Exercise 2.1

Question 1:

 $\sin^{-1}\left(-\frac{1}{2}\right)$ Find the principal value of

Answer

Let
$$\sin^{-1}\left(-\frac{1}{2}\right) = y$$
.
Then $\sin y = -\frac{1}{2} = -\sin\left(\frac{\pi}{6}\right) = \sin\left(-\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of \sin^{-1} is

$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]_{\text{and sin}}\left(-\frac{\pi}{6}\right) = -\frac{1}{2}.$$

$$\sin^{-1}\left(-\frac{1}{2}\right)$$
 is $-\frac{\pi}{6}$.

Therefore, the principal value of

Question 2:

$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

Find the principal value of

Answer

Let
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = y$$
. Then, $\cos y = \frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of \cos^{-1} is

$$[0,\pi]$$
 and $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$
Therefore, the principal value of $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is $\frac{\pi}{6}$

Question 3: Find the principal value of $cosec^{-1}$ (2) Answer

 $\operatorname{cosec} y = 2 = \operatorname{cosec}\left(\frac{\pi}{6}\right).$

Let $\operatorname{cosec}^{-1}(2) = y$. Then,

We know that the range of the principal value branch of $cosec^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$.

Therefore, the principal value of
$$\frac{\operatorname{cosec}^{-1}(2)}{6}$$
 is $\frac{\pi}{6}$

Question 4:

Find the principal value of $\tan^{-1}\left(-\sqrt{3}\right)$ Answer

Let
$$\tan^{-1}(-\sqrt{3}) = y$$
. Then, $\tan y = -\sqrt{3} = -\tan\frac{\pi}{3} = \tan\left(-\frac{\pi}{3}\right)$.

We know that the range of the principal value branch of \tan^{-1} is

$$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$
 and $\tan\left(-\frac{\pi}{3}\right)$ is $-\sqrt{3}$.

$$\tan^{-1}\left(\sqrt{3}\right)$$
 is $-\frac{\pi}{3}$.

Therefore, the principal value of

Question 5:

$$\cos^{-1}\left(-\frac{1}{2}\right)$$

Find the principal value of

Answer

Let
$$\cos^{-1}\left(-\frac{1}{2}\right) = y$$
. Then, $\cos y = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$.

We know that the range of the principal value branch of \cos^{-1} is

$$[0,\pi]$$
 and $\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$.
Therefore, the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$ is $\frac{2\pi}{3}$.

Therefore, the principal value of

Question 6:

Find the principal value of $\tan^{-1}(-1)$ Answer

$$\tan y = -1 = -\tan\left(\frac{\pi}{4}\right) = \tan\left(-\frac{\pi}{4}\right).$$

Let $tan^{-1}(-1) = y$. Then,

We know that the range of the principal value branch of \tan^{-1} is

$$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$
 and $\tan\left(-\frac{\pi}{4}\right) = -1$.

$$\tan^{-1}(-1)$$
 is $-\frac{\pi}{4}$.

Therefore, the principal value of

Question 7:

$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

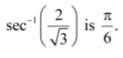
Find the principal value of

Answer

Let
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = y$$
. Then, $\sec y = \frac{2}{\sqrt{3}} = \sec\left(\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of $\ensuremath{\mathsf{sec}}^{-1}$ is

$$\left[0,\pi\right] - \left\{\frac{\pi}{2}\right\}$$
 and $\sec\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt{3}}$.



Therefore, the principal value of

Question 8:

Find the principal value of $\cot^{-1}(\sqrt{3})$

Let
$$\cot^{-1}\left(\sqrt{3}\right) = y$$
. Then, $\cot y = \sqrt{3} = \cot\left(\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of \cot^{-1} is $(0,\pi)$ and

$$\cot\left(\frac{\pi}{6}\right) = \sqrt{3}.$$

Therefore, the principal value of $\cot^{-1}\left(\sqrt{3}\right)$ is $\frac{\pi}{6}$.

Question 9:

Find the principal value of

Answer

Let
$$\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = y$$
. Then, $\cos y = -\frac{1}{\sqrt{2}} = -\cos\left(\frac{\pi}{4}\right) = \cos\left(\pi - \frac{\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right)$.

We know that the range of the principal value branch of \cos^{-1} is $[0,\pi]$ and

 $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$

$$\cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}$$

$$\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$$
 is $\frac{3\pi}{4}$.

Therefore, the principal value of

Question 10:

Find the principal value of
$$\operatorname{cosec}^{-1}\left(-\sqrt{2}\right)$$

Answer

Let
$$\operatorname{cosec}^{-1}\left(-\sqrt{2}\right) = y$$
. Then, $\operatorname{cosec} y = -\sqrt{2} = -\operatorname{cosec}\left(\frac{\pi}{4}\right) = \operatorname{cosec}\left(-\frac{\pi}{4}\right)$.

We know that the range of the principal value branch of cosec⁻¹ is

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$$
 and $\operatorname{cosec}\left(-\frac{\pi}{4}\right) = -\sqrt{2}$.
Cosec⁻¹ $\left(-\sqrt{2}\right)$ is $-\frac{\pi}{4}$.

Therefore, the principal value of

Question 11:

Find the value of

$$\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$$

Answer

Let
$$\tan^{-1}(1) = x$$
. Then, $\tan x = 1 = \tan \frac{\pi}{4}$.
 $\therefore \tan^{-1}(1) = \frac{\pi}{4}$
Let $\cos^{-1}\left(-\frac{1}{2}\right) = y$. Then, $\cos y = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$.
 $\therefore \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$
Let $\sin^{-1}\left(-\frac{1}{2}\right) = z$. Then, $\sin z = -\frac{1}{2} = -\sin\left(\frac{\pi}{6}\right) = \sin\left(-\frac{\pi}{6}\right)$.
 $\therefore \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$
 $\therefore \tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$
 $= \frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6}$
 $= \frac{3\pi + 8\pi - 2\pi}{12} = \frac{9\pi}{12} = \frac{3\pi}{4}$

Question 12:

Find the value of
$$\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right)$$

Answer

Let
$$\cos^{-1}\left(\frac{1}{2}\right) = x$$
. Then, $\cos x = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right)$.
 $\therefore \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$
Let $\sin^{-1}\left(\frac{1}{2}\right) = y$. Then, $\sin y = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right)$.
 $\therefore \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$
 $\therefore \cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} + \frac{2\pi}{6} = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$

Question 13:

Find the value of if $\sin^{-1} x = y$, then

(A)
$$0 \le y \le \pi$$
 (B) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
(C) $0 < y < \pi$ (D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$
Answer

It is given that $\sin^{-1} x = y$.

