## Exercise 1.2

## Question 1:

Show that the function $f: \mathbf{R}_{*} \rightarrow \mathbf{R}_{*}$ defined by $f(x)=\frac{1}{x}$ is one-one and onto, where $\mathbf{R}_{*}$ is the set of all non-zero real numbers. Is the result true, if the domain $\mathbf{R}$. is replaced by $\mathbf{N}$ with co-domain being same as $\mathbf{R}_{*}$ ?

Answer
It is given that $f: \mathbf{R}_{*} \rightarrow \mathbf{R}_{*}$ is defined by $f(x)=\frac{1}{x}$.
One-one:

$$
\begin{aligned}
& f(x)=f(y) \\
& \Rightarrow \frac{1}{x}=\frac{1}{y} \\
& \Rightarrow x=y
\end{aligned}
$$

$\therefore f$ is one-one.
Onto:
It is clear that for $y \in \mathbf{R}_{*}$, there exists $\quad x=\frac{1}{y} \in \mathrm{R}$. (Exists as $\left.y \neq 0\right)$ such that
$f(x)=\frac{1}{\left(\frac{1}{y}\right)}=y$.
$\therefore f$ is onto.
Thus, the given function ( $f$ ) is one-one and onto.
Now, consider function $g$ : $\mathbf{N} \rightarrow \mathbf{R} *$ defined by

$$
g(x)=\frac{1}{x}
$$

We have,
$g\left(x_{1}\right)=g\left(x_{2}\right) \Rightarrow \frac{1}{x_{1}}=\frac{1}{x_{2}} \Rightarrow x_{1}=x_{2}$
$\therefore g$ is one-one.

Further, it is clear that $g$ is not onto as for $1.2 \in \mathbf{R}$ * there does not exit any $x$ in $\mathbf{N}$ such
that $g(x)=\frac{1}{1.2}$.
Hence, function $g$ is one-one but not onto.

## Question 2:

Check the injectivity and surjectivity of the following functions:
(i) $f: \mathbf{N} \rightarrow \mathbf{N}$ given by $f(x)=x^{2}$
(ii) $f: \mathbf{Z} \rightarrow \mathbf{Z}$ given by $f(x)=x^{2}$
(iii) $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x)=x^{2}$
(iv) $f$ : $\mathbf{N} \rightarrow \mathbf{N}$ given by $f(x)=x^{3}$
(v) $f: \mathbf{Z} \rightarrow \mathbf{Z}$ given by $f(x)=x^{3}$

Answer
(i) $f: \mathbf{N} \rightarrow \mathbf{N}$ is given by,
$f(x)=x^{2}$
It is seen that for $x, y \in \mathbf{N}, f(x)=f(y) \Rightarrow x^{2}=y^{2} \Rightarrow x=y$.
$\therefore f$ is injective.
Now, $2 \in \mathbf{N}$. But, there does not exist any $x$ in $\mathbf{N}$ such that $f(x)=x^{2}=2$.
$\therefore f$ is not surjective.
Hence, function $f$ is injective but not surjective.
(ii) $f: \mathbf{Z} \rightarrow \mathbf{Z}$ is given by,
$f(x)=x^{2}$
It is seen that $f(-1)=f(1)=1$, but $-1 \neq 1$.
$\therefore f$ is not injective.
Now, $-2 \in \mathbf{Z}$. But, there does not exist any element $x \in \mathbf{Z}$ such that $f(x)=x^{2}=-2$.
$\therefore f$ is not surjective.
Hence, function $f$ is neither injective nor surjective.
(iii) $f: \mathbf{R} \rightarrow \mathbf{R}$ is given by,
$f(x)=x^{2}$
It is seen that $f(-1)=f(1)=1$, but $-1 \neq 1$.
$\therefore f$ is not injective.
Now, $-2 \in \mathbf{R}$. But, there does not exist any element $x \in \mathbf{R}$ such that $f(x)=x^{2}=-2$.
$\therefore f$ is not surjective.
Hence, function $f$ is neither injective nor surjective.
(iv) $f: \mathbf{N} \rightarrow \mathbf{N}$ given by,
$f(x)=x^{3}$
It is seen that for $x, y \in \mathbf{N}, f(x)=f(y) \Rightarrow x^{3}=y^{3} \Rightarrow x=y$.
$\therefore f$ is injective.
Now, $2 \in \mathbf{N}$. But, there does not exist any element $x$ in domain $\mathbf{N}$ such that $f(x)=x^{3}=$ 2.
$\therefore f$ is not surjective
Hence, function $f$ is injective but not surjective.
(v) $f: \mathbf{Z} \rightarrow \mathbf{Z}$ is given by,
$f(x)=x^{3}$
It is seen that for $x, y \in \mathbf{Z}, f(x)=f(y) \Rightarrow x^{3}=y^{3} \Rightarrow x=y$.
$\therefore f$ is injective.
Now, $2 \in \mathbf{Z}$. But, there does not exist any element $x$ in domain $\mathbf{Z}$ such that $f(x)=x^{3}=2$.
$\therefore f$ is not surjective.
Hence, function $f$ is injective but not surjective.

