Exercise 2.1

Question 1:

 $\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right), \text{ find the values of } x \text{ and } y.$ Answer

It is given that $\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$.

Since the ordered pairs are equal, the corresponding elements will also be equal.

Therefore, $\frac{x}{3} + 1 = \frac{5}{3}$ and $y - \frac{2}{3} = \frac{1}{3}$ $\frac{x}{3} + 1 = \frac{5}{3}$ $\Rightarrow \frac{x}{3} = \frac{5}{3} - 1$ $y - \frac{2}{3} = \frac{1}{3}$ $\Rightarrow \frac{x}{3} = \frac{2}{3}$ $\Rightarrow y = \frac{1}{3} + \frac{2}{3}$ $\Rightarrow x = 2$ $\Rightarrow y = 1$ $\therefore x = 2$ and y = 1

Question 2:

If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A \times B)?

Answer

It is given that set A has 3 elements and the elements of set B are 3, 4, and 5. \Rightarrow Number of elements in set B = 3 Number of elements in (A × B) = (Number of elements in A) × (Number of elements in B)

 $= 3 \times 3 = 9$

Thus, the number of elements in $(A \times B)$ is 9.

Question 3: If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G. Answer G = {7, 8} and H = {5, 4, 2} We know that the Cartesian product P × Q of two non-empty sets P and Q is defined as P × Q = {(p, q): $p \in P, q \in Q$ } \therefore G × H = {(7, 5), (7, 4), (7, 2), (8, 5), (8, 4), (8, 2)} H × G = {(5, 7), (5, 8), (4, 7), (4, 8), (2, 7), (2, 8)}

Question 4:

State whether each of the following statement are true or false. If the statement is false, rewrite the given statement correctly.

(i) If $P = \{m, n\}$ and $Q = \{n, m\}$, then $P \times Q = \{(m, n), (n, m)\}$. (ii) If A and B are non-empty sets, then A \times B is a non-empty set of ordered pairs (x, y)such that $x \in A$ and $y \in B$. (iii) If $A = \{1, 2\}, B = \{3, 4\}, \text{ then } A \times (B \cap \Phi) = \Phi$. Answer (i) False If $P = \{m, n\}$ and $Q = \{n, m\}$, then $P \times Q = \{(m, m), (m, n), (n, m), (n, n)\}$ (ii) True (iii) True **Ouestion 5:** If $A = \{-1, 1\}$, find $A \times A \times A$. Answer It is known that for any non-empty set A, $A \times A \times A$ is defined as $A \times A \times A = \{(a, b, c): a, b, c \in A\}$ It is given that $A = \{-1, 1\}$ $\therefore A \times A \times A = \{(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (-1, 1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1),$ (1, -1, -1), (1, -1, 1), (1, 1, -1), (1, 1, 1)**Ouestion 6:** If $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$. Find A and B. Answer It is given that $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$ We know that the Cartesian product of two non-empty sets P and Q is defined as $P \times Q$ $= \{(p, q): p \in P, q \in Q\}$ \therefore A is the set of all first elements and B is the set of all second elements. Thus, $A = \{a, b\}$ and $B = \{x, y\}$ **Ouestion 7:** Let $A = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\}$ and $D = \{5, 6, 7, 8\}$. Verify that (i) $A \times (B \cap C) = (A \times B) \cap (A \times C)$ (ii) $A \times C$ is a subset of $B \times D$ Answer (i) To verify: $A \times (B \cap C) = (A \times B) \cap (A \times C)$ We have $B \cap C = \{1, 2, 3, 4\} \cap \{5, 6\} = \Phi$ \therefore L.H.S. = A × (B \cap C) = A × Φ = Φ $A \times B = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)\}$ $A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}$ \therefore R.H.S. = (A × B) \cap (A × C) = Φ ∴L.H.S. = R.H.S Hence, $A \times (B \cap C) = (A \times B) \cap (A \times C)$ (ii) To verify: $A \times C$ is a subset of $B \times D$ $A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}$ $B \times D = \{(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (2, 8), (3, 7), (3, 6), (3, 7), (3,$ (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)We can observe that all the elements of set A \times C are the elements of set B \times D. Therefore, $A \times C$ is a subset of $B \times D$.

Ouestion 8:

Let A = $\{1, 2\}$ and B = $\{3, 4\}$. Write A × B. How many subsets will A × B have? List them. Answer $A = \{1, 2\}$ and $B = \{3, 4\}$ $:: A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$ $\Rightarrow n(A \times B) = 4$ We know that if C is a set with n(C) = m, then $n[P(C)] = 2^m$. Therefore, the set A \times B has $2^4 = 16$ subsets. These are Φ , {(1, 3)}, {(1, 4)}, {(2, 3)}, {(2, 4)}, {(1, 3), (1, 4)}, {(1, 3), (2, 3)}, $\{(1, 3), (2, 4)\}, \{(1, 4), (2, 3)\}, \{(1, 4), (2, 4)\}, \{(2, 3), (2, 4)\},$ $\{(1, 3), (1, 4), (2, 3)\}, \{(1, 3), (1, 4), (2, 4)\}, \{(1, 3), (2, 3), (2, 4)\},$ $\{(1, 4), (2, 3), (2, 4)\}, \{(1, 3), (1, 4), (2, 3), (2, 4)\}$ **Ouestion 9:** Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A \times B, find A and B, where x, y and z are distinct elements. Answer It is given that n(A) = 3 and n(B) = 2; and (x, 1), (y, 2), (z, 1) are in $A \times B$. We know that A = Set of first elements of the ordered pair elements of $A \times B$ B = Set of second elements of the ordered pair elements of $A \times B$. \therefore x, y, and z are the elements of A; and 1 and 2 are the elements of B. Since n(A) = 3 and n(B) = 2, it is clear that $A = \{x, y, z\}$ and $B = \{1, 2\}$. **Question 10:** The Cartesian product A \times A has 9 elements among which are found (-1, 0) and (0, 1). Find the set A and the remaining elements of $A \times A$. Answer We know that if n(A) = p and n(B) = q, then $n(A \times B) = pq$. $\therefore n(A \times A) = n(A) \times n(A)$ It is given that $n(A \times A) = 9$ \therefore $n(A) \times n(A) = 9$ $\Rightarrow n(A) = 3$ The ordered pairs (-1, 0) and (0, 1) are two of the nine elements of A \times A. We know that $A \times A = \{(a, a): a \in A\}$. Therefore, -1, 0, and 1 are elements of A. Since n(A) = 3, it is clear that $A = \{-1, 0, 1\}$. The remaining elements of set A \times A are (-1, -1), (-1, 1), (0, -1), (0, 0), (1, -1), (1, 0), and (1, 1)