i}+\frac{1}{n} \sum_{i=1}^{n}\left(\frac{n+1}{2}\right)^{2} \\
& =\frac{1}{n} \frac{n(n+1)(2 n+1)}{6}-\left(\frac{n+1}{n}\right)\left[\frac{n(n+1)}{2}\right]+\frac{(n+1)^{2}}{4 n} \times n \\
& =\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{2}+\frac{(n+1)^{2}}{4} \\
& =\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{4} \\
& =(n+1)\left[\frac{4 n+2-3 n-3}{12}\right] \\
& =\frac{(n+1)(n-1)}{12} \\
& =\frac{n^{2}-1}{12}
\end{aligned}
$$

Question 3:

Find the mean and variance for the first 10 multiples of 3
Answer
The first 10 multiples of 3 are
$3,6,9,12,15,18,21,24,27,30$
Here, number of observations, $n=10$
Mean, $\bar{x}=\frac{\sum_{i=1}^{10} \mathrm{x}_{\mathrm{i}}}{10}=\frac{165}{10}=16.5$
The following table is obtained.

x_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$
3	-13.5	182.25
6	-10.5	110.25
9	-7.5	56.25
12	-4.5	20.25
15	-1.5	2.25
18	1.5	2.25
21	4.5	20.25
24	7.5	56.25
27	10.5	110.25
30	13.5	182.25
		742.5

$\operatorname{Variance}\left(\sigma^{2}\right)=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{10}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}=\frac{1}{10} \times 742.5=74.25$

Question 4:

Find the mean and variance for the data

$x i$	6	10	14	18	24	28	30
$f i$	2	4	7	12	8	4	3

Answer

The data is obtained in tabular form as follows.

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f} \boldsymbol{i}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$	$\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}$	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$	$\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
6	2	12	-13	169	338
10	4	40	-9	81	324
14	7	98	-5	25	175
18	12	216	-1	1	12
24	8	192	5	25	200
28	4	112	9	81	324
30	3	90	11	121	363
	40	760			1736

Here, $\mathrm{N}=40, \sum_{i=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=760$
$\therefore \bar{x}=\frac{\sum_{i=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\mathrm{N}}=\frac{760}{40}=19$
Variance $=\left(\sigma^{2}\right)=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}=\frac{1}{40} \times 1736=43.4$

Question 5:

Find the mean and variance for the data

$x i$	92	93	97	98	102	104	109
$f i$	3	2	3	2	6	3	3

Answer

The data is obtained in tabular form as follows.

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f} \boldsymbol{i}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$	$\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}$	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$	$\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
92	3	276	-8	64	192
93	2	186	-7	49	98
97	3	291	-3	9	27
98	2	196	-2	4	8
102	6	612	2	4	24
104	3	312	4	16	48
109	3	327	9	81	243
	22	2200			640

Here, $N=22, \sum_{i=1}^{7} f_{i} x_{i}=2200$
$\therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{22} \times 2200=100$
Variance $\left(\sigma^{2}\right)=\frac{1}{N} \sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}=\frac{1}{22} \times 640=29.09$

Question 6:

Find the mean and standard deviation using short-cut method.

x_{i}	60	61	62	63	64	65	66	67	68
f_{i}	2	1	12	29	25	12	10	4	5

Answer
The data is obtained in tabular form as follows.

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}}$	$\mathrm{f}_{\mathrm{i}}=\frac{\mathbf{x}_{\mathrm{i}}-64}{1}$	$\boldsymbol{y}_{\boldsymbol{i}}^{\mathbf{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i} \boldsymbol{y}_{\boldsymbol{i}}^{2}}$
60	2	-4	16	-8	32
61	1	-3	9	-3	9
62	12	-2	4	-24	48
63	29	-1	1	-29	29
64	25	0	0	0	0
65	12	1	1	12	12
66	10	2	4	20	40
67	4	3	9	12	36
68	5	4	16	20	80
	100	220		0	286

Mean, $\quad \bar{x}=A \frac{\sum_{i=1}^{9} f_{i} y_{i}}{N} \times h=64+\frac{0}{100} \times 1=64+0=64$
Variance,$\sigma^{2}=\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{9} f_{i} y_{i}{ }^{2}-\left(\sum_{i=1}^{9} f_{i} y_{i}\right)^{2}\right]$

$$
\begin{aligned}
& =\frac{1}{100^{2}}[100 \times 286-0] \\
& =2.86
\end{aligned}
$$

$\therefore S$ tan dard deviation $(\sigma)=\sqrt{2.86}=1.69$

Question 7:

Find the mean and variance for the following frequency distribution.

Classes	$0-30$	$30-60$	$60-90$	$90-120$	$120-150$	$150-180$	$180-210$

Frequencies	2	3	5	10	3	5	2

Answer

Class	Frequency $\boldsymbol{f}_{\boldsymbol{i}}$	Mid-point $\boldsymbol{x}_{\boldsymbol{i}}$	$y_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-105}{30}$	$\boldsymbol{y}_{\boldsymbol{i}}{ }^{\mathbf{2}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}{ }^{\mathbf{2}}$
$0-30$	2	15	-3	9	-6	18
$30-60$	3	45	-2	4	-6	12
$60-90$	5	75	-1	1	-5	5
$90-120$	10	105	0	0	0	0
$120-150$	3	165	2	1	3	3
$150-180$	5	195	3	9	6	18
$180-210$	2				10	20

Mean, $\overline{\mathrm{x}}=\mathrm{A}+\frac{\sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\mathrm{N}} \times \mathrm{h}=105+\frac{2}{30} \times 30=105+2=107$
$\operatorname{Variance}\left(\sigma^{2}\right)=\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}-\left(\sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)^{2}\right]$

$$
\begin{aligned}
& =\frac{(30)^{2}}{(30)^{2}}\left[30 \times 76-(2)^{2}\right] \\
& =2280-4 \\
& =2276
\end{aligned}
$$

Question 8:

Find the mean and variance for the following frequency distribution.

