Exercise 2.1

Question 1:

 $\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right), \text{ find the values of } x \text{ and } y.$ Answer

It is given that $\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$.

Since the ordered pairs are equal, the corresponding elements will also be equal.

Therefore, $\frac{x}{3} + 1 = \frac{5}{3}$ and $y - \frac{2}{3} = \frac{1}{3}$ $\frac{x}{3} + 1 = \frac{5}{3}$ $\Rightarrow \frac{x}{3} = \frac{5}{3} - 1$ $y - \frac{2}{3} = \frac{1}{3}$ $\Rightarrow \frac{x}{3} = \frac{2}{3}$ $\Rightarrow y = \frac{1}{3} + \frac{2}{3}$ $\Rightarrow x = 2$ $\Rightarrow y = 1$ $\therefore x = 2$ and y = 1

Question 2:

If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A \times B)?

Answer

It is given that set A has 3 elements and the elements of set B are 3, 4, and 5. \Rightarrow Number of elements in set B = 3 Number of elements in (A × B) = (Number of elements in A) × (Number of elements in B)

 $= 3 \times 3 = 9$

Thus, the number of elements in $(A \times B)$ is 9.

Question 3: If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G. Answer G = {7, 8} and H = {5, 4, 2} We know that the Cartesian product P × Q of two non-empty sets P and Q is defined as P × Q = {(p, q): $p \in P, q \in Q$ } \therefore G × H = {(7, 5), (7, 4), (7, 2), (8, 5), (8, 4), (8, 2)} H × G = {(5, 7), (5, 8), (4, 7), (4, 8), (2, 7), (2, 8)}

Question 4:

State whether each of the following statement are true or false. If the statement is false, rewrite the given statement correctly.

(i) If $P = \{m, n\}$ and $Q = \{n, m\}$, then $P \times Q = \{(m, n), (n, m)\}$. (ii) If A and B are non-empty sets, then A \times B is a non-empty set of ordered pairs (x, y)such that $x \in A$ and $y \in B$. (iii) If $A = \{1, 2\}, B = \{3, 4\}, \text{ then } A \times (B \cap \Phi) = \Phi$. Answer (i) False If $P = \{m, n\}$ and $Q = \{n, m\}$, then $P \times Q = \{(m, m), (m, n), (n, m), (n, n)\}$ (ii) True (iii) True **Ouestion 5:** If $A = \{-1, 1\}$, find $A \times A \times A$. Answer It is known that for any non-empty set A, $A \times A \times A$ is defined as $A \times A \times A = \{(a, b, c): a, b, c \in A\}$ It is given that $A = \{-1, 1\}$ $\therefore A \times A \times A = \{(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (-1, 1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1), (-1, 1),$ (1, -1, -1), (1, -1, 1), (1, 1, -1), (1, 1, 1)**Ouestion 6:** If $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$. Find A and B. Answer It is given that $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$ We know that the Cartesian product of two non-empty sets P and Q is defined as $P \times Q$ $= \{(p, q): p \in P, q \in Q\}$ \therefore A is the set of all first elements and B is the set of all second elements. Thus, $A = \{a, b\}$ and $B = \{x, y\}$ **Ouestion 7:** Let $A = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\}$ and $D = \{5, 6, 7, 8\}$. Verify that (i) $A \times (B \cap C) = (A \times B) \cap (A \times C)$ (ii) $A \times C$ is a subset of $B \times D$ Answer (i) To verify: $A \times (B \cap C) = (A \times B) \cap (A \times C)$ We have $B \cap C = \{1, 2, 3, 4\} \cap \{5, 6\} = \Phi$ \therefore L.H.S. = A × (B \cap C) = A × Φ = Φ $A \times B = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)\}$ $A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}$ \therefore R.H.S. = (A × B) \cap (A × C) = Φ ∴L.H.S. = R.H.S Hence, $A \times (B \cap C) = (A \times B) \cap (A \times C)$ (ii) To verify: $A \times C$ is a subset of $B \times D$ $A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}$ $B \times D = \{(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (2, 8), (3, 7), (3, 6), (3, 7), (3,$ (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)We can observe that all the elements of set A \times C are the elements of set B \times D. Therefore, $A \times C$ is a subset of $B \times D$.

