Miscellaneous Solutions

Question 1:

Find the value of
$$\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$$

Answer

We know that $\cos^{-1}(\cos x) = x$ if $x \in [0, \pi]$, which is the principal value branch of $\cos^{-1}x$.

$$\frac{13\pi}{6} \notin \left[0, \ \pi\right].$$

Here,

Now, $\cos^{-1}\left(\cos\frac{13\pi}{6}\right)_{\text{can be written as:}}$

$$\cos^{-1}\left(\cos\frac{13\pi}{6}\right) = \cos^{-1}\left[\cos\left(2\pi + \frac{\pi}{6}\right)\right] = \cos^{-1}\left[\cos\left(\frac{\pi}{6}\right)\right], \text{ where } \frac{\pi}{6} \in [0, \pi].$$
$$\therefore \cos^{-1}\left(\cos\frac{13\pi}{6}\right) = \cos^{-1}\left[\cos\left(\frac{\pi}{6}\right)\right] = \frac{\pi}{6}$$

Question 2:

 $\tan^{-1}\left(\tan\frac{7\pi}{6}\right)$ Find the value of

Answer

We know that $\tan^{-1}(\tan x) = x$ if $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, which is the principal value branch of $\tan^{-1}x$.

Here, $\frac{7\pi}{6} \notin \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Now, $\tan^{-1}\left(\tan\frac{7\pi}{6}\right)_{\text{can be written as:}}$

$$\tan^{-1}\left(\tan\frac{7\pi}{6}\right) = \tan^{-1}\left[\tan\left(2\pi - \frac{5\pi}{6}\right)\right] \qquad \left[\tan\left(2\pi - x\right) = -\tan x\right]$$
$$= \tan^{-1}\left[-\tan\left(\frac{5\pi}{6}\right)\right] = \tan^{-1}\left[\tan\left(-\frac{5\pi}{6}\right)\right] = \tan^{-1}\left[\tan\left(\pi - \frac{5\pi}{6}\right)\right]$$
$$= \tan^{-1}\left[\tan\left(\frac{\pi}{6}\right)\right], \text{ where } \frac{\pi}{6} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
$$\therefore \tan^{-1}\left(\tan\frac{7\pi}{6}\right) = \tan^{-1}\left(\tan\frac{\pi}{6}\right) = \frac{\pi}{6}$$

Question 3:

Prove $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$

Answer

Let
$$\sin^{-1}\frac{3}{5} = x$$
. Then, $\sin x = \frac{3}{5}$.
 $\Rightarrow \cos x = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}$
 $\therefore \tan x = \frac{3}{4}$
 $\therefore x = \tan^{-1}\frac{3}{4} \Rightarrow \sin^{-1}\frac{3}{5} = \tan^{-1}\frac{3}{4}$

Now, we have:

L.H.S. =
$$2\sin^{-1}\frac{3}{5} = 2\tan^{-1}\frac{3}{4}$$

= $\tan^{-1}\left(\frac{2\times\frac{3}{4}}{1-\left(\frac{3}{4}\right)^2}\right)$

$$\begin{bmatrix} 2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^2} \end{bmatrix}$$
= $\tan^{-1}\left(\frac{\frac{3}{2}}{\frac{16-9}{16}}\right) = \tan^{-1}\left(\frac{3}{2}\times\frac{16}{7}\right)$
= $\tan^{-1}\frac{24}{7} = \text{R.H.S.}$

Question 4:

Prove
$$\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} = \tan^{-1}\frac{77}{36}$$

Answer

Let
$$\sin^{-1}\frac{8}{17} = x$$
. Then, $\sin x = \frac{8}{17} \Rightarrow \cos x = \sqrt{1 - \left(\frac{8}{17}\right)^2} = \sqrt{\frac{225}{289}} = \frac{15}{17}$.
 $\therefore \tan x = \frac{8}{15} \Rightarrow x = \tan^{-1}\frac{8}{15}$
 $\therefore \sin^{-1}\frac{8}{17} = \tan^{-1}\frac{8}{15}$...(1)
Now, let $\sin^{-1}\frac{3}{5} = y$. Then, $\sin y = \frac{3}{5} \Rightarrow \cos y = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5}$.
 $\therefore \tan y = \frac{3}{4} \Rightarrow y = \tan^{-1}\frac{3}{4}$...(2)