We know that the range of the principal value branch of \sin^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Therefore,
$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$
.

Question 14:

Find the value of $\tan^{-1}\sqrt{3} - \sec^{-1}(-2)$ is equal to

(A) \sqcap (B) $-\frac{\pi}{3}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$ Answer

Let $\tan^{-1}\sqrt{3} = x$. Then, $\tan x = \sqrt{3} = \tan \frac{\pi}{3}$. We know that the range of the principal value branch of \tan^{-1} is $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. $\therefore \tan^{-1}\sqrt{3} = \frac{\pi}{3}$ Let $\sec^{-1}(-2) = y$. Then, $\sec y = -2 = -\sec\left(\frac{\pi}{3}\right) = \sec\left(\pi - \frac{\pi}{3}\right) = \sec\frac{2\pi}{3}$. We know that the range of the principal value branch of \sec^{-1} is $[0,\pi] - \left\{\frac{\pi}{2}\right\}$. $\therefore \sec^{-1}(-2) = \frac{2\pi}{3}$

Hence, $\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) = \frac{\pi}{3} - \frac{2\pi}{3} = -\frac{\pi}{3}$

Exercise 2.2

Question 1:

$$3\sin^{-1} x = \sin^{-1} (3x - 4x^3), x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$$

Prove

Answer

3 sin⁻¹ x = sin⁻¹ (3x - 4x³), x
$$\in \left[-\frac{1}{2}, \frac{1}{2}\right]$$

rove:

To prove:

Let $x = \sin\theta$. Then, $\sin^{-1} x = \theta$. We have, R.H.S. = $\sin^{-1}(3x - 4x^3) = \sin^{-1}(3\sin\theta - 4\sin^3\theta)$ $= \sin^{-1}(\sin 3\theta)$

= 3*0*

 $=3\sin^{-1}x$

= L.H.S.

Question 2:

$$3\cos^{-1}x = \cos^{-1}(4x^3 - 3x), x \in \left[\frac{1}{2}, 1\right]$$

Prove Answer

$$3\cos^{-1}x = \cos^{-1}(4x^3 - 3x), x \in \left[\frac{1}{2}, 1\right]$$

To prove:

Let $x = \cos\theta$. Then, $\cos^{-1} x = \theta$. We have,

R.H.S. =
$$\cos^{-1}(4x^3 - 3x)$$

= $\cos^{-1}(4\cos^3\theta - 3\cos\theta)$
= $\cos^{-1}(\cos 3\theta)$
= 3θ
= $3\cos^{-1}x$
= L.H.S.

Question 3:

 $\tan^{-1} \frac{2}{11} + \tan^{-1} \frac{7}{24} = \tan^{-1} \frac{1}{2}$ Answer To prove: $\tan^{-1} \frac{2}{11} + \tan^{-1} \frac{7}{24} = \tan^{-1} \frac{1}{2}$ L.H.S. = $\tan^{-1} \frac{2}{11} + \tan^{-1} \frac{7}{24}$ $= \tan^{-1} \frac{\frac{2}{11} + \frac{7}{24}}{1 - \frac{2}{11} \cdot \frac{7}{24}} \qquad \left[\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy} \right]$ $= \tan^{-1} \frac{\frac{48 + 77}{11 \times 24}}{\frac{11 \times 24 - 14}{11 \times 24}}$ $= \tan^{-1} \frac{48 + 77}{264 - 14} = \tan^{-1} \frac{125}{250} = \tan^{-1} \frac{1}{2} = \text{R.H.S.}$

Question 4:

Prove $2\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{31}{17}$

Answer

To prove: $2\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{31}{17}$

L.H.S. =
$$2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{7}$$

= $\tan^{-1} \frac{2 \cdot \frac{1}{2}}{1 - (\frac{1}{2})^2} + \tan^{-1} \frac{1}{7}$ $\left[2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2} \right]$
= $\tan^{-1} \frac{1}{(\frac{3}{4})} + \tan^{-1} \frac{1}{7}$
= $\tan^{-1} \frac{\frac{4}{3} + \tan^{-1} \frac{1}{7}}{1 - \frac{4}{3} \cdot \frac{1}{7}}$ $\left[\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy} \right]$
= $\tan^{-1} \frac{(\frac{28 + 3}{21})}{(\frac{21 - 4}{21})}$
= $\tan^{-1} \frac{31}{17} = \text{R.H.S.}$

Question 5:

Write the function in the simplest form:

$$\tan^{-1}\frac{\sqrt{1+x^2}-1}{x}, x \neq 0$$

$$\tan^{-1} \frac{\sqrt{1+x^2}-1}{x}$$
Put $x = \tan \theta \Longrightarrow \theta = \tan^{-1} x$

$$\therefore \tan^{-1} \frac{\sqrt{1+x^2}-1}{x} = \tan^{-1} \left(\frac{\sqrt{1+\tan^2 \theta}-1}{\tan \theta} \right)$$

$$= \tan^{-1} \left(\frac{\sec \theta - 1}{\tan \theta} \right) = \tan^{-1} \left(\frac{1-\cos \theta}{\sin \theta} \right)$$

$$= \tan^{-1} \left(\frac{2\sin^2 \frac{\theta}{2}}{2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} \right)$$

$$= \tan^{-1} \left(\tan \frac{\theta}{2} \right) = \frac{\theta}{2} = \frac{1}{2} \tan^{-1} x$$

