Miscellaneous Solutions

Question 1:

Find the value of $\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)$
Answer
We know that $\cos ^{-1}(\cos x)=x$ if $x \in[0, \pi]$, which is the principal value branch of \cos ${ }^{-1} x$.

Here, $\frac{13 \pi}{6} \notin[0, \pi]$.
Now, $\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)$ can be written as:
$\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)=\cos ^{-1}\left[\cos \left(2 \pi+\frac{\pi}{6}\right)\right]=\cos ^{-1}\left[\cos \left(\frac{\pi}{6}\right)\right]$, where $\frac{\pi}{6} \in[0, \pi]$.
$\therefore \cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)=\cos ^{-1}\left[\cos \left(\frac{\pi}{6}\right)\right]=\frac{\pi}{6}$

Question 2:

Find the value of $\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)$
Answer
We know that $\tan ^{-1}(\tan x)=x$ if $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, which is the principal value branch of $\tan ^{-1} x$.

Here, $\frac{7 \pi}{6} \notin\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
Now, $\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)$ can be written as:

$$
\begin{aligned}
& \tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)=\tan ^{-1}\left[\tan \left(2 \pi-\frac{5 \pi}{6}\right)\right] \quad[\tan (2 \pi-x)=-\tan x] \\
& =\tan ^{-1}\left[-\tan \left(\frac{5 \pi}{6}\right)\right]=\tan ^{-1}\left[\tan \left(-\frac{5 \pi}{6}\right)\right]=\tan ^{-1}\left[\tan \left(\pi-\frac{5 \pi}{6}\right)\right] \\
& =\tan ^{-1}\left[\tan \left(\frac{\pi}{6}\right)\right], \text { where } \frac{\pi}{6} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\
& \therefore \tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)=\tan ^{-1}\left(\tan \frac{\pi}{6}\right)=\frac{\pi}{6}
\end{aligned}
$$

Question 3:

Prove $2 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7}$
Answer
Let $\sin ^{-1} \frac{3}{5}=x$. Then, $\sin x=\frac{3}{5}$.
$\Rightarrow \cos x=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\frac{4}{5}$
$\therefore \tan x=\frac{3}{4}$
$\therefore x=\tan ^{-1} \frac{3}{4} \Rightarrow \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{3}{4}$
Now, we have:
L.H.S. $=2 \sin ^{-1} \frac{3}{5}=2 \tan ^{-1} \frac{3}{4}$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{2 \times \frac{3}{4}}{1-\left(\frac{3}{4}\right)^{2}}\right) \quad\left[2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}\right] \\
& =\tan ^{-1}\left(\frac{\frac{3}{2}}{\frac{16-9}{16}}\right)=\tan ^{-1}\left(\frac{3}{2} \times \frac{16}{7}\right) \\
& =\tan ^{-1} \frac{24}{7}=\text { R.H.S. }
\end{aligned}
$$

Question 4:

Prove $\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{77}{36}$
Answer
Let $\sin ^{-1} \frac{8}{17}=x$. Then, $\sin x=\frac{8}{17} \Rightarrow \cos x=\sqrt{1-\left(\frac{8}{17}\right)^{2}}=\sqrt{\frac{225}{289}}=\frac{15}{17}$.
$\therefore \tan x=\frac{8}{15} \Rightarrow x=\tan ^{-1} \frac{8}{15}$
$\therefore \sin ^{-1} \frac{8}{17}=\tan ^{-1} \frac{8}{15}$
Now, let $\sin ^{-1} \frac{3}{5}=y$. Then, $\sin y=\frac{3}{5} \Rightarrow \cos y=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\sqrt{\frac{16}{25}}=\frac{4}{5}$.
$\therefore \tan y=\frac{3}{4} \Rightarrow y=\tan ^{-1} \frac{3}{4}$
$\therefore \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{3}{4}$
Now, we have:

$$
\begin{array}{rlr}
\text { L.H.S. } & =\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5} & \\
& =\tan ^{-1} \frac{8}{15}+\tan ^{-1} \frac{3}{4} & \quad \text { [Using (1) and }(2)] \\
& =\tan ^{-1} \frac{\frac{8}{15}+\frac{3}{4}}{1-\frac{8}{15} \times \frac{3}{4}} & \\
& =\tan ^{-1}\left(\frac{32+45}{60-24}\right) \quad\left[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right] \\
& =\tan ^{-1} \frac{77}{36}=\text { R.H.S. } &
\end{array}
$$