## Question 3:

Prove that the Greatest Integer Function $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x)=[x]$, is neither oneonce nor onto, where $[x]$ denotes the greatest integer less than or equal to $x$.
Answer
$f: \mathbf{R} \rightarrow \mathbf{R}$ is given by,
$f(x)=[x]$
It is seen that $f(1.2)=[1.2]=1, f(1.9)=[1.9]=1$.
$\therefore f(1.2)=f(1.9)$, but $1.2 \neq 1.9$.
$\therefore f$ is not one-one.
Now, consider $0.7 \in \mathbf{R}$.
It is known that $f(x)=[x]$ is always an integer. Thus, there does not exist any element $x$
$\in \mathbf{R}$ such that $f(x)=0.7$.
$\therefore f$ is not onto.
Hence, the greatest integer function is neither one-one nor onto.

## Question 4:

Show that the Modulus Function $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x)=|x|$, is neither one-one nor onto, where $|x|$ is $x$, if $x$ is positive or 0 and $|x|$ is $-x$, if $x$ is negative.
Answer
$f: \mathbf{R} \rightarrow \mathbf{R}$ is given by,
$f(x)=|x|=\left\{\begin{array}{l}x, \text { if } x \geq 0 \\ -x, \text { if } x<0\end{array}\right.$
It is seen that $f(-1)=|-1|=1, f(1)=|1|=1$.
$\therefore f(-1)=f(1)$, but $-1 \neq 1$.
$\therefore f$ is not one-one.
Now, consider $-1 \in \mathbf{R}$.
It is known that $f(x)=|x|$ is always non-negative. Thus, there does not exist any
element $x$ in domain $\mathbf{R}$ such that $f(x)=|x|=-1$.
$\therefore f$ is not onto.
Hence, the modulus function is neither one-one nor onto.

## Question 5:

Show that the Signum Function $f: \mathbf{R} \rightarrow \mathbf{R}$, given by

$$
f(x)=\left\{\begin{array}{l}
1, \text { if } x>0 \\
0, \text { if } x=0 \\
-1, \text { if } x<0
\end{array}\right.
$$

is neither one-one nor onto.
Answer
$f: \mathbf{R} \rightarrow \mathbf{R}$ is given by,
$f(x)=\left\{\begin{array}{l}1, \text { if } x>0 \\ 0, \text { if } x=0 \\ -1, \text { if } x<0\end{array}\right.$
It is seen that $f(1)=f(2)=1$, but $1 \neq 2$.
$\therefore f$ is not one-one.

Now, as $f(x)$ takes only 3 values ( 1,0 , or -1 ) for the element -2 in co-domain $\mathbf{R}$, there does not exist any $x$ in domain $\mathbf{R}$ such that $f(x)=-2$.
$\therefore f$ is not onto.
Hence, the signum function is neither one-one nor onto.

## Question 6:

Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from $A$ to $B$. Show that $f$ is one-one.
Answer
It is given that $A=\{1,2,3\}, B=\{4,5,6,7\}$.
$f: A \rightarrow B$ is defined as $f=\{(1,4),(2,5),(3,6)\}$.
$\therefore f(1)=4, f(2)=5, f(3)=6$
It is seen that the images of distinct elements of $A$ under $f$ are distinct.
Hence, function $f$ is one-one.

## Question 7:

In each of the following cases, state whether the function is one-one, onto or bijective.
Justify your answer.
(i) $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=3-4 x$
(ii) $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=1+x^{2}$

Answer
(i) $f: \mathbf{R} \rightarrow \mathbf{R}$ is defined as $f(x)=3-4 x$.