Write the function in the simplest form:

$$\tan^{-1}\frac{1}{\sqrt{x^2-1}}, |x| > 1$$

Answer

$$\tan^{-1}\frac{1}{\sqrt{x^2-1}}, \ |x| > 1$$

Put $x = \operatorname{cosec} \theta \Rightarrow \theta = \operatorname{cosec}^{-1} x$

$$\therefore \tan^{-1} \frac{1}{\sqrt{x^2 - 1}} = \tan^{-1} \frac{1}{\sqrt{\cos ec^2 \theta - 1}}$$
$$= \tan^{-1} \left(\frac{1}{\cot \theta}\right) = \tan^{-1} (\tan \theta)$$
$$= \theta = \csc^{-1} x = \frac{\pi}{2} - \sec^{-1} x \qquad \left[\csc^{-1} x + \sec^{-1} x = \frac{\pi}{2} \right]$$

Question 7:

Write the function in the simplest form:

$$\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), \ x < \pi$$

Answer

$$\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), \ x < \pi$$
$$\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right) = \tan^{-1}\left(\sqrt{\frac{2\sin^2 \frac{x}{2}}{2\cos^2 \frac{x}{2}}}\right)$$
$$= \tan^{-1}\left(\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}\right) = \tan^{-1}\left(\tan \frac{x}{2}\right)$$
$$= \frac{x}{2}$$

Question 8:

Write the function in the simplest form:

$$\tan^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right), \ 0 < x < \pi$$

$$\tan^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right)$$

$$= \tan^{-1}\left(\frac{1 - \frac{\sin x}{\cos x}}{1 + \frac{\sin x}{\cos x}}\right)$$

$$= \tan^{-1}\left(\frac{1 - \tan x}{1 + \tan x}\right)$$

$$= \tan^{-1}(1) - \tan^{-1}(\tan x) \qquad \left[\tan^{-1}\frac{x - y}{1 - xy} = \tan^{-1}x - \tan^{-1}y\right]$$

$$= \frac{\pi}{4} - x$$

Question 9:

Write the function in the simplest form:

$$\tan^{-1}\frac{x}{\sqrt{a^2-x^2}}, \ |x| < a$$

Answer

$$\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}$$
Put $x = a \sin \theta \Rightarrow \frac{x}{a} = \sin \theta \Rightarrow \theta = \sin^{-1} \left(\frac{x}{a}\right)$

$$\therefore \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}} = \tan^{-1} \left(\frac{a \sin \theta}{\sqrt{a^2 - a^2 \sin^2 \theta}}\right)$$

$$= \tan^{-1} \left(\frac{a \sin \theta}{a \sqrt{1 - \sin^2 \theta}}\right) = \tan^{-1} \left(\frac{a \sin \theta}{a \cos \theta}\right)$$

$$= \tan^{-1} (\tan \theta) = \theta = \sin^{-1} \frac{x}{a}$$

Question 10:

Write the function in the simplest form:

$$\tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right), \ a > 0; \ \frac{-a}{\sqrt{3}} \le x \le \frac{a}{\sqrt{3}}$$

$$\tan^{-1}\left(\frac{3a^{2}x - x^{3}}{a^{3} - 3ax^{2}}\right)$$
Put $x = a \tan \theta \Rightarrow \frac{x}{a} = \tan \theta \Rightarrow \theta = \tan^{-1}\frac{x}{a}$

$$\tan^{-1}\left(\frac{3a^{2}x - x^{3}}{a^{3} - 3ax^{2}}\right) = \tan^{-1}\left(\frac{3a^{2} \cdot a \tan \theta - a^{3} \tan^{3} \theta}{a^{3} - 3a \cdot a^{2} \tan^{2} \theta}\right)$$

$$= \tan^{-1}\left(\frac{3a^{3} \tan \theta - a^{3} \tan^{3} \theta}{a^{3} - 3a^{3} \tan^{2} \theta}\right)$$

$$= \tan^{-1}\left(\frac{3\tan \theta - \tan^{3} \theta}{1 - 3\tan^{2} \theta}\right)$$

$$= \tan^{-1}\left(\tan 3\theta\right)$$

$$= 3\theta$$

Question 11:

 $\tan^{-1} \Biggl[2 \cos \Biggl(2 \sin^{-1} \frac{1}{2} \Biggr) \Biggr]$ Find the value of

Answer

Let
$$\sin^{-1}\frac{1}{2} = x$$
. Then,
$$\sin x = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right).$$
$$\therefore \sin^{-1}\frac{1}{2} = \frac{\pi}{6}$$
$$\therefore \tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2}\right)\right] = \tan^{-1}\left[2\cos\left(2\times\frac{\pi}{6}\right)\right]$$
$$= \tan^{-1}\left[2\cos\frac{\pi}{3}\right] = \tan^{-1}\left[2\times\frac{1}{2}\right]$$
$$= \tan^{-1}1 = \frac{\pi}{4}$$

Question 12:

Find the value of
$$\cot(\tan^{-1} a + \cot^{-1} a)$$

Answer
 $\cot(\tan^{-1} a + \cot^{-1} a)$
 $= \cot(\frac{\pi}{2})$ $[\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}]$
 $= 0$

Question 13:

$$\tan\frac{1}{2}\left[\sin^{-1}\frac{2x}{1+x^2} + \cos^{-1}\frac{1-y^2}{1+y^2}\right], \ |x| < 1, \ y > 0 \ \text{and} \ xy < 1$$

Find the value of Answer

Let
$$x = \tan \theta$$
. Then, $\theta = \tan^{-1} x$.

$$\therefore \sin^{-1} \frac{2x}{1+x^2} = \sin^{-1} \left(\frac{2 \tan \theta}{1+\tan^2 \theta} \right) = \sin^{-1} \left(\sin 2\theta \right) = 2\theta = 2 \tan^{-1} x$$

Let $y = \tan \phi$. Then, $\phi = \tan^{-1} y$.

$$\therefore \cos^{-1} \frac{1 - y^2}{1 + y^2} = \cos^{-1} \left(\frac{1 - \tan^2 \phi}{1 + \tan^2 \phi} \right) = \cos^{-1} \left(\cos 2\phi \right) = 2\phi = 2 \tan^{-1} y$$

$$\therefore \tan \frac{1}{2} \left[\sin^{-1} \frac{2x}{1 + x^2} + \cos^{-1} \frac{1 - y^2}{1 + y^2} \right]$$

$$= \tan \frac{1}{2} \left[2 \tan^{-1} x + 2 \tan^{-1} y \right]$$

$$= \tan \left[\tan^{-1} x + \tan^{-1} y \right]$$

$$= \tan \left[\tan^{-1} \left(\frac{x + y}{1 - xy} \right) \right]$$

$$= \frac{x + y}{1 - xy}$$

Question 14:

$$\inf_{\text{If}} \left(\sin^{-1} \frac{1}{5} + \cos^{-1} x \right) = 1$$
, then find the value of x.