Now, we have:

L.H.S. =
$$\sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5}$$

= $\tan^{-1} \frac{8}{15} + \tan^{-1} \frac{3}{4}$ [Using (1) and (2)]
= $\tan^{-1} \frac{\frac{8}{15} + \frac{3}{4}}{1 - \frac{8}{15} \times \frac{3}{4}}$
= $\tan^{-1} \left(\frac{32 + 45}{60 - 24}\right)$ [$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}$]
= $\tan^{-1} \frac{77}{36}$ = R.H.S.

Question 5:

Prove $\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$

Let
$$\cos^{-1}\frac{4}{5} = x$$
. Then, $\cos x = \frac{4}{5} \Rightarrow \sin x = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \frac{3}{5}$.
 $\therefore \tan x = \frac{3}{4} \Rightarrow x = \tan^{-1}\frac{3}{4}$...(1)
Now, let $\cos^{-1}\frac{4}{5} = \tan^{-1}\frac{3}{4}$...(1)
Now, let $\cos^{-1}\frac{12}{13} = y$. Then, $\cos y = \frac{12}{13} \Rightarrow \sin y = \frac{5}{13}$.
 $\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1}\frac{5}{12}$...(2)
Let $\cos^{-1}\frac{33}{65} = z$. Then, $\cos z = \frac{33}{65} \Rightarrow \sin z = \frac{56}{65}$.
 $\therefore \tan z = \frac{56}{33} \Rightarrow z = \tan^{-1}\frac{56}{33}$...(3)

Now, we will prove that:

L.H.S. =
$$\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13}$$

= $\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{5}{12}$ [Using (1) and (2)]
= $\tan^{-1} \frac{\frac{3}{4} + \frac{5}{12}}{1 - \frac{3}{4} \cdot \frac{5}{12}}$ [$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}$]
= $\tan^{-1} \frac{36 + 20}{48 - 15}$
= $\tan^{-1} \frac{56}{33}$
= $\tan^{-1} \frac{56}{33}$ [by (3)]
= R.H.S.

Question 6:

Prove
$$\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{56}{65}$$

Answer

Let
$$\sin^{-1} \frac{3}{5} = x$$
. Then, $\sin x = \frac{3}{5} \Rightarrow \cos x = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5}$
 $\therefore \tan x = \frac{3}{4} \Rightarrow x = \tan^{-1} \frac{3}{4}$...(1)
Now, $\sec \cos^{-1} \frac{12}{13} = y$. Then, $\cos y = \frac{12}{13} \Rightarrow \sin y = \frac{5}{13}$.
 $\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$...(2)
Let $\sin^{-1} \frac{56}{65} = z$. Then, $\sin z = \frac{56}{65} \Rightarrow \cos z = \frac{33}{65}$.
 $\therefore \tan z = \frac{56}{33} \Rightarrow z = \tan^{-1} \frac{56}{33}$...(3)

Now, we have:

L.H.S. =
$$\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5}$$

= $\tan^{-1} \frac{5}{12} + \tan^{-1} \frac{3}{4}$ [Using (1) and (2)]
= $\tan^{-1} \frac{\frac{5}{12} + \frac{3}{4}}{1 - \frac{5}{12} \cdot \frac{3}{4}}$ [$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}$
= $\tan^{-1} \frac{20 + 36}{48 - 15}$
= $\tan^{-1} \frac{56}{33}$
= $\sin^{-1} \frac{56}{65}$ = R.H.S. [Using (3)]

Question 7:

Prove
$$\tan^{-1}\frac{63}{16} = \sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5}$$

Answer

Let
$$\sin^{-1} \frac{5}{13} = x$$
. Then, $\sin x = \frac{5}{13} \Rightarrow \cos x = \frac{12}{13}$.
 $\therefore \tan x = \frac{5}{12} \Rightarrow x = \tan^{-1} \frac{5}{12}$
 $\therefore \sin^{-1} \frac{5}{13} = \tan^{-1} \frac{5}{12}$...(1)
Let $\cos^{-1} \frac{3}{5} = y$. Then, $\cos y = \frac{3}{5} \Rightarrow \sin y = \frac{4}{5}$.
 $\therefore \tan y = \frac{4}{3} \Rightarrow y = \tan^{-1} \frac{4}{3}$...(2)

