Question 1:

The relation f is defined by

$$
f(x)= \begin{cases}x^{2}, & 0 \leq x \leq 3 \\ 3 x, & 3 \leq x \leq 10\end{cases}
$$

The relation g is defined by

$$
g(x)= \begin{cases}x^{2}, & 0 \leq x \leq 2 \\ 3 x, & 2 \leq x \leq 10\end{cases}
$$

Show that f is a function and g is not a function.
Answer

The relation f is defined as

$$
f(x)=\left\{\begin{array}{l}
x^{2}, 0 \leq x \leq 3 \\
3 x, 3 \leq x \leq 10
\end{array}\right.
$$

It is observed that for
$0 \leq x<3, f(x)=x^{2}$
$3<x \leq 10, f(x)=3 x$
Also, at $x=3, f(x)=3^{2}=9$ or $f(x)=3 \times 3=9$
i.e., at $x=3, f(x)=9$

Therefore, for $0 \leq x \leq 10$, the images of $f(x)$ are unique.
Thus, the given relation is a function.
The relation g is defined as $g(x)= \begin{cases}x^{2}, & 0 \leq x \leq 2 \\ 3 x, & 2 \leq x \leq 10\end{cases}$
It can be observed that for $x=2, g(x)=2^{2}=4$ and $g(x)=3 \times 2=6$
Hence, element 2 of the domain of the relation g corresponds to two different images i.e., 4 and 6 . Hence, this relation is not a function.

Question 2:

$$
\frac{f(1.1)-f(1)}{(1.1-1)}
$$

If $f(x)=x^{2}$, find
Answer

$$
\begin{aligned}
& f(x)=x^{2} \\
& \therefore \frac{f(1.1)-f(1)}{(1.1-1)}=\frac{(1.1)^{2}-(1)^{2}}{(1.1-1)}=\frac{1.21-1}{0.1}=\frac{0.21}{0.1}=2.1
\end{aligned}
$$

Question 3:

Find the domain of the function $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$
Answer
The given function is $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$.
$f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}=\frac{x^{2}+2 x+1}{(x-6)(x-2)}$

It can be seen that function f is defined for all real numbers except at $x=6$ and $x=2$. Hence, the domain of f is $\mathbf{R}-\{2,6\}$.

Question 4:

Find the domain and the range of the real function f defined by $f(x)=\sqrt{(x-1)}$.
Answer
The given real function is $f(x)=\sqrt{x-1}$.
It can be seen that $\sqrt{x-1}$ is defined for $(x-1) \geq 0$.
i.e., $f(x)=\sqrt{(x-1)}$ is defined for $x \geq 1$.

Therefore, the domain of f is the set of all real numbers greater than or equal to 1 i.e., the domain of $f=[1, \infty)$.
As $x \geq 1 \Rightarrow(x-1) \geq 0 \Rightarrow \sqrt{x-1} \geq 0$
Therefore, the range of f is the set of all real numbers greater than or equal to 0 i.e., the range of $f=[0, \infty)$.

Question 5:

Find the domain and the range of the real function f defined by $f(x)=|x-1|$.
Answer
The given real function is $f(x)=|x-1|$.
It is clear that $|x-1|$ is defined for all real numbers.
\therefore Domain of $f=\mathbf{R}$
Also, for $x \in \mathbf{R},|x-1|$ assumes all real numbers.
Hence, the range of f is the set of all non-negative real numbers.
Question 6:
Let $f=\left\{\left(x, \frac{x^{2}}{1+x^{2}}\right): x \in \mathbf{R}\right\}$ be a function from \mathbf{R} into \mathbf{R}. Determine the range of f.
Answer

$$
\begin{aligned}
& f=\left\{\left(x, \frac{x^{2}}{1+x^{2}}\right): x \in \mathbf{R}\right\} \\
& =\left\{(0,0),\left(\pm 0.5, \frac{1}{5}\right),\left(\pm 1, \frac{1}{2}\right),\left(\pm 1.5, \frac{9}{13}\right),\left(\pm 2, \frac{4}{5}\right),\left(3, \frac{9}{10}\right),\left(4, \frac{16}{17}\right), \ldots\right\}
\end{aligned}
$$

The range of f is the set of all second elements. It can be observed that all these elements are greater than or equal to 0 but less than 1.
[Denominator is greater numerator]
Thus, range of $f=[0,1)$

Question 7:

Let $f, g: \mathbf{R} \rightarrow \mathbf{R}$ be defined, respectively by $f(x)=x+1, g(x)=2 x-3$. Find $f+g, f-g$ \underline{f}
and g.
Answer
$f, g: \mathbf{R} \rightarrow \mathbf{R}$ is defined as $f(x)=x+1, g(x)=2 x-3$
$(f+g)(x)=f(x)+g(x)=(x+1)+(2 x-3)=3 x-2$
$\therefore(f+g)(x)=3 x-2$
$(f-g)(x)=f(x)-g(x)=(x+1)-(2 x-3)=x+1-2 x+3=-x+4$
$\therefore(f-g)(x)=-x+4$

$$
\begin{aligned}
& \left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0, x \in \mathbf{R} \\
& \therefore\left(\frac{f}{g}\right)(x)=\frac{x+1}{2 x-3}, 2 x-3 \neq 0 \text { or } 2 x \neq 3 \\
& \therefore\left(\frac{f}{g}\right)(x)=\frac{x+1}{2 x-3}, x \neq \frac{3}{2}
\end{aligned}
$$

Question 8:

Let $f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a function from \mathbf{Z} to \mathbf{Z} defined by $f(x)=a x$ $+b$, for some integers a, b. Determine a, b.