Ouestion 8:

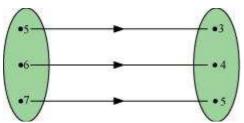
Let A = $\{1, 2\}$ and B = $\{3, 4\}$. Write A × B. How many subsets will A × B have? List them. Answer $A = \{1, 2\}$ and $B = \{3, 4\}$ $:: A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$ $\Rightarrow n(A \times B) = 4$ We know that if C is a set with n(C) = m, then $n[P(C)] = 2^m$. Therefore, the set A \times B has $2^4 = 16$ subsets. These are Φ , {(1, 3)}, {(1, 4)}, {(2, 3)}, {(2, 4)}, {(1, 3), (1, 4)}, {(1, 3), (2, 3)}, $\{(1, 3), (2, 4)\}, \{(1, 4), (2, 3)\}, \{(1, 4), (2, 4)\}, \{(2, 3), (2, 4)\},$ $\{(1, 3), (1, 4), (2, 3)\}, \{(1, 3), (1, 4), (2, 4)\}, \{(1, 3), (2, 3), (2, 4)\},$ $\{(1, 4), (2, 3), (2, 4)\}, \{(1, 3), (1, 4), (2, 3), (2, 4)\}$ **Ouestion 9:** Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A \times B, find A and B, where x, y and z are distinct elements. Answer It is given that n(A) = 3 and n(B) = 2; and (x, 1), (y, 2), (z, 1) are in $A \times B$. We know that A = Set of first elements of the ordered pair elements of $A \times B$ B = Set of second elements of the ordered pair elements of $A \times B$. \therefore x, y, and z are the elements of A; and 1 and 2 are the elements of B. Since n(A) = 3 and n(B) = 2, it is clear that $A = \{x, y, z\}$ and $B = \{1, 2\}$. **Question 10:** The Cartesian product A \times A has 9 elements among which are found (-1, 0) and (0, 1). Find the set A and the remaining elements of $A \times A$. Answer We know that if n(A) = p and n(B) = q, then $n(A \times B) = pq$. $\therefore n(A \times A) = n(A) \times n(A)$ It is given that $n(A \times A) = 9$ \therefore $n(A) \times n(A) = 9$ $\Rightarrow n(A) = 3$ The ordered pairs (-1, 0) and (0, 1) are two of the nine elements of A \times A. We know that $A \times A = \{(a, a): a \in A\}$. Therefore, -1, 0, and 1 are elements of A. Since n(A) = 3, it is clear that $A = \{-1, 0, 1\}$. The remaining elements of set A \times A are (-1, -1), (-1, 1), (0, -1), (0, 0), (1, -1), (1, 0), and (1, 1)

Exercise 2.2

Question 1:

Let A = {1, 2, 3, ..., 14}. Define a relation R from A to A by R = {(x, y): 3x - y = 0, where $x, y \in A$. Write down its domain, codomain and range. Answer The relation R from A to A is given as $R = \{(x, y): 3x - y = 0, where x, y \in A\}$ i.e., $R = \{(x, y): 3x = y, where x, y \in A\}$ $\therefore \mathbf{R} = \{(1, 3), (2, 6), (3, 9), (4, 12)\}$ The domain of R is the set of all first elements of the ordered pairs in the relation. \therefore Domain of R = {1, 2, 3, 4} The whole set A is the codomain of the relation R. :.Codomain of $R = A = \{1, 2, 3, ..., 14\}$ The range of R is the set of all second elements of the ordered pairs in the relation. \therefore Range of R = {3, 6, 9, 12} **Question 2:** Define a relation R on the set N of natural numbers by $R = \{(x, y): y = x + 5, x \text{ is a } x \in \mathbb{N} \}$ natural number less than 4; $x, y \in \mathbb{N}$. Depict this relationship using roster form. Write down the domain and the range. Answer $R = \{(x, y): y = x + 5, x \text{ is a natural number less than } 4, x, y \in \mathbb{N}\}$ The natural numbers less than 4 are 1, 2, and 3. $\therefore R = \{(1, 6), (2, 7), (3, 8)\}$ The domain of R is the set of all first elements of the ordered pairs in the relation. : Domain of $R = \{1, 2, 3\}$ The range of R is the set of all second elements of the ordered pairs in the relation. : Range of R = $\{6, 7, 8\}$ **Ouestion 3:** A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; $x \in A$, $y \in B$ }. Write R in roster form. Answer $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 9\}$ $R = \{(x, y): \text{ the difference between } x \text{ and } y \text{ is odd}; x \in A, y \in B\}$ $\therefore R = \{(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)\}$