Using (1) and (2), we have

R.H.S. =
$$\sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$$

= $\tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{3}$
= $\tan^{-1} \left(\frac{\frac{5}{12} + \frac{4}{3}}{1 - \frac{5}{12} \times \frac{4}{3}} \right)$
= $\tan^{-1} \left(\frac{15 + 48}{36 - 20} \right)$
= $\tan^{-1} \frac{63}{16}$
= L.H.S.

Question 8:

Prove $\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$

L.H.S. =
$$\tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{7} + \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{8}$$

= $\tan^{-1} \left(\frac{\frac{1}{5} + \frac{1}{7}}{1 - \frac{1}{5} \times \frac{1}{7}} \right) + \tan^{-1} \left(\frac{\frac{1}{3} + \frac{1}{8}}{1 - \frac{1}{3} \times \frac{1}{8}} \right)$
= $\tan^{-1} \left(\frac{7 + 5}{35 - 1} \right) + \tan^{-1} \left(\frac{8 + 3}{24 - 1} \right)$
= $\tan^{-1} \frac{12}{34} + \tan^{-1} \frac{11}{23}$
= $\tan^{-1} \frac{6}{17} + \tan^{-1} \frac{11}{23}$
= $\tan^{-1} \left(\frac{\frac{6}{17} + \frac{11}{23}}{1 - \frac{6}{17} \times \frac{11}{23}} \right)$
= $\tan^{-1} \left(\frac{138 + 187}{391 - 66} \right)$
= $\tan^{-1} \left(\frac{325}{325} \right) = \tan^{-1} 1$
= $\frac{\pi}{4} = \text{R.H.S.}$

$$\left[\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}\right]$$

Question 9:

$$\tan^{-1}\sqrt{x} = \frac{1}{2}\cos^{-1}\left(\frac{1-x}{1+x}\right), x \in [0, 1]$$

Prove

Let
$$x = \tan^2 \theta$$
. Then, $\sqrt{x} = \tan \theta \Rightarrow \theta = \tan^{-1} \sqrt{x}$.
 $\therefore \frac{1-x}{1+x} = \frac{1-\tan^2 \theta}{1+\tan^2 \theta} = \cos 2\theta$
Now, we have:

R.H.S.
$$=\frac{1}{2}\cos^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\cos^{-1}\left(\cos 2\theta\right) = \frac{1}{2} \times 2\theta = \theta = \tan^{-1}\sqrt{x} = L.H.S.$$

Question 10:

$$\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) = \frac{x}{2}, \ x \in \left(0, \ \frac{\pi}{4}\right)$$
Prove

Answer

Consider
$$\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}$$
$$= \frac{\left(\sqrt{1+\sin x} + \sqrt{1-\sin x}\right)^2}{\left(\sqrt{1+\sin x}\right)^2 - \left(\sqrt{1-\sin x}\right)^2} \qquad \text{(by rationalizing)}$$
$$= \frac{\left(1+\sin x\right) + \left(1-\sin x\right) + 2\sqrt{\left(1+\sin x\right)\left(1-\sin x\right)}}{1+\sin x - 1+\sin x}$$
$$= \frac{2\left(1+\sqrt{1-\sin^2 x}\right)}{2\sin x} = \frac{1+\cos x}{\sin x} = \frac{2\cos^2 \frac{x}{2}}{2\sin \frac{x}{2}\cos \frac{x}{2}}$$
$$= \cot \frac{x}{2}$$
$$\therefore \text{ L.H.S.} = \cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) = \cot^{-1}\left(\cot \frac{x}{2}\right) = \frac{x}{2} = \text{ R.H.S.}$$

Question 11:

$$\tan^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}\right) = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x, \quad -\frac{1}{\sqrt{2}} \le x \le 1$$

[Hint: putx = cos 2 θ]