Answer

$$\sin\left(\sin^{-1}\frac{1}{5} + \cos^{-1}x\right) = 1$$

$$\Rightarrow \sin\left(\sin^{-1}\frac{1}{5}\right)\cos\left(\cos^{-1}x\right) + \cos\left(\sin^{-1}\frac{1}{5}\right)\sin\left(\cos^{-1}x\right) = 1$$

$$\left[\sin\left(A+B\right) = \sin A\cos B + \cos A\sin B\right]$$

$$\Rightarrow \frac{1}{5} \times x + \cos\left(\sin^{-1}\frac{1}{5}\right)\sin\left(\cos^{-1}x\right) = 1$$

$$\Rightarrow \frac{x}{5} + \cos\left(\sin^{-1}\frac{1}{5}\right)\sin\left(\cos^{-1}x\right) = 1 \qquad \dots (1)$$

Now, let $\sin^{-1}\frac{1}{5} = x$

Now, let $\sin^{-1}\frac{1}{5} = y$.

Then,
$$\sin y = \frac{1}{5} \Rightarrow \cos y = \sqrt{1 - \left(\frac{1}{5}\right)^2} = \frac{2\sqrt{6}}{5} \Rightarrow y = \cos^{-1}\left(\frac{2\sqrt{6}}{5}\right).$$

$$\therefore \sin^{-1}\frac{1}{5} = \cos^{-1}\left(\frac{2\sqrt{6}}{5}\right) \qquad \dots (2)$$

Let $\cos^{-1} x = z$.

Then,
$$\cos z = x \Rightarrow \sin z = \sqrt{1 - x^2} \Rightarrow z = \sin^{-1} \left(\sqrt{1 - x^2} \right).$$

 $\therefore \cos^{-1} x = \sin^{-1} \left(\sqrt{1 - x^2} \right) \qquad \dots (3)$

From (1), (2), and (3) we have:

$$\frac{x}{5} + \cos\left(\cos^{-1}\frac{2\sqrt{6}}{5}\right) \cdot \sin\left(\sin^{-1}\sqrt{1-x^2}\right) = 1$$
$$\Rightarrow \frac{x}{5} + \frac{2\sqrt{6}}{5} \cdot \sqrt{1-x^2} = 1$$
$$\Rightarrow x + 2\sqrt{6}\sqrt{1-x^2} = 5$$
$$\Rightarrow 2\sqrt{6}\sqrt{1-x^2} = 5 - x$$

On squaring both sides, we get:

$$(4)(6)(1-x^{2}) = 25 + x^{2} - 10x$$

$$\Rightarrow 24 - 24x^{2} = 25 + x^{2} - 10x$$

$$\Rightarrow 25x^{2} - 10x + 1 = 0$$

$$\Rightarrow (5x - 1)^{2} = 0$$

$$\Rightarrow (5x - 1) = 0$$

$$\Rightarrow x = \frac{1}{5}$$

Hence, the value of x is $\frac{1}{5}$.

Question 15:

If $\tan^{-1} \frac{x-1}{x-2} + \tan^{-1} \frac{x+1\pi}{x+2} = \frac{1}{4}$, then find the value of *x*.

$$\tan^{-1} \frac{x-1}{x-2} + \tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1} \left[\frac{\frac{x-1}{x-2} + \frac{x+1}{x+2}}{1 - \left(\frac{x-1}{x-2}\right) \left(\frac{x+1}{x+2}\right)} \right] = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1} \left[\frac{(x-1)(x+2) + (x+1)(x-2)}{(x+2)(x-2) - (x-1)(x+1)} \right] = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1} \left[\frac{x^2 + x - 2 + x^2 - x - 2}{x^2 - 4 - x^2 + 1} \right] = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1} \left[\frac{2x^2 - 4}{-3} \right] = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1} \left[\frac{2x^2 - 4}{-3} \right] = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1} \left[\frac{4 - 2x^2}{3} \right] = \tan \frac{\pi}{4}$$

$$\Rightarrow \frac{4 - 2x^2}{3} = 1$$

$$\Rightarrow 4 - 2x^2 = 3$$

$$\Rightarrow 2x^2 = 4 - 3 = 1$$

$$\Rightarrow x = \pm \frac{1}{\sqrt{2}}$$

$$\left[\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy} \right]$$

Hence, the value of x is $\pm \frac{1}{\sqrt{2}}$.

Question 16:

$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$$

Answer

 $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$

We know that $\sin^{-1}(\sin x) = x$ if $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, which is the principal value branch of $\sin^{-1}x$.

Here,
$$\frac{2\pi}{3} \notin \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

Now, $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$ can be written as:
 $\sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \sin^{-1}\left[\sin\left(\pi - \frac{2\pi}{3}\right)\right] = \sin^{-1}\left(\sin\frac{\pi}{3}\right)$ where $\frac{\pi}{3} \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
 $\therefore \sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \sin^{-1}\left(\sin\frac{\pi}{3}\right) = \frac{\pi}{3}$

Question 17:

Find the values of $\tan^{-1}\left(\tan\frac{3\pi}{4}\right)$

Answer

$$\tan^{-1}\left(\tan\frac{3\pi}{4}\right)$$

We know that $\tan^{-1}(\tan x) = x$ if $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, which is the principal value branch of $\tan^{-1}x$.

$$\frac{3\pi}{4} \not\in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right).$$