Let $x_{1}, x_{2} \in \mathbf{R}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.

$$
\begin{aligned}
& \Rightarrow 3-4 x_{1}=3-4 x_{2} \\
& \Rightarrow-4 x_{1}=-4 x_{2} \\
& \Rightarrow x_{1}=x_{2}
\end{aligned}
$$

$\therefore f$ is one-one.
For any real number $(y)$ in $\mathbf{R}$, there exists $\frac{\frac{3-y}{4}}{}$ in $\mathbf{R}$ such that
$f\left(\frac{3-y}{4}\right)=3-4\left(\frac{3-y}{4}\right)=y$.
$\therefore f$ is onto.

Hence, $f$ is bijective.
(ii) $f: \mathbf{R} \rightarrow \mathbf{R}$ is defined as
$f(x)=1+x^{2}$
Let $x_{1}, x_{2} \in \mathbf{R}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.
$\Rightarrow 1+x_{1}^{2}=1+x_{2}^{2}$
$\Rightarrow x_{1}^{2}=x_{2}^{2}$
$\Rightarrow x_{1}= \pm x_{2}$
$\therefore f\left(x_{1}\right)=f\left(x_{2}\right)$ does not imply that $x_{1}=x_{2}$.
For instance,
$f(1)=f(-1)=2$
$\therefore f$ is not one-one.
Consider an element -2 in co-domain $\mathbf{R}$.
It is seen that $f(x)=1+x^{2}$ is positive for all $x \in \mathbf{R}$.
Thus, there does not exist any $x$ in domain $\mathbf{R}$ such that $f(x)=-2$.
$\therefore f$ is not onto.
Hence, $f$ is neither one-one nor onto.

## Question 8:

Let $A$ and $B$ be sets. Show that $f: A \times B \rightarrow B \times A$ such that $(a, b)=(b, a)$ is bijective function.
Answer
$f: A \times B \rightarrow B \times A$ is defined as $f(a, b)=(b, a)$.
Let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in \mathrm{A} \times \mathrm{B}$ such that $f\left(a_{1}, b_{1}\right)=f\left(a_{2}, b_{2}\right)$.
$\Rightarrow\left(b_{1}, a_{1}\right)=\left(b_{2}, a_{2}\right)$
$\Rightarrow b_{1}=b_{2}$ and $a_{1}=a_{2}$
$\Rightarrow\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right)$
$\therefore f$ is one-one.
Now, let $(b, a) \in B \times A$ be any element.
Then, there exists $(a, b) \in A \times B$ such that $f(a, b)=(b, a)$. [By definition of $f$ ]
$\therefore f$ is onto.
Hence, $f$ is bijective.

## Question 9:

Let $f: \mathbf{N} \rightarrow \mathbf{N}$ be defined by

$$
f(n)=\left\{\begin{array}{ll}
\frac{n+1}{2}, & \text { if } n \text { is odd } \\
\frac{n}{2}, & \text { if } n \text { is even }
\end{array} \text { for all } n \in \mathbf{N}\right.
$$

State whether the function f is bijective. Justify your answer.
Answer
$f: \mathbf{N} \rightarrow \mathbf{N}$ is defined as

$$
f(n)=\left\{\begin{array}{ll}
\frac{n+1}{2}, & \text { if } n \text { is odd } \\
\frac{n}{2}, & \text { if } n \text { is even }
\end{array} \text { for all } n \in \mathbf{N}\right.
$$

It can be observed that:
$f(1)=\frac{1+1}{2}=1$ and $f(2)=\frac{2}{2}=1 \quad[$ By definition of $f]$
$\therefore f(1)=f(2)$, where $1 \neq 2$.
$\therefore f$ is not one-one.
Consider a natural number ( $n$ ) in co-domain $\mathbf{N}$.
Case I: $n$ is odd
$\therefore n=2 r+1$ for some $r \in \mathbf{N}$. Then, there exists $4 r+1 \in \mathbf{N}$ such that

$$
f(4 r+1)=\frac{4 r+1+1}{2}=2 r+1
$$

Case II: $n$ is even
$\therefore n=2 r$ for some $r \in \mathbf{N}$. Then, there exists $4 r \in \mathbf{N}$ such that $f(4 r)=\frac{4 r}{2}=2 r$.
$\therefore f$ is onto.
Hence, $f$ is not a bijective function.

