Miscellaneous Questions:

Question 1:

Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as $f(x)=10 x+7$. Find the function $g: \mathbf{R} \rightarrow \mathbf{R}$ such that $g \circ f=f$ $\circ g=1_{R}$.

Answer
It is given that $f: \mathbf{R} \rightarrow \mathbf{R}$ is defined as $f(x)=10 x+7$.
One-one:
Let $f(x)=f(y)$, where $x, y \in \mathbf{R}$.
$\Rightarrow 10 x+7=10 y+7$
$\Rightarrow x=y$
$\therefore f$ is a one-one function.
Onto:
For $y \in \mathbf{R}$, let $y=10 x+7$.
$\Rightarrow x=\frac{y-7}{10} \in \mathbf{R}$
Therefore, for any $y \in \mathbf{R}$, there exists $x=\frac{y-7}{10} \in \mathbf{R}$ such that
$f(x)=f\left(\frac{y-7}{10}\right)=10\left(\frac{y-7}{10}\right)+7=y-7+7=y$.
$\therefore f$ is onto.
Therefore, f is one-one and onto.
Thus, f is an invertible function.
Let us define $g: \mathbf{R} \rightarrow \mathbf{R}$ as $g(y)=\frac{y-7}{10}$.
Now, we have:
$g \circ f(x)=g(f(x))=g(10 x+7)=\frac{(10 x+7)-7}{10}=\frac{10 x}{10}=10$
And,
$f \circ g(y)=f(g(y))=f\left(\frac{y-7}{10}\right)=10\left(\frac{y-7}{10}\right)+7=y-7+7=y$
$\therefore g \circ f=\mathrm{I}_{\mathrm{R}}$ and $f \circ g=\mathrm{I}_{\mathrm{R}}$

Hence, the required function $g: \mathbf{R} \rightarrow \mathbf{R}$ is defined as $g(y)=\frac{y-7}{10}$.

Question 2:

Let $f: \mathrm{W} \rightarrow \mathrm{W}$ be defined as $f(n)=n-1$, if is odd and $f(n)=n+1$, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.
Answer
It is given that:
$f: \mathrm{W} \rightarrow \mathrm{W}$ is defined as $f(n)=\left\{\begin{array}{l}n-1, \text { if } n \text { is odd } \\ n+1, \text { if } n \text { is even }\end{array}\right.$
One-one:
Let $f(n)=f(m)$.
It can be observed that if n is odd and m is even, then we will have $n-1=m+1$.
$\Rightarrow n-m=2$
However, this is impossible.
Similarly, the possibility of n being even and m being odd can also be ignored under a similar argument.
\therefore Both n and m must be either odd or even.
Now, if both n and m are odd, then we have:
$f(n)=f(m) \Rightarrow n-1=m-1 \Rightarrow n=m$
Again, if both n and m are even, then we have:
$f(n)=f(m) \Rightarrow n+1=m+1 \Rightarrow n=m$
$\therefore f$ is one-one.
It is clear that any odd number $2 r+1$ in co-domain \mathbf{N} is the image of $2 r$ in domain \mathbf{N} and any even number $2 r$ in co-domain \mathbf{N} is the image of $2 r+1$ in domain \mathbf{N}.
$\therefore f$ is onto.
Hence, f is an invertible function.
Let us define $g: \mathrm{W} \rightarrow \mathrm{W}$ as:
$g(m)=\left\{\begin{array}{l}m+1, \text { if } m \text { is even } \\ m-1, \text { if } m \text { is odd }\end{array}\right.$

Now, when n is odd:

$$
g \circ f(n)=g(f(n))=g(n-1)=n-1+1=n
$$

And, when n is even:

$$
g \circ f(n)=g(f(n))=g(n+1)=n+1-1=n
$$

Similarly, when m is odd:

$$
f \circ g(m)=f(g(m))=f(m-1)=m-1+1=m
$$

When m is even:

$$
f \circ g(m)=f(g(m))=f(m+1)=m+1-1=m
$$

$\therefore g \circ f=\mathrm{I}_{\mathrm{w}}$ and $f \circ g=\mathrm{I}_{\mathrm{w}}$
Thus, f is invertible and the inverse of f is given by $f^{-1}=g$, which is the same as f.
Hence, the inverse of f is f itself.