Here,

Now,
$$\tan^{-1}\left(\tan\frac{3\pi}{4}\right)_{\text{can be written as:}}$$

$$\tan^{-1}\left(\tan\frac{3\pi}{4}\right) = \tan^{-1}\left[-\tan\left(\frac{-3\pi}{4}\right)\right] = \tan^{-1}\left[-\tan\left(\pi-\frac{\pi}{4}\right)\right]$$
$$= \tan^{-1}\left[-\tan\frac{\pi}{4}\right] = \tan^{-1}\left[\tan\left(-\frac{\pi}{4}\right)\right] \text{ where } -\frac{\pi}{4} \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

$$\therefore \tan^{-1}\left(\tan\frac{3\pi}{4}\right) = \tan^{-1}\left[\tan\left(\frac{-\pi}{4}\right)\right] = \frac{-\pi}{4}$$

Question 18:

Find the values of

Answer

$$\sin^{-1}\frac{3}{5} = x \quad \text{Then}, \quad \sin x = \frac{3}{5} \Rightarrow \cos x = \sqrt{1 - \sin^2 x} = \frac{4}{5} \Rightarrow \sec x = \frac{5}{4}.$$

$$\therefore \tan x = \sqrt{\sec^2 x - 1} = \sqrt{\frac{25}{16} - 1} = \frac{3}{4}$$

$$\therefore x = \tan^{-1}\frac{3}{4}$$

$$\therefore x = \tan^{-1}\frac{3}{4} \qquad \dots(i)$$

Now, $\cot^{-1}\frac{3}{2} = \tan^{-1}\frac{2}{3} \qquad \dots(ii)$

$$\begin{bmatrix} \tan^{-1}\frac{1}{x} = \cot^{-1}x \end{bmatrix}$$

Hence, $\tan\left(\sin^{-1}\frac{3}{5} + \cot^{-1}\frac{3}{2}\right)$

$$= \tan\left(\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{2}{3}\right)$$

$$\begin{bmatrix} \tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x+y}{1-xy} \end{bmatrix}$$

$$= \tan\left(\tan^{-1}\frac{9+8}{12-6}\right)$$

$$= \tan\left(\tan^{-1}\frac{17}{6}\right) = \frac{17}{6}$$

Question 19:

 $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)_{is equal to}$ Find the values of

(A)
$$\frac{7\pi}{6}$$
 (B) $\frac{5\pi}{6}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{6}$
Answer

We know that $\cos^{-1}(\cos x) = x$ if $x \in [0, \pi]$, which is the principal value branch of $\cos x$ ^{-1}x .

$$\frac{7\pi}{6} \notin x \in [0, \pi].$$

Here,

 $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)_{\text{can be written as:}}$ Now,

$$\cos^{-1}\left(\cos\frac{7\pi}{6}\right) = \cos^{-1}\left(\cos\frac{-7\pi}{6}\right) = \cos^{-1}\left[\cos\left(2\pi - \frac{7\pi}{6}\right)\right] \quad \left[\cos\left(2\pi + x\right) = \cos x\right]$$
$$= \cos^{-1}\left[\cos\frac{5\pi}{6}\right] \text{ where } \frac{5\pi}{6} \in [0, \pi]$$
$$\therefore \cos^{-1}\left(\cos\frac{7\pi}{6}\right) = \cos^{-1}\left(\cos\frac{5\pi}{6}\right) = \frac{5\pi}{6}$$

The correct answer is B.

Question 20:

 $\sin\left(\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right)_{\text{is equal to}}$ Find the values of

(A)
$$\frac{1}{2}$$
 (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) 1

Answer

Let
$$\sin^{-1}\left(\frac{-1}{2}\right) = x$$
. Then, $\sin x = \frac{-1}{2} = -\sin\frac{\pi}{6} = \sin\left(\frac{-\pi}{6}\right)$.
We know that the range of the principal value branch of $\sin^{-1} is\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

We know that the range of the principal value branch of

$$\sin^{-1}\left(\frac{-1}{2}\right) = \frac{-\pi}{6}$$
$$\therefore \sin\left(\frac{\pi}{3} - \sin^{-1}\left(\frac{-1}{2}\right)\right) = \sin\left(\frac{\pi}{3} + \frac{\pi}{6}\right) = \sin\left(\frac{3\pi}{6}\right) = \sin\left(\frac{\pi}{2}\right) = 1$$

The correct answer is D.

Miscellaneous Solutions

Question 1:

Find the value of
$$\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$$

Answer

We know that $\cos^{-1}(\cos x) = x$ if $x \in [0, \pi]$, which is the principal value branch of $\cos^{-1}x$.

$$\frac{13\pi}{6} \notin \left[0, \ \pi\right].$$

Here,

Now, $\cos^{-1}\left(\cos\frac{13\pi}{6}\right)_{\text{can be written as:}}$

$$\cos^{-1}\left(\cos\frac{13\pi}{6}\right) = \cos^{-1}\left[\cos\left(2\pi + \frac{\pi}{6}\right)\right] = \cos^{-1}\left[\cos\left(\frac{\pi}{6}\right)\right], \text{ where } \frac{\pi}{6} \in [0, \pi].$$
$$\therefore \cos^{-1}\left(\cos\frac{13\pi}{6}\right) = \cos^{-1}\left[\cos\left(\frac{\pi}{6}\right)\right] = \frac{\pi}{6}$$

Question 2:

 $\tan^{-1}\left(\tan\frac{7\pi}{6}\right)$ Find the value of

Answer

We know that $\tan^{-1}(\tan x) = x$ if $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, which is the principal value branch of $\tan^{-1}x$.