Question 4: The given figure shows a relationship between the sets P and Q. write this relation (i) in set-builder form (ii) in roster form. What is its domain and range?



Answer

According to the given figure, $P = \{5, 6, 7\}, Q = \{3, 4, 5\}$ (i) $R = \{(x, y): y = x - 2; x \in P\}$ or $R = \{(x, y): y = x - 2 \text{ for } x = 5, 6, 7\}$ (ii) $R = \{(5, 3), (6, 4), (7, 5)\}$ Domain of $R = \{5, 6, 7\}$ Range of $R = \{3, 4, 5\}$

Question 5:

Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by {(a, b): a, b \in A, b is exactly divisible by a}. (i) Write R in roster form (ii) Find the domain of R (iii) Find the range of R. Answer A = {1, 2, 3, 4, 6}, R = {(a, b): a, b \in A, b is exactly divisible by a} (i) R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (6, 6)} (ii) Domain of R = {1, 2, 3, 4, 6} (iii) Range of R = {1, 2, 3, 4, 6}

Question 6:

Determine the domain and range of the relation R defined by $R = \{(x, x + 5): x \in \{0, 1, 2, 3, 4, 5\}\}$. Answer $R = \{(x, x + 5): x \in \{0, 1, 2, 3, 4, 5\}\}$ $\therefore R = \{(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)\}$ \therefore Domain of $R = \{0, 1, 2, 3, 4, 5\}$ Range of $R = \{5, 6, 7, 8, 9, 10\}$ **Ouestion 7:**

Write the relation R = {(x, x^3): x is a prime number less than 10} in roster form. Answer R = {(x, x^3): x is a prime number less than 10} The prime numbers less than 10 are 2, 3, 5, and 7. \therefore R = {(2, 8), (3, 27), (5, 125), (7, 343)}

Question 8: Let A = {x, y, z} and B = {1, 2}. Find the number of relations from A to B. Answer It is given that A = {x, y, z} and B = {1, 2}. \therefore A × B = {(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)} Since n(A × B) = 6, the number of subsets of A × B is 2⁶. Therefore, the number of relations from A to B is 2^6 .

Question 9: Let R be the relation on Z defined by $R = \{(a, b): a, b \in Z, a - b \text{ is an integer}\}$. Find the domain and range of R. Answer $R = \{(a, b): a, b \in Z, a - b \text{ is an integer}\}$ It is known that the difference between any two integers is always an integer. \therefore Domain of R = ZRange of R = Z

Exercise 2.3

Question 1:

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}

(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}

(iii) {(1, 3), (1, 5), (2, 5)}

Answer

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)} Since 2, 5, 8, 11, 14, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function. Here, domain = {2, 5, 8, 11, 14, 17} and range = {1} (ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)} Since 2, 4, 6, 8, 10, 12, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function. Here, domain = {2, 4, 6, 8, 10, 12, 14} and range = {1, 2, 3, 4, 5, 6, 7} (iii) {(1, 3), (1, 5), (2, 5)} Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5,

Question 2: Find the domain and range of the following real function:

(i)
$$f(x) = -|x|$$
 (ii) $f(x) = \sqrt{9 - x^2}$
Answer
(i) $f(x) = -|x|, x \in \mathbb{R}$
We know that $|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$
 $\therefore f(x) = -|x| = \begin{cases} -x, x \ge 0 \\ x, x < 0 \end{cases}$

this relation is not a function.