Question 5:

Prove $\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}=\cos ^{-1} \frac{33}{65}$
Answer

Let $\cos ^{-1} \frac{4}{5}=x$. Then, $\cos x=\frac{4}{5} \Rightarrow \sin x=\sqrt{1-\left(\frac{4}{5}\right)^{2}}=\frac{3}{5}$.
$\therefore \tan x=\frac{3}{4} \Rightarrow x=\tan ^{-1} \frac{3}{4}$
$\therefore \cos ^{-1} \frac{4}{5}=\tan ^{-1} \frac{3}{4}$
Now, let $\cos ^{-1} \frac{12}{13}=y$. Then, $\cos y=\frac{12}{13} \Rightarrow \sin y=\frac{5}{13}$.
$\therefore \tan y=\frac{5}{12} \Rightarrow y=\tan ^{-1} \frac{5}{12}$
$\therefore \cos ^{-1} \frac{12}{13}=\tan ^{-1} \frac{5}{12}$
Let $\cos ^{-1} \frac{33}{65}=z$. Then, $\cos z=\frac{33}{65} \Rightarrow \sin z=\frac{56}{65}$.
$\therefore \tan z=\frac{56}{33} \Rightarrow z=\tan ^{-1} \frac{56}{33}$
$\therefore \cos ^{-1} \frac{33}{65}=\tan ^{-1} \frac{56}{33}$
Now, we will prove that:

$$
\begin{array}{rlr}
\text { L.H.S. } & =\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13} & \\
& =\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{5}{12} & \\
& =\tan ^{-1} \frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4} \cdot \frac{5}{12}} & {[\text { Using (1) and (2)] }} \\
& =\tan ^{-1} \frac{36+20}{48-15} & \\
& =\tan ^{-1} \frac{56}{33} & \\
& =\tan ^{-1} \frac{56}{33} & \\
& =\text { R.H.S. } &
\end{array}
$$

Question 6:

Prove $\cos ^{-1} \frac{12}{13}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{56}{65}$
Answer
Let $\sin ^{-1} \frac{3}{5}=x$. Then, $\sin x=\frac{3}{5} \Rightarrow \cos x=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\sqrt{\frac{16}{25}}=\frac{4}{5}$.
$\therefore \tan x=\frac{3}{4} \Rightarrow x=\tan ^{-1} \frac{3}{4}$
$\therefore \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{3}{4}$
Now, let $\cos ^{-1} \frac{12}{13}=y$. Then, $\cos y=\frac{12}{13} \Rightarrow \sin y=\frac{5}{13}$.
$\therefore \tan y=\frac{5}{12} \Rightarrow y=\tan ^{-1} \frac{5}{12}$
$\therefore \cos ^{-1} \frac{12}{13}=\tan ^{-1} \frac{5}{12}$
Let $\sin ^{-1} \frac{56}{65}=z$. Then, $\sin z=\frac{56}{65} \Rightarrow \cos z=\frac{33}{65}$.
$\therefore \tan z=\frac{56}{33} \Rightarrow z=\tan ^{-1} \frac{56}{33}$
$\therefore \sin ^{-1} \frac{56}{65}=\tan ^{-1} \frac{56}{33}$
Now, we have:

$$
\begin{array}{rlr}
\text { L.H.S. } & =\cos ^{-1} \frac{12}{13}+\sin ^{-1} \frac{3}{5} & \\
& =\tan ^{-1} \frac{5}{12}+\tan ^{-1} \frac{3}{4} \quad \quad \text { Using (1) and (2)] } \\
& =\tan ^{-1} \frac{\frac{5}{12}+\frac{3}{4}}{1-\frac{5}{12} \cdot \frac{3}{4}} \quad\left[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right] \\
& =\tan ^{-1} \frac{20+36}{48-15} \\
& =\tan ^{-1} \frac{56}{33} \\
& =\sin ^{-1} \frac{56}{65}=\text { R.H.S. } \quad[\text { Using }(3)]
\end{array}
$$

Question 7:

Prove $\tan ^{-1} \frac{63}{16}=\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}$
Answer
Let $\sin ^{-1} \frac{5}{13}=x$. Then, $\sin x=\frac{5}{13} \Rightarrow \cos x=\frac{12}{13}$.
$\therefore \tan x=\frac{5}{12} \Rightarrow x=\tan ^{-1} \frac{5}{12}$
$\therefore \sin ^{-1} \frac{5}{13}=\tan ^{-1} \frac{5}{12}$
Let $\cos ^{-1} \frac{3}{5}=y$. Then, $\cos y=\frac{3}{5} \Rightarrow \sin y=\frac{4}{5}$.
$\therefore \tan y=\frac{4}{3} \Rightarrow y=\tan ^{-1} \frac{4}{3}$
$\therefore \cos ^{-1} \frac{3}{5}=\tan ^{-1} \frac{4}{3}$
Using (1) and (2), we have

$$
\begin{aligned}
\text { R.H.S. } & =\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5} \\
& =\tan ^{-1} \frac{5}{12}+\tan ^{-1} \frac{4}{3} \\
& =\tan ^{-1}\left(\frac{\frac{5}{12}+\frac{4}{3}}{1-\frac{5}{12} \times \frac{4}{3}}\right) \quad\left[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right] \\
& =\tan ^{-1}\left(\frac{15+48}{36-20}\right) \\
& =\tan ^{-1} \frac{63}{16} \\
& =\text { L.H.S. }
\end{aligned}
$$

Question 8:

Prove $\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4}$
Answer

$$
\left.\begin{array}{rl}
\text { L.H.S. } & =\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{8} \\
& =\tan ^{-1}\left(\frac{\frac{1}{5}+\frac{1}{7}}{1-\frac{1}{5} \times \frac{1}{7}}\right)+\tan ^{-1}\left(\frac{\frac{1}{3}+\frac{1}{8}}{1-\frac{1}{3} \times \frac{1}{8}}\right) \quad\left[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right] \\
& =\tan ^{-1}\left(\frac{7+5}{35-1}\right)+\tan ^{-1}\left(\frac{8+3}{24-1}\right) \\
& =\tan ^{-1} \frac{12}{34}+\tan ^{-1} \frac{11}{23} \\
& =\tan ^{-1} \frac{6}{17}+\tan ^{-1} \frac{11}{23} \\
& =\tan ^{-1}\left(\frac{6}{17}+\frac{11}{23}\right) \\
& =\tan ^{-1}\left(\frac{6}{17} \times \frac{11}{23}\right. \\
391-66
\end{array}\right)
$$

Question 9:

Prove

$$
\tan ^{-1} \sqrt{x}=\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right), x \in[0,1]
$$

Answer
Let $x=\tan ^{2} \theta$. Then, $\sqrt{x}=\tan \theta \Rightarrow \theta=\tan ^{-1} \sqrt{x}$.
$\therefore \frac{1-x}{1+x}=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos 2 \theta$
Now, we have:
R.H.S. $=\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \cos ^{-1}(\cos 2 \theta)=\frac{1}{2} \times 2 \theta=\theta=\tan ^{-1} \sqrt{x}=$ L.H.S.

Question 10:

Prove $\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)=\frac{x}{2}, x \in\left(0, \frac{\pi}{4}\right)$
Answer
Consider $\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}$
$=\frac{(\sqrt{1+\sin x}+\sqrt{1-\sin x})^{2}}{(\sqrt{1+\sin x})^{2}-(\sqrt{1-\sin x})^{2}} \quad$ (by rationalizing)
$=\frac{(1+\sin x)+(1-\sin x)+2 \sqrt{(1+\sin x)(1-\sin x)}}{1+\sin x-1+\sin x}$
$=\frac{2\left(1+\sqrt{1-\sin ^{2} x}\right)}{2 \sin x}=\frac{1+\cos x}{\sin x}=\frac{2 \cos ^{2} \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}}$
$=\cot \frac{x}{2}$
\therefore L.H.S. $=\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)=\cot ^{-1}\left(\cot \frac{x}{2}\right)=\frac{x}{2}=$ R.H.S.