Question 3:

If $f: \mathbf{R} \rightarrow \mathbf{R}$ is defined by $f(x)=x^{2}-3 x+2$, find $f(f(x))$.
Answer
It is given that $f: \mathbf{R} \rightarrow \mathbf{R}$ is defined as $f(x)=x^{2}-3 x+2$.

$$
\begin{aligned}
f(f(x)) & =f\left(x^{2}-3 x+2\right) \\
& =\left(x^{2}-3 x+2\right)^{2}-3\left(x^{2}-3 x+2\right)+2 \\
& =x^{4}+9 x^{2}+4-6 x^{3}-12 x+4 x^{2}-3 x^{2}+9 x-6+2 \\
& =x^{4}-6 x^{3}+10 x^{2}-3 x
\end{aligned}
$$

Question 4:

Show that function $f: \mathbf{R} \rightarrow\{x \in \mathbf{R}:-1<x<1\}$ defined by $f(x)=\frac{x}{1+|x|}, x \in \mathbf{R}$ is one-one and onto function.
Answer
It is given that $f: \mathbf{R} \rightarrow\{x \in \mathbf{R}:-1<x<1\}$ is defined as $f(x)=\frac{x}{1+|x|}, x \in \mathbf{R}$. Suppose $f(x)=f(y)$, where $x, y \in \mathbf{R}$.
$\Rightarrow \frac{x}{1+|x|}=\frac{y}{1+|y|}$
It can be observed that if x is positive and y is negative, then we have:
$\frac{x}{1+x}=\frac{y}{1-y} \Rightarrow 2 x y=x-y$
Since x is positive and y is negative:
$x>y \Rightarrow x-y>0$
But, $2 x y$ is negative.
Then, $2 x y \neq x-y$.
Thus, the case of x being positive and y being negative can be ruled out.
Under a similar argument, x being negative and y being positive can also be ruled out $\therefore x$ and y have to be either positive or negative.
When x and y are both positive, we have:
$f(x)=f(y) \Rightarrow \frac{x}{1+x}=\frac{y}{1+y} \Rightarrow x+x y=y+x y \Rightarrow x=y$
When x and y are both negative, we have:
$f(x)=f(y) \Rightarrow \frac{x}{1-x}=\frac{y}{1-y} \Rightarrow x-x y=y-y x \Rightarrow x=y$
$\therefore f$ is one-one.
Now, let $y \in \mathbf{R}$ such that $-1<y<1$.
If y is negative, then there exists $x=\frac{y}{1+y} \in \mathbf{R}$ such that
$f(x)=f\left(\frac{y}{1+y}\right)=\frac{\left(\frac{y}{1+y}\right)}{1+\left|\frac{y}{1+y}\right|}=\frac{\frac{y}{1+y}}{1+\left(\frac{-y}{1+y}\right)}=\frac{y}{1+y-y}=y$.
If y is positive, then there exists $x=\frac{y}{1-y} \in \mathbf{R}$ such that
$f(x)=f\left(\frac{y}{1-y}\right)=\frac{\left(\frac{y}{1-y}\right)}{\left.1+\left(\frac{y}{1-y}\right) \right\rvert\,}=\frac{\frac{y}{1-y}}{1+\frac{y}{1-y}}=\frac{y}{1-y+y}=y$.
$\therefore f$ is onto.
Hence, f is one-one and onto.

Question 5:

Show that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x)=x^{3}$ is injective.
Answer
$f: \mathbf{R} \rightarrow \mathbf{R}$ is given as $f(x)=x^{3}$.
Suppose $f(x)=f(y)$, where $x, y \in \mathbf{R}$.
$\Rightarrow x^{3}=y^{3}$.
Now, we need to show that $x=y$.
Suppose $x \neq y$, their cubes will also not be equal.

$$
\Rightarrow x^{3} \neq y^{3}
$$

However, this will be a contradiction to (1).
$\therefore x=y$
Hence, f is injective.

Question 6:

Give examples of two functions $f: \mathbf{N} \rightarrow \mathbf{Z}$ and $g: \mathbf{Z} \rightarrow \mathbf{Z}$ such that g o f is injective but g is not injective.
(Hint: Consider $f(x)=x$ and $g(x)=|x|$,
Answer
Define $f: \mathbf{N} \rightarrow \mathbf{Z}$ as $f(x)=x$ and $g: \mathbf{Z} \rightarrow \mathbf{Z}$ as $g(x)=|x|$.
We first show that g is not injective.
It can be observed that:
$g(-1)=|-1|=1$
$g(1)=|1|=1$
$\therefore g(-1)=g(1)$, but $-1 \neq 1$.
$\therefore g$ is not injective.
Now, gof: $\mathbf{N} \rightarrow \mathbf{Z}$ is defined as $g \circ f(x)=g(f(x))=g(x)=|x|$.
Let $x, y \in \mathbf{N}$ such that $\operatorname{gof}(x)=g \circ f(y)$.
$\Rightarrow|x|=|y|$
Since x and $y \in \mathbf{N}$, both are positive.
$\therefore|x|=|y| \Rightarrow x=y$
Hence, g of is injective