Put
$$x = \cos 2\theta$$
 so that $\theta = \frac{1}{2}\cos^{-1}x$. Then, we have:
L.H.S. $= \tan^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}\right)$
 $= \tan^{-1}\left(\frac{\sqrt{1+\cos 2\theta} - \sqrt{1-\cos 2\theta}}{\sqrt{1+\cos 2\theta} + \sqrt{1-\cos 2\theta}}\right)$
 $= \tan^{-1}\left(\frac{\sqrt{2}\cos^{2}\theta - \sqrt{2}\sin^{2}\theta}{\sqrt{2}\cos^{2}\theta + \sqrt{2}\sin^{2}\theta}\right)$
 $= \tan^{-1}\left(\frac{\sqrt{2}\cos\theta - \sqrt{2}\sin\theta}{\sqrt{2}\cos\theta + \sqrt{2}\sin\theta}\right)$
 $= \tan^{-1}\left(\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta}\right) = \tan^{-1}\left(\frac{1-\tan\theta}{1+\tan\theta}\right)$
 $= \tan^{-1}1 - \tan^{-1}(\tan\theta)$ [ta
 $= \frac{\pi}{4} - \theta = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x = \text{R.H.S.}$

 $\tan^{-1}\left(\frac{x-y}{1+xy}\right) = \tan^{-1}x - \tan^{-1}y$

Question 12:

Prove
$$\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3}$$

L.H.S.
$$= \frac{9\pi}{8} - \frac{9}{4} \sin^{-1} \frac{1}{3}$$

 $= \frac{9}{4} \left(\frac{\pi}{2} - \sin^{-1} \frac{1}{3} \right)$
 $= \frac{9}{4} \left(\cos^{-1} \frac{1}{3} \right)$ (1) $\left[\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \right]$
Now, let $\cos^{-1} \frac{1}{3} = x$. Then, $\cos x = \frac{1}{3} \Rightarrow \sin x = \sqrt{1 - \left(\frac{1}{3}\right)^2} = \frac{2\sqrt{2}}{3}$.
 $\therefore x = \sin^{-1} \frac{2\sqrt{2}}{3} \Rightarrow \cos^{-1} \frac{1}{3} = \sin^{-1} \frac{2\sqrt{2}}{3}$
 $\therefore L.H.S. = \frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{3} = R.H.S.$

Question 13:

Solve
$$2\tan^{-1}(\cos x) = \tan^{-1}(2\csc x)$$

Answer

$$2 \tan^{-1}(\cos x) = \tan^{-1}(2 \csc x)$$

$$\Rightarrow \tan^{-1}\left(\frac{2 \cos x}{1 - \cos^2 x}\right) = \tan^{-1}(2 \csc x) \qquad \left[2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2}\right]$$

$$\Rightarrow \frac{2 \cos x}{1 - \cos^2 x} = 2 \csc x$$

$$\Rightarrow \frac{2 \cos x}{\sin^2 x} = \frac{2}{\sin x}$$

$$\Rightarrow \cos x = \sin x$$

$$\Rightarrow \tan x = 1$$

$$\therefore x = \frac{\pi}{4}$$

Question 14:

 $\tan^{-1}\frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x, (x > 0)$ Answer

$$\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2} \tan^{-1} x$$

$$\Rightarrow \tan^{-1} 1 - \tan^{-1} x = \frac{1}{2} \tan^{-1} x \qquad \left[\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy} \right]$$

$$\Rightarrow \frac{\pi}{4} = \frac{3}{2} \tan^{-1} x$$

$$\Rightarrow \tan^{-1} x = \frac{\pi}{6}$$

$$\Rightarrow x = \tan \frac{\pi}{6}$$

$$\therefore x = \frac{1}{\sqrt{3}}$$

Question 15:

Solve $\sin(\tan^{-1}x)$, |x| < 1 is equal to

(A)
$$\frac{x}{\sqrt{1-x^2}}$$
 (B) $\frac{1}{\sqrt{1-x^2}}$ (C) $\frac{1}{\sqrt{1+x^2}}$ (D) $\frac{x}{\sqrt{1+x^2}}$

Answer

$$\tan y = x \Longrightarrow \sin y = \frac{x}{\sqrt{1 + x^2}}.$$
 Let $\tan^{-1} x = y$. Then,

$$\therefore y = \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right) \Longrightarrow \tan^{-1}x = \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)$$
$$\therefore \sin\left(\tan^{-1}x\right) = \sin\left(\sin^{-1}\frac{x}{\sqrt{1+x^2}}\right) = \frac{x}{\sqrt{1+x^2}}$$

The correct answer is D.