Question 11:

Prove $\tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)=\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x,-\frac{1}{\sqrt{2}} \leq x \leq 1$
[Hint: putx $=\cos 2 \theta]$

Answer

Put $x=\cos 2 \theta$ so that $\theta=\frac{1}{2} \cos ^{-1} x$. Then, we have:

$$
\begin{aligned}
\text { L.H.S. } & =\tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) \\
& =\tan ^{-1}\left(\frac{\sqrt{1+\cos 2 \theta}-\sqrt{1-\cos 2 \theta}}{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}\right) \\
& =\tan ^{-1}\left(\frac{\sqrt{2 \cos ^{2} \theta}-\sqrt{2 \sin ^{2} \theta}}{\sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}}\right) \\
& =\tan ^{-1}\left(\frac{\sqrt{2} \cos \theta-\sqrt{2} \sin \theta}{\sqrt{2} \cos \theta+\sqrt{2} \sin \theta}\right) \\
& =\tan ^{-1}\left(\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}\right)=\tan ^{-1}\left(\frac{1-\tan \theta}{1+\tan \theta}\right) \quad\left[\tan ^{-1}\left(\frac{x-y}{1+x y}\right)=\tan ^{-1} x-\tan ^{-1} y\right] \\
& =\tan ^{-1} 1-\tan { }^{-1}(\tan \theta) \quad[\\
& =\frac{\pi}{4}-\theta=\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x=\text { R.H.S. }
\end{aligned}
$$

Question 12:

Prove $\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}=\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}$
Answer
L.H.S. $=\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}$

$$
\begin{aligned}
& =\frac{9}{4}\left(\frac{\pi}{2}-\sin ^{-1} \frac{1}{3}\right) \\
& =\frac{9}{4}\left(\cos ^{-1} \frac{1}{3}\right) \quad \ldots .(1)\left[\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}\right]
\end{aligned}
$$

Now, let $\cos ^{-1} \frac{1}{3}=x$. Then, $\cos x=\frac{1}{3} \Rightarrow \sin x=\sqrt{1-\left(\frac{1}{3}\right)^{2}}=\frac{2 \sqrt{2}}{3}$.
$\therefore x=\sin ^{-1} \frac{2 \sqrt{2}}{3} \Rightarrow \cos ^{-1} \frac{1}{3}=\sin ^{-1} \frac{2 \sqrt{2}}{3}$
\therefore L.H.S. $=\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}=$ R.H.S.

Question 13:

Solve $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$
Answer

$$
\begin{aligned}
& 2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x) \\
& \Rightarrow \tan ^{-1}\left(\frac{2 \cos x}{1-\cos ^{2} x}\right)=\tan ^{-1}(2 \operatorname{cosec} x) \quad\left[2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}\right] \\
& \Rightarrow \frac{2 \cos x}{1-\cos ^{2} x}=2 \operatorname{cosec} x \\
& \Rightarrow \frac{2 \cos x}{\sin ^{2} x}=\frac{2}{\sin x} \\
& \Rightarrow \cos x=\sin x \\
& \Rightarrow \tan x=1 \\
& \therefore x=\frac{\pi}{4}
\end{aligned}
$$

Question 14:

Solve $\tan ^{-1} \frac{1-x}{1+x}=\frac{1}{2} \tan ^{-1} x,(x>0)$
Answer
$\tan ^{-1} \frac{1-x}{1+x}=\frac{1}{2} \tan ^{-1} x$
$\Rightarrow \tan ^{-1} 1-\tan ^{-1} x=\frac{1}{2} \tan ^{-1} x \quad\left[\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}\right]$
$\Rightarrow \frac{\pi}{4}=\frac{3}{2} \tan ^{-1} x$
$\Rightarrow \tan ^{-1} x=\frac{\pi}{6}$
$\Rightarrow x=\tan \frac{\pi}{6}$
$\therefore x=\frac{1}{\sqrt{3}}$

Question 15:

Solve ${ }^{\sin \left(\tan ^{-1} x\right),|x|<1}$ is equal to
(A) $\frac{x}{\sqrt{1-x^{2}}}$ (B) $\frac{1}{\sqrt{\sqrt{1-x^{2}}}}$ (C) $\frac{1}{\sqrt{1+x^{2}}}$ (D) $\frac{x}{\sqrt{1+x^{2}}}$

Answer

Let $\tan ^{-1} x=y$. Then,

$$
\tan y=x \Rightarrow \sin y=\frac{x}{\sqrt{1+x^{2}}}
$$

$\therefore y=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right) \Rightarrow \tan ^{-1} x=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)$
$\therefore \sin \left(\tan ^{-1} x\right)=\sin \left(\sin ^{-1} \frac{x}{\sqrt{1+x^{2}}}\right)=\frac{x}{\sqrt{1+x^{2}}}$
The correct answer is D.