Here, $\frac{7\pi}{6} \notin \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Now, $\tan^{-1}\left(\tan\frac{7\pi}{6}\right)_{\text{can be written as:}}$

$$\tan^{-1}\left(\tan\frac{7\pi}{6}\right) = \tan^{-1}\left[\tan\left(2\pi - \frac{5\pi}{6}\right)\right] \qquad \left[\tan\left(2\pi - x\right) = -\tan x\right]$$
$$= \tan^{-1}\left[-\tan\left(\frac{5\pi}{6}\right)\right] = \tan^{-1}\left[\tan\left(-\frac{5\pi}{6}\right)\right] = \tan^{-1}\left[\tan\left(\pi - \frac{5\pi}{6}\right)\right]$$
$$= \tan^{-1}\left[\tan\left(\frac{\pi}{6}\right)\right], \text{ where } \frac{\pi}{6} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
$$\therefore \tan^{-1}\left(\tan\frac{7\pi}{6}\right) = \tan^{-1}\left(\tan\frac{\pi}{6}\right) = \frac{\pi}{6}$$

Question 3:

Prove $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$

Answer

Let
$$\sin^{-1}\frac{3}{5} = x$$
. Then, $\sin x = \frac{3}{5}$.
 $\Rightarrow \cos x = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}$
 $\therefore \tan x = \frac{3}{4}$
 $\therefore x = \tan^{-1}\frac{3}{4} \Rightarrow \sin^{-1}\frac{3}{5} = \tan^{-1}\frac{3}{4}$

Now, we have:

L.H.S. =
$$2\sin^{-1}\frac{3}{5} = 2\tan^{-1}\frac{3}{4}$$

= $\tan^{-1}\left(\frac{2\times\frac{3}{4}}{1-\left(\frac{3}{4}\right)^2}\right)$

$$\begin{bmatrix} 2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^2} \end{bmatrix}$$
= $\tan^{-1}\left(\frac{\frac{3}{2}}{\frac{16-9}{16}}\right) = \tan^{-1}\left(\frac{3}{2}\times\frac{16}{7}\right)$
= $\tan^{-1}\frac{24}{7} = \text{R.H.S.}$

Question 4:

Prove
$$\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} = \tan^{-1}\frac{77}{36}$$

Answer

Let
$$\sin^{-1}\frac{8}{17} = x$$
. Then, $\sin x = \frac{8}{17} \Rightarrow \cos x = \sqrt{1 - \left(\frac{8}{17}\right)^2} = \sqrt{\frac{225}{289}} = \frac{15}{17}$.
 $\therefore \tan x = \frac{8}{15} \Rightarrow x = \tan^{-1}\frac{8}{15}$
 $\therefore \sin^{-1}\frac{8}{17} = \tan^{-1}\frac{8}{15}$...(1)
Now, let $\sin^{-1}\frac{3}{5} = y$. Then, $\sin y = \frac{3}{5} \Rightarrow \cos y = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5}$.
 $\therefore \tan y = \frac{3}{4} \Rightarrow y = \tan^{-1}\frac{3}{4}$...(2)

Now, we have:

L.H.S. =
$$\sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5}$$

= $\tan^{-1} \frac{8}{15} + \tan^{-1} \frac{3}{4}$ [Using (1) and (2)]
= $\tan^{-1} \frac{\frac{8}{15} + \frac{3}{4}}{1 - \frac{8}{15} \times \frac{3}{4}}$
= $\tan^{-1} \left(\frac{32 + 45}{60 - 24}\right)$ [$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}$]
= $\tan^{-1} \frac{77}{36}$ = R.H.S.

Question 5:

Prove $\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$

Let
$$\cos^{-1}\frac{4}{5} = x$$
. Then, $\cos x = \frac{4}{5} \Rightarrow \sin x = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \frac{3}{5}$.
 $\therefore \tan x = \frac{3}{4} \Rightarrow x = \tan^{-1}\frac{3}{4}$...(1)
Now, let $\cos^{-1}\frac{4}{5} = \tan^{-1}\frac{3}{4}$...(1)
Now, let $\cos^{-1}\frac{12}{13} = y$. Then, $\cos y = \frac{12}{13} \Rightarrow \sin y = \frac{5}{13}$.
 $\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1}\frac{5}{12}$...(2)
Let $\cos^{-1}\frac{33}{65} = z$. Then, $\cos z = \frac{33}{65} \Rightarrow \sin z = \frac{56}{65}$.
 $\therefore \tan z = \frac{56}{33} \Rightarrow z = \tan^{-1}\frac{56}{33}$...(3)

Now, we will prove that:

L.H.S. =
$$\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13}$$

= $\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{5}{12}$ [Using (1) and (2)]
= $\tan^{-1} \frac{\frac{3}{4} + \frac{5}{12}}{1 - \frac{3}{4} \cdot \frac{5}{12}}$ [$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}$]
= $\tan^{-1} \frac{36 + 20}{48 - 15}$
= $\tan^{-1} \frac{56}{33}$
= $\tan^{-1} \frac{56}{33}$ [by (3)]
= R.H.S.

Question 6:

Prove
$$\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{56}{65}$$

Answer

Let
$$\sin^{-1} \frac{3}{5} = x$$
. Then, $\sin x = \frac{3}{5} \Rightarrow \cos x = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5}$
 $\therefore \tan x = \frac{3}{4} \Rightarrow x = \tan^{-1} \frac{3}{4}$...(1)
Now, $\sec \cos^{-1} \frac{12}{13} = y$. Then, $\cos y = \frac{12}{13} \Rightarrow \sin y = \frac{5}{13}$.
 $\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$...(2)
Let $\sin^{-1} \frac{56}{65} = z$. Then, $\sin z = \frac{56}{65} \Rightarrow \cos z = \frac{33}{65}$.
 $\therefore \tan z = \frac{56}{33} \Rightarrow z = \tan^{-1} \frac{56}{33}$...(3)

Now, we have:

L.H.S. =
$$\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5}$$

= $\tan^{-1} \frac{5}{12} + \tan^{-1} \frac{3}{4}$ [Using (1) and (2)]
= $\tan^{-1} \frac{\frac{5}{12} + \frac{3}{4}}{1 - \frac{5}{12} \cdot \frac{3}{4}}$ [$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}$
= $\tan^{-1} \frac{20 + 36}{48 - 15}$
= $\tan^{-1} \frac{56}{33}$
= $\sin^{-1} \frac{56}{65}$ = R.H.S. [Using (3)]

Question 7:

Prove
$$\tan^{-1}\frac{63}{16} = \sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5}$$

Answer

Let
$$\sin^{-1} \frac{5}{13} = x$$
. Then, $\sin x = \frac{5}{13} \Rightarrow \cos x = \frac{12}{13}$.
 $\therefore \tan x = \frac{5}{12} \Rightarrow x = \tan^{-1} \frac{5}{12}$
 $\therefore \sin^{-1} \frac{5}{13} = \tan^{-1} \frac{5}{12}$...(1)
Let $\cos^{-1} \frac{3}{5} = y$. Then, $\cos y = \frac{3}{5} \Rightarrow \sin y = \frac{4}{5}$.
 $\therefore \tan y = \frac{4}{3} \Rightarrow y = \tan^{-1} \frac{4}{3}$...(2)

Using (1) and (2), we have

R.H.S. =
$$\sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$$

= $\tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{3}$
= $\tan^{-1} \left(\frac{\frac{5}{12} + \frac{4}{3}}{1 - \frac{5}{12} \times \frac{4}{3}} \right)$
= $\tan^{-1} \left(\frac{15 + 48}{36 - 20} \right)$
= $\tan^{-1} \frac{63}{16}$
= L.H.S.