Question 7:

Given examples of two functions $f: \mathbf{N} \rightarrow \mathbf{N}$ and $g: \mathbf{N} \rightarrow \mathbf{N}$ such that g of is onto but f is not onto.
(Hint: Consider $f(x)=x+1$ and $g(x)=\left\{\begin{array}{lr}x-1 & \text { if } x>1 \\ 1 & \text { if } x=1\end{array}\right.$
Answer
Define $f: \mathbf{N} \rightarrow \mathbf{N}$ by,
$f(x)=x+1$
And, $g: \mathbf{N} \rightarrow \mathbf{N}$ by,

$$
g(x)= \begin{cases}x-1 & \text { if } x>1 \\ 1 & \text { if } x=1\end{cases}
$$

We first show that g is not onto.
For this, consider element 1 in co-domain \mathbf{N}. It is clear that this element is not an image of any of the elements in domain \mathbf{N}.
$\therefore f$ is not onto.
Now, gof: $\mathbf{N} \rightarrow \mathbf{N}$ is defined by,

$$
\begin{aligned}
g \circ f(x)=g(f(x))=g(x+1) & =(x+1)-1 \quad[x \in \mathbf{N} \Rightarrow(x+1)>1] \\
& =x
\end{aligned}
$$

Then, it is clear that for $y \in \mathbf{N}$, there exists $x=y \in \mathbf{N}$ such that $g \circ f(x)=y$.
Hence, $g \circ f$ is onto.

Question 8:

Given a non empty set X, consider $\mathrm{P}(X)$ which is the set of all subsets of X.
Define the relation R in $\mathrm{P}(X)$ as follows:
For subsets A, B in $\mathrm{P}(X), A \mathrm{R} B$ if and only if $A \subset B$. Is R an equivalence relation on $\mathrm{P}(X)$?
Justify you answer:
Answer
Since every set is a subset of itself, $A R A$ for all $A \in P(X)$.
$\therefore \mathrm{R}$ is reflexive.
Let $A R B \Rightarrow A \subset B$.
This cannot be implied to $B \subset A$.
For instance, if $A=\{1,2\}$ and $B=\{1,2,3\}$, then it cannot be implied that B is related to A.
$\therefore \mathrm{R}$ is not symmetric.
Further, if $A R B$ and $B R C$, then $A \subset B$ and $B \subset C$.
$\Rightarrow A \subset C$
\Rightarrow ARC
$\therefore \mathrm{R}$ is transitive.
Hence, R is not an equivalence relation since it is not symmetric.

Question 9:

Given a non-empty set X, consider the binary operation *: $\mathrm{P}(X) \times \mathrm{P}(X) \rightarrow \mathrm{P}(X)$ given by $A * B=A \cap B \square A, B$ in $P(X)$ is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in $\mathrm{P}(X)$ with respect to the operation*.

Answer
It is given that $*: \mathrm{P}(X) \times \mathrm{P}(X) \rightarrow \mathrm{P}(X)$ is defined as $A * B=A \cap B \forall A, B \in \mathrm{P}(X)$.
We know that $A \cap X=A=X \cap A \forall A \in \mathrm{P}(X)$.
$\Rightarrow A * X=A=X * A \forall A \in \mathrm{P}(X)$
Thus, X is the identity element for the given binary operation *.
Now, an element $A \in \mathrm{P}(X)$ is invertible if there exists $B \in \mathrm{P}(X)$ such that
$A * B=X=B * A$.
(As X is the identity element)
i.e.,
$A \cap B=X=B \cap A$
This case is possible only when $A=X=B$.
Thus, X is the only invertible element in $\mathrm{P}(X)$ with respect to the given operation*.
Hence, the given result is proved.

Question 10:

Find the number of all onto functions from the set $\{1,2,3, \ldots, n)$ to itself.
Answer
Onto functions from the set $\{1,2,3, \ldots, n\}$ to itself is simply a permutation on n symbols $1,2, \ldots, n$.