Classes	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequencies	5	8	15	16	6

Answer

Class Frequency $\boldsymbol{f}_{\boldsymbol{i}}$ Mid-point $\boldsymbol{x}_{\boldsymbol{i}}$ $\mathrm{y}_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-25}{10}$ $\boldsymbol{y}_{\boldsymbol{i}}^{\mathbf{2}}$ $\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}$ $\boldsymbol{f}_{\boldsymbol{i} \boldsymbol{y}_{\boldsymbol{i}}^{\mathbf{2}}}$ $0-10$ 5 5 -2 4 -10 20 $10-20$ 8 15 -1 1 -8 8 $20-30$ 15 25 0 0 0 0 $30-40$ 16 35 1 1 16 16 $40-50$ 6 45 2 4 12 24 50 10 68
Mean, $\mathrm{x}=\mathrm{A}+\frac{\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\mathrm{N}} \times \mathrm{h}=25+\frac{10}{50} \times 10=25+2=27$

$\operatorname{Variance}\left(\sigma^{2}\right)=\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{5} f_{i} y_{i}{ }^{2}-\left(\sum_{i=1}^{5} f_{i} y_{i}\right)^{2}\right]$

$$
\begin{aligned}
& =\frac{(10)^{2}}{(50)^{2}}\left[50 \times 68-(10)^{2}\right] \\
& =\frac{1}{25}[3400-100]=\frac{3300}{25}
\end{aligned}
$$

$$
=132
$$

Question 9:

Find the mean, variance and standard deviation using short-cut method

Height in cms	No. of children							
70-75	3							
75-80	4							
80-85	7							
85-90	7							
90-95	15							
95-100	9							
100-105	6	Answer						
105-110	6	Class Interva I	Frequenc$y \boldsymbol{f}_{i}$	Mid- poin t $\boldsymbol{X}_{\boldsymbol{i}}$	$y_{i}=\frac{x_{i}-92.5}{5}$	$\begin{gathered} y_{i} \\ 2 \end{gathered}$	$f_{i} y$	
								$\begin{gathered} f_{i} y_{i} \\ 2 \end{gathered}$
110-115	3							
		70-75	3	72.5	-4	16	12	48
		75-80	4	77.5	-3	9	12	36
		80-85	7	82.5	-2	4	14	28
		85-90	7	87.5	-1	1	-7	7
		90-95	15	92.5	0	0	0	0

$95-100$	9	97.5	1	1	9	9
$100-105$	6	102. 5	2	4	12	24
$105-110$	6	107. 5	3	9	18	54
$110-115$	3	112. 5	4	16	12	48
	60				6	25 4

Mean, $\quad \overline{\mathrm{x}}=\mathrm{A}+\frac{\sum_{\mathrm{i}=1}^{9} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\mathrm{N}} \times \mathrm{h}=92.5+\frac{6}{60} \times 5=92.5+0.5=93$
Variance $\left(\sigma^{2}\right)=\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{9} f_{i} y_{i}{ }^{2}-\left(\sum_{i=1}^{9} f_{i} y_{i}\right)^{2}\right]$

$$
\begin{aligned}
& =\frac{(5)^{2}}{(60)^{2}}\left[60 \times 254-(6)^{2}\right] \\
& =\frac{25}{3600}(15204)=105.58
\end{aligned}
$$

$\therefore \mathrm{Stan}$ dard deviation $(\sigma)=\sqrt{105.58}=10.27$

Question 10:

The diameters of circles (in mm) drawn in a design are given below:

Diameters	No. of children
$33-36$	15
$37-40$	17
$41-44$	21

$45-48$	22
$49-52$	25

Answer

Class Interval	Frequency $\boldsymbol{f}_{\boldsymbol{i}}$	Mid-point $\boldsymbol{x}_{\boldsymbol{i}}$	$\mathrm{y}_{\mathrm{i}}=\frac{\mathbf{x}_{\mathrm{i}}-42.5}{4}$	$\boldsymbol{f}_{\boldsymbol{i}}^{\mathbf{2}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i} \boldsymbol{y}_{\boldsymbol{i}}{ }^{\mathbf{2}}}$
$32.5-36.5$	15	34.5	-2	4	-30	60
$36.5-40.5$	17	38.5	-1	1	-17	17
$40.5-44.5$	21	42.5	0	0	0	0
$44.5-48.5$	22	46.5	1	1	22	22
$48.5-52.5$	25	50.5	2	4	50	100
	100				25	199

Here, $N=100, h=4$
Let the assumed mean, A , be 42.5 .
Mean, $^{\bar{x}}=A+\frac{\sum_{i=1}^{5} f_{i} y_{i}}{N} \times h=42.5+\frac{25}{100} \times 4=43.5$

$$
\begin{aligned}
\operatorname{Variance}\left(\sigma^{2}\right) & =\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{5} f_{i} y_{i}^{2}-\left(\sum_{i=1}^{5} f_{i} y_{i}\right)^{2}\right] \\
& =\frac{16}{10000}\left[100 \times 199-(25)^{2}\right] \\
& =\frac{16}{10000}[19900-625] \\
& =\frac{16}{10000} \times 19275 \\
& =30.84
\end{aligned}
$$

$\therefore \mathrm{Stan}$ dard deviation $(\sigma)=5.55$

Exercise 15.3

Question 1:

From the data given below state which group is more variable, A or B ?

Marks	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Group A	9	17	32	33	40	10	9