Question 8:

Prove $\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$

L.H.S. =
$$\tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{7} + \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{8}$$

= $\tan^{-1} \left(\frac{\frac{1}{5} + \frac{1}{7}}{1 - \frac{1}{5} \times \frac{1}{7}} \right) + \tan^{-1} \left(\frac{\frac{1}{3} + \frac{1}{8}}{1 - \frac{1}{3} \times \frac{1}{8}} \right)$
= $\tan^{-1} \left(\frac{7 + 5}{35 - 1} \right) + \tan^{-1} \left(\frac{8 + 3}{24 - 1} \right)$
= $\tan^{-1} \frac{12}{34} + \tan^{-1} \frac{11}{23}$
= $\tan^{-1} \frac{6}{17} + \tan^{-1} \frac{11}{23}$
= $\tan^{-1} \left(\frac{\frac{6}{17} + \frac{11}{23}}{1 - \frac{6}{17} \times \frac{11}{23}} \right)$
= $\tan^{-1} \left(\frac{138 + 187}{391 - 66} \right)$
= $\tan^{-1} \left(\frac{325}{325} \right) = \tan^{-1} 1$
= $\frac{\pi}{4} = \text{R.H.S.}$

$$\left[\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}\right]$$

Question 9:

$$\tan^{-1}\sqrt{x} = \frac{1}{2}\cos^{-1}\left(\frac{1-x}{1+x}\right), x \in [0, 1]$$

Prove

Let
$$x = \tan^2 \theta$$
. Then, $\sqrt{x} = \tan \theta \Rightarrow \theta = \tan^{-1} \sqrt{x}$.
 $\therefore \frac{1-x}{1+x} = \frac{1-\tan^2 \theta}{1+\tan^2 \theta} = \cos 2\theta$
Now, we have:

R.H.S.
$$=\frac{1}{2}\cos^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\cos^{-1}\left(\cos 2\theta\right) = \frac{1}{2} \times 2\theta = \theta = \tan^{-1}\sqrt{x} = L.H.S.$$

Question 10:

$$\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) = \frac{x}{2}, \ x \in \left(0, \ \frac{\pi}{4}\right)$$
Prove

Answer

Consider
$$\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}$$
$$= \frac{\left(\sqrt{1+\sin x} + \sqrt{1-\sin x}\right)^2}{\left(\sqrt{1+\sin x}\right)^2 - \left(\sqrt{1-\sin x}\right)^2} \qquad \text{(by rationalizing)}$$
$$= \frac{\left(1+\sin x\right) + \left(1-\sin x\right) + 2\sqrt{\left(1+\sin x\right)\left(1-\sin x\right)}}{1+\sin x - 1+\sin x}$$
$$= \frac{2\left(1+\sqrt{1-\sin^2 x}\right)}{2\sin x} = \frac{1+\cos x}{\sin x} = \frac{2\cos^2 \frac{x}{2}}{2\sin \frac{x}{2}\cos \frac{x}{2}}$$
$$= \cot \frac{x}{2}$$
$$\therefore \text{ L.H.S.} = \cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) = \cot^{-1}\left(\cot \frac{x}{2}\right) = \frac{x}{2} = \text{ R.H.S.}$$

Question 11:

$$\tan^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}\right) = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x, \quad -\frac{1}{\sqrt{2}} \le x \le 1$$

[Hint: putx = cos 2 θ]

Put
$$x = \cos 2\theta$$
 so that $\theta = \frac{1}{2}\cos^{-1}x$. Then, we have:
L.H.S. $= \tan^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}\right)$
 $= \tan^{-1}\left(\frac{\sqrt{1+\cos 2\theta} - \sqrt{1-\cos 2\theta}}{\sqrt{1+\cos 2\theta} + \sqrt{1-\cos 2\theta}}\right)$
 $= \tan^{-1}\left(\frac{\sqrt{2}\cos^2\theta - \sqrt{2}\sin^2\theta}{\sqrt{2}\cos^2\theta + \sqrt{2}\sin^2\theta}\right)$
 $= \tan^{-1}\left(\frac{\sqrt{2}\cos\theta - \sqrt{2}\sin\theta}{\sqrt{2}\cos\theta + \sqrt{2}\sin\theta}\right)$
 $= \tan^{-1}\left(\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta}\right) = \tan^{-1}\left(\frac{1-\tan\theta}{1+\tan\theta}\right)$
 $= \tan^{-1}1 - \tan^{-1}(\tan\theta)$ [ta
 $= \frac{\pi}{4} - \theta = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x = \text{R.H.S.}$

 $\tan^{-1}\left(\frac{x-y}{1+xy}\right) = \tan^{-1}x - \tan^{-1}y$

Question 12:

Prove
$$\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3}$$

L.H.S.
$$= \frac{9\pi}{8} - \frac{9}{4} \sin^{-1} \frac{1}{3}$$

 $= \frac{9}{4} \left(\frac{\pi}{2} - \sin^{-1} \frac{1}{3} \right)$
 $= \frac{9}{4} \left(\cos^{-1} \frac{1}{3} \right)$ (1) $\left[\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \right]$
Now, let $\cos^{-1} \frac{1}{3} = x$. Then, $\cos x = \frac{1}{3} \Rightarrow \sin x = \sqrt{1 - \left(\frac{1}{3}\right)^2} = \frac{2\sqrt{2}}{3}$.
 $\therefore x = \sin^{-1} \frac{2\sqrt{2}}{3} \Rightarrow \cos^{-1} \frac{1}{3} = \sin^{-1} \frac{2\sqrt{2}}{3}$
 $\therefore L.H.S. = \frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{3} = R.H.S.$