Question 16:

$$\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$$
, then x is equal to

(A) ⁰,
$$\frac{1}{2}$$
 (B) ¹, $\frac{1}{2}$ (C) 0 (D) $\frac{1}{2}$
Answer
 $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$
 $\Rightarrow -2\sin^{-1}x = \frac{\pi}{2} - \sin^{-1}(1-x)$
 $\Rightarrow -2\sin^{-1}x = \cos^{-1}(1-x)$...(1)
Let $\sin^{-1}x = \theta \Rightarrow \sin \theta = x \Rightarrow \cos \theta = \sqrt{1-x^2}$.
 $\therefore \theta = \cos^{-1}(\sqrt{1-x^2})$

 $\therefore \sin^{-1} x = \cos^{-1} \left(\sqrt{1 - x^2} \right)$

Therefore, from equation (1), we have

$$-2\cos^{-1}\left(\sqrt{1-x^2}\right) = \cos^{-1}\left(1-x\right)$$

Put $x = \sin y$. Then, we have:

$$-2\cos^{-1}\left(\sqrt{1-\sin^2 y}\right) = \cos^{-1}(1-\sin y)$$

$$\Rightarrow -2\cos^{-1}(\cos y) = \cos^{-1}(1-\sin y)$$

$$\Rightarrow -2y = \cos^{-1}(1-\sin y)$$

$$\Rightarrow 1-\sin y = \cos(-2y) = \cos 2y$$

$$\Rightarrow 1-\sin y = 1-2\sin^2 y$$

$$\Rightarrow 2\sin^2 y - \sin y = 0$$

$$\Rightarrow \sin y (2\sin y - 1) = 0$$

$$\Rightarrow \sin y = 0 \text{ or } \frac{1}{2}$$

$$\therefore x = 0 \text{ or } x = \frac{1}{2}$$

But, when $x = \frac{1}{2}$, it can be observed that:

L.H.S. =
$$\sin^{-1}\left(1-\frac{1}{2}\right) - 2\sin^{-1}\frac{1}{2}$$

= $\sin^{-1}\left(\frac{1}{2}\right) - 2\sin^{-1}\frac{1}{2}$
= $-\sin^{-1}\frac{1}{2}$
= $-\frac{\pi}{6} \neq \frac{\pi}{2} \neq \text{R.H.S.}$
 $\therefore r = \frac{1}{2}$

 2 is not the solution of the given equation.

Thus, x = 0.

Hence, the correct answer is $\ensuremath{\textbf{C}}.$

Question 17:

Solve $\tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\frac{x-y}{x+y}$ is equal to (A) $\frac{\pi}{2}$ (B). $\frac{\pi}{3}$ (C) $\frac{\pi}{4}$ (D) $\frac{-3\pi}{4}$ Answer

$$\tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\frac{x-y}{x+y}$$

= $\tan^{-1}\left[\frac{\frac{x}{y} - \frac{x-y}{x+y}}{1 + \left(\frac{x}{y}\right)\left(\frac{x-y}{x+y}\right)}\right]$
= $\tan^{-1}\left[\frac{\frac{x(x+y) - y(x-y)}{y(x+y)}}{\frac{y(x+y) + x(x-y)}{y(x+y)}}\right]$
= $\tan^{-1}\left(\frac{x^2 + xy - xy + y^2}{xy + y^2 + x^2 - xy}\right)$
= $\tan^{-1}\left(\frac{x^2 + y^2}{x^2 + y^2}\right) = \tan^{-1}1 = \frac{\pi}{4}$

$$\left[\tan^{-1} y - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy} \right]$$

Hence, the correct answer is $\ensuremath{\textbf{C}}.$