Thus, the total number of onto maps from $\{1,2, \ldots, n\}$ to itself is the same as the total number of permutations on n symbols $1,2, \ldots, n$, which is n.

Question 11:

Let $S=\{a, b, c\}$ and $T=\{1,2,3\}$. Find F^{-1} of the following functions F from S to T, if it exists.
(i) $F=\{(a, 3),(b, 2),(c, 1)\}$ (ii) $F=\{(a, 2),(b, 1),(c, 1)\}$

Answer
$S=\{a, b, c\}, T=\{1,2,3\}$
(i) F: $S \rightarrow T$ is defined as:
$F=\{(a, 3),(b, 2),(c, 1)\}$
$\Rightarrow F(a)=3, F(b)=2, F(c)=1$
Therefore, $\mathrm{F}^{-1}: T \rightarrow S$ is given by
$\mathrm{F}^{-1}=\{(3, a),(2, b),(1, c)\}$.
(ii) $\mathrm{F}: S \rightarrow T$ is defined as:
$F=\{(a, 2),(b, 1),(c, 1)\}$
Since $F(b)=F(c)=1, F$ is not one-one.
Hence, F is not invertible i.e., F^{-1} does not exist.

Question 12:

Consider the binary operations*: $\mathbf{R} \times \mathbf{R} \rightarrow$ and $o: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ defined as $a * b=|a-b|$ and a o $b=a, \square a, b \in \mathbf{R}$. Show that * is commutative but not associative, o is associative but not commutative. Further, show that $\square a, b, c \in \mathbf{R}, a^{*}(b \circ c)=\left(a^{*} b\right) \circ(a * c)$. [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.
Answer
It is given that ${ }^{*}: \mathbf{R} \times \mathbf{R} \rightarrow$ and o: $\mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ isdefined as
$a * b=|a-b|$ and $a \circ b=a, \square a, b \in \mathbf{R}$.
For $a, b \in \mathbf{R}$, we have:
$a * b=|a-b|$
$b * a=|b-a|=|-(a-b)|=|a-b|$
$\therefore a * b=b * a$
\therefore The operation $*$ is commutative.
It can be observed that,
$(1 * 2) * 3=(|1-2|) * 3=1 * 3=|1-3|=2$
$1 *(2 * 3)=1 *(|2-3|)=1 * 1=|1-1|=0$
$\therefore(1 * 2) * 3 \neq 1 *(2 * 3)$ (where $1,2,3 \in \mathbf{R})$
\therefore The operation $*$ is not associative.
Now, consider the operation 0 :
It can be observed that $1 \circ 2=1$ and $2 \circ 1=2$.
$\therefore 1 \circ 2 \neq 2$ o 1 (where $1,2 \in \mathbf{R}$)
\therefore The operation o is not commutative.
Let $a, b, c \in \mathbf{R}$. Then, we have:
$(a \circ b) \circ c=a \circ c=a$
$a \circ(b \circ c)=a \circ b=a$
$\Rightarrow a \circ b) \circ c=a \circ(b \circ c)$
\therefore The operation o is associative.
Now, let $a, b, c \in \mathbf{R}$, then we have:
$a *(b \circ c)=a * b=|a-b|$
$(a * b) \circ(a * c)=(|a-b|) \circ(|a-c|)=|a-b|$
Hence, $a *(b \circ c)=(a * b) \circ(a * c)$.
Now,
$1 \circ(2 * 3)=10(|2-3|)=101=1$
$(1 \circ 2) *(1 \circ 3)=1 * 1=|1-1|=0$
$\therefore 1 \circ(2 * 3) \neq(1 \circ 2) *(1 \circ 3)$ (where $1,2,3 \in \mathbf{R})$
\therefore The operation o does not distribute over *.

Question 13:

Given a non-empty set X, let $*: \mathrm{P}(X) \times \mathrm{P}(X) \rightarrow \mathrm{P}(X)$ be defined as $A * B=(A-B) \cup(B$ $-A), \square A, B \in \mathrm{P}(X)$. Show that the empty set Φ is the identity for the operation $*$ and all the elements A of $\mathrm{P}(X)$ are invertible with $A^{-1}=A$. (Hint: $(A-\Phi) \cup(\Phi-A)=A$ and $(A$ $-A) \cup(A-A)=A * A=\Phi)$.
Answer
It is given that *: $\mathrm{P}(X) \times \mathrm{P}(X) \rightarrow \mathrm{P}(X)$ is defined as
$A * B=(A-B) \cup(B-A) \square A, B \in \mathrm{P}(X)$.
Let $A \in \mathrm{P}(X)$. Then, we have:
$A * \Phi=(A-\Phi) \cup(\Phi-A)=A \cup \Phi=A$
$\Phi{ }^{*} A=(\Phi-A) \cup(A-\Phi)=\Phi \cup A=A$
$\therefore A * \Phi=A=\Phi * A . \square A \in \mathrm{P}(X)$
Thus, Φ is the identity element for the given operation*.
Now, an element $A \in \mathrm{P}(X)$ will be invertible if there exists $B \in \mathrm{P}(X)$ such that $A * B=\Phi=B * A$. (As Φ is the identity element)
Now, we observed that $A * A=(A-A) \cup(A-A)=\phi \cup \phi=\phi \forall A \in \mathrm{P}(X)$.
Hence, all the elements A of $\mathrm{P}(X)$ are invertible with $A^{-1}=A$.

Question 14:

Define a binary operation $*$ on the set $\{0,1,2,3,4,5\}$ as

$$
a * b= \begin{cases}a+b, & \text { if } a+b<6 \\ a+b-6 & \text { if } a+b \geq 6\end{cases}
$$

Show that zero is the identity for this operation and each element $a \neq 0$ of the set is invertible with $6-a$ being the inverse of a.

Answer
Let $X=\{0,1,2,3,4,5\}$.
The operation * on X is defined as:

$$
a * b= \begin{cases}a+b & \text { if } a+b<6 \\ a+b-6 & \text { if } a+b \geq 6\end{cases}
$$

An element $e \in X$ is the identity element for the operation *, if $a * e=a=e * a \forall a \in X$.
For $a \in X$, we observed that:
$\begin{array}{ll}a * 0=a+0=a & {[a \in X \Rightarrow a+0<6]} \\ 0 * a=0+a=a & {[a \in X \Rightarrow 0+a<6]}\end{array}$
$\therefore a * 0=a=0 * a \forall a \in X$
Thus, 0 is the identity element for the given operation *.
An element $a \in X$ is invertible if there exists $b \in X$ such that $a * b=0=b^{*} a$.
i.e., $\begin{cases}a+b=0=b+a, & \text { if } a+b<6 \\ a+b-6=0=b+a-6, & \text { if } a+b \geq 6\end{cases}$
i.e.,
$a=-b$ or $b=6-a$
But, $X=\{0,1,2,3,4,5\}$ and $a, b \in X$. Then, $a \neq-b$.
$\therefore b=6-a$ is the inverse of $a \square a \in X$.
Hence, the inverse of an element $a \in X, a \neq 0$ is $6-a$ i.e., $a^{-1}=6-a$.

Question 15:

Let $A=\{-1,0,1,2\}, B=\{-4,-2,0,2\}$ and $f, g: A \rightarrow B$ be functions defined by $f(x)=$ $x^{2}-x, x \in A$ and $g(x)=2\left|x-\frac{1}{2}\right|-1, x \in A$. Are f and g equal?
Justify your answer. (Hint: One may note that two function $f: A \rightarrow B$ and $\mathrm{g}: A \rightarrow \mathrm{~B}$ such that $f(a)=g(a) \square a \in A$, are called equal functions).
Answer

It is given that $A=\{-1,0,1,2\}, B=\{-4,-2,0,2\}$.
Also, it is given that $f, g: A \rightarrow B$ are defined by $f(x)=x^{2}-x, x \in A$ and

$$
g(x)=2\left|x-\frac{1}{2}\right|-1, x \in A
$$

It is observed that:
$f(-1)=(-1)^{2}-(-1)=1+1=2$
$g(-1)=2\left|(-1)-\frac{1}{2}\right|-1=2\left(\frac{3}{2}\right)-1=3-1=2$
$\Rightarrow f(-1)=g(-1)$
$f(0)=(0)^{2}-0=0$
$g(0)=2\left|0-\frac{1}{2}\right|-1=2\left(\frac{1}{2}\right)-1=1-1=0$
$\Rightarrow f(0)=g(0)$
$f(1)=(1)^{2}-1=1-1=0$
$g(1)=2\left|1-\frac{1}{2}\right|-1=2\left(\frac{1}{2}\right)-1=1-1=0$
$\Rightarrow f(1)=g(1)$
$f(2)=(2)^{2}-2=4-2=2$
$g(2)=2\left|2-\frac{1}{2}\right|-1=2\left(\frac{3}{2}\right)-1=3-1=2$
$\Rightarrow f(2)=g(2)$
$\therefore f(a)=g(a) \forall a \in A$
Hence, the functions f and g are equal.