Question 16:

Solve $\sin ^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2}$, then x is equal to
(A)
$0, \frac{1}{2}$
1, $\frac{1}{2}$
(C) 0 (D) $\frac{1}{2}$

Answer

$$
\begin{align*}
& \sin ^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2} \\
& \Rightarrow-2 \sin ^{-1} x=\frac{\pi}{2}-\sin ^{-1}(1-x) \\
& \Rightarrow-2 \sin ^{-1} x=\cos ^{-1}(1-x) \tag{1}
\end{align*}
$$

Let $\sin ^{-1} x=\theta \Rightarrow \sin \theta=x \Rightarrow \cos \theta=\sqrt{1-x^{2}}$.
$\therefore \theta=\cos ^{-1}\left(\sqrt{1-x^{2}}\right)$
$\therefore \sin ^{-1} x=\cos ^{-1}\left(\sqrt{1-x^{2}}\right)$
Therefore, from equation (1), we have
$-2 \cos ^{-1}\left(\sqrt{1-x^{2}}\right)=\cos ^{-1}(1-x)$
Put $x=\sin y$. Then, we have:

$$
\begin{aligned}
& -2 \cos ^{-1}\left(\sqrt{1-\sin ^{2} y}\right)=\cos ^{-1}(1-\sin y) \\
& \Rightarrow-2 \cos ^{-1}(\cos y)=\cos ^{-1}(1-\sin y) \\
& \Rightarrow-2 y=\cos ^{-1}(1-\sin y) \\
& \Rightarrow 1-\sin y=\cos (-2 y)=\cos 2 y \\
& \Rightarrow 1-\sin y=1-2 \sin ^{2} y \\
& \Rightarrow 2 \sin ^{2} y-\sin y=0 \\
& \Rightarrow \sin y(2 \sin y-1)=0 \\
& \Rightarrow \sin y=0 \text { or } \frac{1}{2} \\
& \therefore x=0 \text { or } x=\frac{1}{2}
\end{aligned}
$$

But, when $x=\frac{1}{2}$, it can be observed that:

$$
\begin{aligned}
\text { L.H.S. } & =\sin ^{-1}\left(1-\frac{1}{2}\right)-2 \sin ^{-1} \frac{1}{2} \\
& =\sin ^{-1}\left(\frac{1}{2}\right)-2 \sin ^{-1} \frac{1}{2} \\
& =-\sin ^{-1} \frac{1}{2} \\
& =-\frac{\pi}{6} \neq \frac{\pi}{2} \neq \text { R.H.S }
\end{aligned}
$$

$\therefore x=\frac{1}{2}$ is not the solution of the given equation.
Thus, $x=0$.
Hence, the correct answer is \mathbf{C}.

Question 17:

Solve $\tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1} \frac{x-y}{x+y}$ is equal to
(A) $\frac{\pi}{2}$ (B). ${ }^{\frac{\pi}{3}}$ (C) ${ }^{\frac{\pi}{4}}$ (D) $\frac{-3 \pi}{4}$

Answer

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1} \frac{x-y}{x+y} \\
& =\tan ^{-1}\left[\frac{\frac{x}{y}-\frac{x-y}{x+y}}{1+\left(\frac{x}{y}\right)\left(\frac{x-y}{x+y}\right)}\right] \\
& =\tan ^{-1}\left[\frac{\frac{x(x+y)-y(x-y)}{y(x+y)}}{\frac{y(x+y)+x(x-y)}{y(x+y)}}\right] \\
& =\tan ^{-1}\left(\frac{x^{2}+x y-x y+y^{2}}{x y+y^{2}+x^{2}-x y}\right) \\
& \left.=\tan ^{-1} y-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}\right] \\
& \left.\frac{x^{2}+y^{2}}{x^{2}+y^{2}}\right)=\tan ^{-1} 1=\frac{\pi}{4}
\end{aligned}
$$

Hence, the correct answer is \mathbf{C}.