## Question 10:

Let $A=\mathbf{R}-\{3\}$ and $B=\mathbf{R}-\{1\}$. Consider the function $f: A \rightarrow B$ defined by
$f(x)=\left(\frac{x-2}{x-3}\right)$. Is $f$ one-one and onto? Justify your answer.
Answer
$A=\mathbf{R}-\{3\}, B=\mathbf{R}-\{1\}$
$f: \mathrm{A} \rightarrow \mathrm{B}$ is defined as $f(x)=\left(\frac{x-2}{x-3}\right)$.
Let $x, y \in \mathrm{~A}$ such that $f(x)=f(y)$.
$\Rightarrow \frac{x-2}{x-3}=\frac{y-2}{y-3}$
$\Rightarrow(x-2)(y-3)=(y-2)(x-3)$
$\Rightarrow x y-3 x-2 y+6=x y-3 y-2 x+6$
$\Rightarrow-3 x-2 y=-3 y-2 x$
$\Rightarrow 3 x-2 x=3 y-2 y$
$\Rightarrow x=y$
$\therefore f$ is one-one.
Let $y \in B=\mathbf{R}-\{1\}$. Then, $y \neq 1$.
The function $f$ is onto if there exists $x \in \mathrm{~A}$ such that $f(x)=y$.
Now,

$$
\begin{aligned}
& f(x)=y \\
& \Rightarrow \frac{x-2}{x-3}=y \\
& \Rightarrow x-2=x y-3 y \\
& \Rightarrow x(1-y)=-3 y+2 \\
& \Rightarrow x=\frac{2-3 y}{1-y} \in \mathrm{~A} \quad[y \neq 1]
\end{aligned}
$$

Thus, for any $y \in B$, there exists $\frac{2-3 y}{1-y} \in \mathrm{~A}$ such that
$f\left(\frac{2-3 y}{1-y}\right)=\frac{\left(\frac{2-3 y}{1-y}\right)-2}{\left(\frac{2-3 y}{1-y}\right)-3}=\frac{2-3 y-2+2 y}{2-3 y-3+3 y}=\frac{-y}{-1}=y$.
$\therefore f$ is onto.
Hence, function $f$ is one-one and onto.

## Question 11:

Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as $f(x)=x^{4}$. Choose the correct answer.
(A) $f$ is one-one onto (B) $f$ is many-one onto
(C) $f$ is one-one but not onto (D) $f$ is neither one-one nor onto

Answer
$f: \mathbf{R} \rightarrow \mathbf{R}$ is defined as $f(x)=x^{4}$.
Let $x, y \in \mathbf{R}$ such that $f(x)=f(y)$.
$\Rightarrow x^{4}=y^{4}$
$\Rightarrow x= \pm y$
$\therefore f\left(x_{1}\right)=f\left(x_{2}\right)$ does not imply that $x_{1}=x_{2}$.
For instance,

$$
f(1)=f(-1)=1
$$

$\therefore f$ is not one-one.
Consider an element 2 in co-domain $\mathbf{R}$. It is clear that there does not exist any $x$ in domain $\mathbf{R}$ such that $f(x)=2$.
$\therefore f$ is not onto.
Hence, function $f$ is neither one-one nor onto.
The correct answer is $D$.

## Question 12:

Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as $f(x)=3 x$. Choose the correct answer.
(A) $f$ is one-one onto (B) $f$ is many-one onto
(C) $f$ is one-one but not onto (D) $f$ is neither one-one nor onto

Answer
$f: \mathbf{R} \rightarrow \mathbf{R}$ is defined as $f(x)=3 x$.
Let $x, y \in \mathbf{R}$ such that $f(x)=f(y)$.
$\Rightarrow 3 x=3 y$
$\Rightarrow x=y$
$\therefore f$ is one-one.
Also, for any real number $(y)$ in co-domain $\mathbf{R}$, there exists $\frac{\frac{y}{3}}{3}$ in $\mathbf{R}$ such that $f\left(\frac{y}{3}\right)=3\left(\frac{y}{3}\right)=y$.
$\therefore f$ is onto.
Hence, function $f$ is one-one and onto.
The correct answer is A.