Question 16:

Let $A=\{1,2,3\}$. Then number of relations containing $(1,2)$ and $(1,3)$ which are reflexive and symmetric but not transitive is
(A) 1 (B) 2 (C) 3 (D) 4

Answer
The given set is $A=\{1,2,3\}$.
The smallest relation containing $(1,2)$ and $(1,3)$ which is reflexive and symmetric, but not transitive is given by:
$R=\{(1,1),(2,2),(3,3),(1,2),(1,3),(2,1),(3,1)\}$
This is because relation R is reflexive as $(1,1),(2,2),(3,3) \in R$.
Relation R is symmetric since $(1,2),(2,1) \in R$ and $(1,3),(3,1) \in R$.
But relation R is not transitive as $(3,1),(1,2) \in R$, but $(3,2) \notin R$.
Now, if we add any two pairs $(3,2)$ and $(2,3)$ (or both) to relation R, then relation R will become transitive.
Hence, the total number of desired relations is one.
The correct answer is A.

Question 17:

Let $A=\{1,2,3\}$. Then number of equivalence relations containing $(1,2)$ is
(A) 1 (B) 2 (C) 3 (D) 4

Answer
It is given that $A=\{1,2,3\}$.
The smallest equivalence relation containing $(1,2)$ is given by,
$R_{1}=\{(1,1),(2,2),(3,3),(1,2),(2,1)\}$
Now, we are left with only four pairs i.e., $(2,3),(3,2),(1,3)$, and $(3,1)$.
If we odd any one pair [say $(2,3)$] to R_{1}, then for symmetry we must add $(3,2)$. Also, for transitivity we are required to add $(1,3)$ and $(3,1)$.
Hence, the only equivalence relation (bigger than R_{1}) is the universal relation.
This shows that the total number of equivalence relations containing $(1,2)$ is two. The correct answer is B.

Question 18:

Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the Signum Function defined as

$$
f(x)=\left\{\begin{array}{r}
1, x>0 \\
0, \\
-1=0 \\
-1, x<0
\end{array}\right.
$$

and $g: \mathbf{R} \rightarrow \mathbf{R}$ be the Greatest Integer Function given by $g(x)=[x]$, where $[x]$ is greatest integer less than or equal to x. Then does $f 0 g$ and $g o f$ coincide in $(0,1]$?
Answer
It is given that,
$f: \mathbf{R} \rightarrow \mathbf{R}$ is defined as

$$
f(x)=\left\{\begin{array}{rr}
1, & x>0 \\
0, & x=0 \\
-1, & x<0
\end{array}\right.
$$

Also, $g: \mathbf{R} \rightarrow \mathbf{R}$ is defined as $g(x)=[x]$, where $[x]$ is the greatest integer less than or equal to x.
Now, let $x \in(0,1]$.
Then, we have:
$[x]=1$ if $x=1$ and $[x]=0$ if $0<x<1$.

$$
\begin{aligned}
& \therefore f \circ g(x)=f(g(x))=f([x])=\left\{\begin{array}{ll}
f(1), & \text { if } x=1 \\
f(0), & \text { if } x \in(0,1)
\end{array}= \begin{cases}1, & \text { if } x=1 \\
0, & \text { if } x \in(0,1)\end{cases} \right. \\
& \begin{aligned}
g \circ f(x) & =g(f(x)) \\
& =g(1) \quad[x>0] \\
& =[1]=1
\end{aligned}
\end{aligned}
$$

Thus, when $x \in(0,1)$, we have $f \circ g(x)=0$ and $g \circ f(x)=1$.
Hence, $f \circ g$ and $g \circ f$ do not coincide in $(0,1]$.

Question 19:

Number of binary operations on the set $\{a, b\}$ are
(A) 10
(C) 20 (D) 8

Answer
A binary operation $*$ on $\{a, b\}$ is a function from $\{a, b\} \times\{a, b\} \rightarrow\{a, b\}$
i.e., $*$ is a function from $\{(a, a),(a, b),(b, a),(b, b)\} \rightarrow\{a, b\}$.

Hence, the total number of binary operations on the set $\{a, b\}$ is 2^{4} i.e., 16.
The correct answer is B.