Question 13:

Solve
$$2\tan^{-1}(\cos x) = \tan^{-1}(2\csc x)$$

Answer

$$2 \tan^{-1}(\cos x) = \tan^{-1}(2 \csc x)$$

$$\Rightarrow \tan^{-1}\left(\frac{2 \cos x}{1 - \cos^2 x}\right) = \tan^{-1}(2 \csc x) \qquad \left[2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2}\right]$$

$$\Rightarrow \frac{2 \cos x}{1 - \cos^2 x} = 2 \csc x$$

$$\Rightarrow \frac{2 \cos x}{\sin^2 x} = \frac{2}{\sin x}$$

$$\Rightarrow \cos x = \sin x$$

$$\Rightarrow \tan x = 1$$

$$\therefore x = \frac{\pi}{4}$$

Question 14:

 $\tan^{-1}\frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x, (x > 0)$ Answer

$$\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2} \tan^{-1} x$$

$$\Rightarrow \tan^{-1} 1 - \tan^{-1} x = \frac{1}{2} \tan^{-1} x \qquad \left[\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy} \right]$$

$$\Rightarrow \frac{\pi}{4} = \frac{3}{2} \tan^{-1} x$$

$$\Rightarrow \tan^{-1} x = \frac{\pi}{6}$$

$$\Rightarrow x = \tan \frac{\pi}{6}$$

$$\therefore x = \frac{1}{\sqrt{3}}$$

Question 15:

Solve $\sin(\tan^{-1}x)$, |x| < 1 is equal to

(A)
$$\frac{x}{\sqrt{1-x^2}}$$
 (B) $\frac{1}{\sqrt{1-x^2}}$ (C) $\frac{1}{\sqrt{1+x^2}}$ (D) $\frac{x}{\sqrt{1+x^2}}$

Answer

$$\tan y = x \Longrightarrow \sin y = \frac{x}{\sqrt{1 + x^2}}.$$
 Let $\tan^{-1} x = y$. Then,

$$\therefore y = \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right) \Longrightarrow \tan^{-1}x = \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)$$
$$\therefore \sin\left(\tan^{-1}x\right) = \sin\left(\sin^{-1}\frac{x}{\sqrt{1+x^2}}\right) = \frac{x}{\sqrt{1+x^2}}$$

The correct answer is D.

Question 16:

$$\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$$
, then x is equal to

(A) ⁰,
$$\frac{1}{2}$$
 (B) ¹, $\frac{1}{2}$ (C) 0 (D) $\frac{1}{2}$
Answer
 $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$
 $\Rightarrow -2\sin^{-1}x = \frac{\pi}{2} - \sin^{-1}(1-x)$
 $\Rightarrow -2\sin^{-1}x = \cos^{-1}(1-x)$...(1)
Let $\sin^{-1}x = \theta \Rightarrow \sin \theta = x \Rightarrow \cos \theta = \sqrt{1-x^2}$.
 $\therefore \theta = \cos^{-1}(\sqrt{1-x^2})$

 $\therefore \sin^{-1} x = \cos^{-1} \left(\sqrt{1 - x^2} \right)$

Therefore, from equation (1), we have

$$-2\cos^{-1}\left(\sqrt{1-x^2}\right) = \cos^{-1}\left(1-x\right)$$

Put $x = \sin y$. Then, we have:

$$-2\cos^{-1}\left(\sqrt{1-\sin^2 y}\right) = \cos^{-1}(1-\sin y)$$

$$\Rightarrow -2\cos^{-1}(\cos y) = \cos^{-1}(1-\sin y)$$

$$\Rightarrow -2y = \cos^{-1}(1-\sin y)$$

$$\Rightarrow 1-\sin y = \cos(-2y) = \cos 2y$$

$$\Rightarrow 1-\sin y = 1-2\sin^2 y$$

$$\Rightarrow 2\sin^2 y - \sin y = 0$$

$$\Rightarrow \sin y (2\sin y - 1) = 0$$

$$\Rightarrow \sin y = 0 \text{ or } \frac{1}{2}$$

$$\therefore x = 0 \text{ or } x = \frac{1}{2}$$

But, when $x = \frac{1}{2}$, it can be observed that:

L.H.S. =
$$\sin^{-1}\left(1-\frac{1}{2}\right) - 2\sin^{-1}\frac{1}{2}$$

= $\sin^{-1}\left(\frac{1}{2}\right) - 2\sin^{-1}\frac{1}{2}$
= $-\sin^{-1}\frac{1}{2}$
= $-\frac{\pi}{6} \neq \frac{\pi}{2} \neq \text{R.H.S.}$
 $\therefore r = \frac{1}{2}$

 2 is not the solution of the given equation.

Thus, x = 0.

Hence, the correct answer is $\ensuremath{\textbf{C}}.$

Question 17:

Solve $\tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\frac{x-y}{x+y}$ is equal to (A) $\frac{\pi}{2}$ (B). $\frac{\pi}{3}$ (C) $\frac{\pi}{4}$ (D) $\frac{-3\pi}{4}$ Answer

$$\tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\frac{x-y}{x+y}$$

= $\tan^{-1}\left[\frac{\frac{x}{y} - \frac{x-y}{x+y}}{1 + \left(\frac{x}{y}\right)\left(\frac{x-y}{x+y}\right)}\right]$
= $\tan^{-1}\left[\frac{\frac{x(x+y) - y(x-y)}{y(x+y)}}{\frac{y(x+y) + x(x-y)}{y(x+y)}}\right]$
= $\tan^{-1}\left(\frac{x^2 + xy - xy + y^2}{xy + y^2 + x^2 - xy}\right)$
= $\tan^{-1}\left(\frac{x^2 + y^2}{x^2 + y^2}\right) = \tan^{-1}1 = \frac{\pi}{4}$

$$\left[\tan^{-1} y - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy} \right]$$

Hence, the correct answer is $\ensuremath{\textbf{C}}.$