Answer

$f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$
$f(x)=a x+b$
$(1,1) \in f$
$\Rightarrow f(1)=1$
$\Rightarrow a \times 1+b=1$
$\Rightarrow a+b=1$
$(0,-1) \in f$
$\Rightarrow f(0)=-1$
$\Rightarrow a \times 0+b=-1$
$\Rightarrow b=-1$
On substituting $b=-1$ in $a+b=1$, we obtain $a+(-1)=1 \Rightarrow a=1+1=2$.
Thus, the respective values of a and b are 2 and -1 .

Question 9:

Let R be a relation from \mathbf{N} to \mathbf{N} defined by $\mathrm{R}=\left\{(a, b): a, b \in \mathbf{N}\right.$ and $\left.a=b^{2}\right\}$. Are the following true?
(i) $(a, a) \in \mathrm{R}$, for all $a \in \mathbf{N}$ (ii) $(a, b) \in \mathrm{R}$, implies $(b, a) \in \mathrm{R}$
(iii) $(a, b) \in \mathrm{R},(b, c) \in \mathrm{R}$ implies $(a, c) \in \mathrm{R}$.

Justify your answer in each case.
Answer
$\mathrm{R}=\left\{(a, b): a, b \in \mathbf{N}\right.$ and $\left.a=b^{2}\right\}$
(i) It can be seen that $2 \in \mathbf{N}$;however, $2 \neq 2^{2}=4$.

Therefore, the statement " $(a, a) \in \mathrm{R}$, for all $a \in \mathbf{N}$ " is not true.
(ii) It can be seen that $(9,3) \in \mathbf{N}$ because $9,3 \in \mathbf{N}$ and $9=3^{2}$.

Now, $3 \neq 9^{2}=81$; therefore, $(3,9) \notin \mathbf{N}$

Therefore, the statement " $(a, b) \in \mathrm{R}$, implies $(b, a) \in \mathrm{R}$ " is not true.
(iii) It can be seen that $(9,3) \in R,(16,4) \in R$ because $9,3,16,4 \in \mathbf{N}$ and $9=3^{2}$ and 16 $=4^{2}$.
Now, $9 \neq 4^{2}=16$; therefore, $(9,4) \notin \mathbf{N}$
Therefore, the statement " $(a, b) \in \mathrm{R},(b, c) \in \mathrm{R}$ implies $(a, c) \in \mathrm{R}$ " is not true.

Question 10:

Let $A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$ and $f=\{(1,5),(2,9),(3,1),(4,5),(2$, 11) $\}$. Are the following true?
(i) f is a relation from A to B (ii) f is a function from A to B .

Justify your answer in each case.
Answer
$A=\{1,2,3,4\}$ and $B=\{1,5,9,11,15,16\}$
$\therefore A \times B=\{(1,1),(1,5),(1,9),(1,11),(1,15),(1,16),(2,1),(2,5),(2,9),(2,11)$, $(2,15),(2,16),(3,1),(3,5),(3,9),(3,11),(3,15),(3,16),(4,1),(4,5),(4,9),(4$, 11), $(4,15),(4,16)\}$

It is given that $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$
(i) A relation from a non-empty set A to a non-empty set B is a subset of the Cartesian product $A \times B$.
It is observed that f is a subset of $A \times B$.
Thus, f is a relation from A to B .
(ii) Since the same first element i.e., 2 corresponds to two different images i.e., 9 and 11 , relation f is not a function.

Question 11:

Let f be the subset of $\mathbf{Z} \times \mathbf{Z}$ defined by $f=\{(a b, a+b): a, b \in \mathbf{Z}\}$. Is f a function from \mathbf{Z} to \mathbf{Z} : justify your answer.
Answer
The relation f is defined as $f=\{(a b, a+b): a, b \in \mathbf{Z}\}$
We know that a relation f from a set A to a set B is said to be a function if every element of set A has unique images in set B.
Since $2,6,-2,-6 \in \mathbf{Z},(2 \times 6,2+6),(-2 \times-6,-2+(-6)) \in f$
i.e., $(12,8),(12,-8) \in f$

It can be seen that the same first element i.e., 12 corresponds to two different images i.e., 8 and -8 . Thus, relation f is not a function.

Question 12:

Let $\mathrm{A}=\{9,10,11,12,13\}$ and let $f: \mathrm{A} \rightarrow \mathbf{N}$ be defined by $f(n)=$ the highest prime factor of n. Find the range of f.
Answer
$A=\{9,10,11,12,13\}$
$f: A \rightarrow \mathbf{N}$ is defined as
$f(n)=$ The highest prime factor of n
Prime factor of $9=3$
Prime factors of $10=2,5$
Prime factor of $11=11$
Prime factors of $12=2,3$
Prime factor of $13=13$
$\therefore f(9)=$ The highest prime factor of $9=3$
$f(10)=$ The highest prime factor of $10=5$
$f(11)=$ The highest prime factor of $11=11$
$f(12)=$ The highest prime factor of $12=3$
$f(13)=$ The highest prime factor of $13=13$
The range of f is the set of all $f(n)$, where $n \in \mathrm{~A}$.
\therefore Range of $f=\{3,5,11,13\}$