Since f(x) is defined for $x \in \mathbf{R}$, the domain of f is **R**. It can be observed that the range of f(x) = -|x| is all real numbers except positive real numbers.

:. The range of f is $(-\infty, 0]$.

(ii)
$$f(x) = \sqrt{9 - x^2}$$

Since $\sqrt{9-x^2}$ is defined for all real numbers that are greater than or equal to -3 and less than or equal to 3, the domain of f(x) is $\{x : -3 \le x \le 3\}$ or [-3, 3]. For any value of x such that $-3 \le x \le 3$, the value of f(x) will lie between 0 and 3. \therefore The range of f(x) is $\{x : 0 \le x \le 3\}$ or [0, 3].

Question 3: A function *f* is defined by f(x) = 2x - 5. Write down the values of (i) f(0), (ii) f(7), (iii) f(-3)

Answer

The given function is f(x) = 2x - 5. Therefore, (i) $f(0) = 2 \times 0 - 5 = 0 - 5 = -5$ (ii) $f(7) = 2 \times 7 - 5 = 14 - 5 = 9$ (iii) $f(-3) = 2 \times (-3) - 5 = -6 - 5 = -11$

Question 4:

The function t' which maps temperature in degree Celsius into temperature in degree

Fahrenheit is defined by $t(C) = \frac{9C}{5} + 32$. Find (i) t (0) (ii) t (28) (iii) t (-10) (iv) The value of C, when t(C) = 212Answer

The given function is $t(C) = \frac{9C}{5} + 32$. Therefore,

(i)

$$t(0) = \frac{9 \times 0}{5} + 32 = 0 + 32 = 32$$
(i)

$$t(28) = \frac{9 \times 28}{5} + 32 = \frac{252 + 160}{5} = \frac{412}{5}$$
(ii)

$$t(-10) = \frac{9 \times (-10)}{5} + 32 = 9 \times (-2) + 32 = -18 + 32 = 14$$

(iv) It is given that t(C) = 212

$$\therefore 212 = \frac{9C}{5} + 32$$

$$\Rightarrow \frac{9C}{5} = 212 - 32$$

 $\Rightarrow \frac{90}{5} = 180$

$$\Rightarrow 9C = 180 \times 5$$
$$\Rightarrow C = \frac{180 \times 5}{9} = 100$$

Thus, the value of t, when t(C) = 212, is 100.

Question 5: Find the range of each of the following functions. (i) f(x) = 2 - 3x, $x \in \mathbf{R}$, x > 0. (ii) $f(x) = x^2 + 2$, x, is a real number. (iii) f(x) = x, x is a real number Answer (i) f(x) = 2 - 3x, $x \in \mathbf{R}$, x > 0

x	0.01	0.1	0.9	1	2	2.5	4	5	
<i>f</i> (<i>x</i>)	1.97	1.7	-0.7	-1	-4	-5.5	-10	-13	

Thus, it can be clearly observed that the range of f is the set of all real numbers less than 2.

i.e., range of $f = (-\infty, 2)$

Alter:

Let x > 0 $\Rightarrow 3x > 0$ $\Rightarrow 2 - 3x < 2$ $\Rightarrow f(x) < 2$::Range of $f = (-\infty, 2)$ (ii) $f(x) = x^2 + 2$, x is 2

(ii) $f(x) = x^2 + 2$, *x*, is a real number

The values of f(x) for various values of real numbers x can be written in the tabular form as

x	0	±0.3	±0.8	±1	±2	±3	
<i>f</i> (<i>x</i>)	2	2.09	2.64	3	6	11	

Thus, it can be clearly observed that the range of f is the set of all real numbers greater than 2.

i.e., range of $f = [2, \infty)$ Alter:

Let x be any real number. Accordingly, $x^2 \ge 0$ $\Rightarrow x^2 + 2 \ge 0 + 2$ $\Rightarrow x^2 + 2 \ge 2$ $\Rightarrow f(x) \ge 2$ \therefore Range of $f = [2, \infty)$ (iii) f(x) = x, x is a real number It is clear that the range of f is the set of all real numbers. \therefore Range of $f = \mathbf{R}$

Text solution

$f(x) = \begin{cases} x^2, \ 0 \le x \le 3\\ 3x, \ 3 \le x \le 10 \end{cases}$ $g(x) = \begin{cases} x^2, \ 0 \le x \le 2\\ 3x, \ 2 \le x \le 10 \end{cases}$

The relation g is defined by $[3x, 2 \le x \le 1]$ Show that f is a function and g is not a function. Answer

$$f(x) = \begin{cases} x^2, \ 0 \le x \le 3\\ 3x, \ 3 \le x \le 10 \end{cases}$$

The relation f is defined as

The relation *f* is defined by

It is observed that for $0 \le x < 3$, $f(x) = x^2$ $3 < x \le 10$, f(x) = 3xAlso, at x = 3, $f(x) = 3^2 = 9$ or $f(x) = 3 \times 3 = 9$

i.e., at
$$x = 3$$
, $f(x) = 9$

Therefore, for $0 \le x \le 10$, the images of f(x) are unique. Thus, the given relation is a function.

$$g(x) = \begin{cases} x^2, \ 0 \le x \le 2\\ 3x, \ 2 \le x \le 10 \end{cases}$$

The relation g is defined as

It can be observed that for x = 2, $g(x) = 2^2 = 4$ and $g(x) = 3 \times 2 = 6$ Hence, element 2 of the domain of the relation *g* corresponds to two different images i.e., 4 and 6. Hence, this relation is not a function.

Question 2:

$$\frac{f(1.1) - f(1)}{(1.1 - 1)}.$$
If $f(x) = x^2$, find
Answer
 $f(x) = x^2$
 $\therefore \frac{f(1.1) - f(1)}{(1.1 - 1)} = \frac{(1.1)^2 - (1)^2}{(1.1 - 1)} = \frac{1.21 - 1}{0.1} = \frac{0.21}{0.1} = 2.1$

Question 3:

$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$$

Find the domain of the function $x^2 - 8x + 12$ Answer

The given function is $f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$ $f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12} = \frac{x^2 + 2x + 1}{(x - 6)(x - 2)}$

It can be seen that function *f* is defined for all real numbers except at x = 6 and x = 2. Hence, the domain of *f* is **R** – {2, 6}.

Question 4:

Find the domain and the range of the real function *f* defined by $f(x) = \sqrt{(x-1)}$. Answer

The given real function is $f(x) = \sqrt{x-1}$.

It can be seen that $\sqrt{x-1}$ is defined for $(x - 1) \ge 0$.

i.e., $f(x) = \sqrt{(x-1)}$ is defined for $x \ge 1$. Therefore, the domain of f is the set of all

Therefore, the domain of *f* is the set of all real numbers greater than or equal to 1 i.e., the domain of $f = [1, \infty)$.

As
$$x \ge 1 \Rightarrow (x - 1) \ge 0 \Rightarrow \sqrt{x - 1} \ge 0$$

Therefore, the range of *f* is the set of all real numbers greater than or equal to 0 i.e., the range of $f = [0, \infty)$.

Question 5:

Find the domain and the range of the real function *f* defined by f(x) = |x - 1|. Answer

The given real function is f(x) = |x - 1|.

It is clear that |x - 1| is defined for all real numbers.

:.Domain of $f = \mathbf{R}$

Also, for $x \in \mathbf{R}$, |x - 1| assumes all real numbers.

Hence, the range of *f* is the set of all non-negative real numbers.

Question 6:

$$f = \left\{ \left(x, \frac{x^2}{1+x^2} \right) : x \in \mathbf{R} \right\}_{\mathbf{b} \in \mathbf{C}}$$

be a function from **R** into **R**. Determine the range of f.

Answer

$$\begin{split} f &= \left\{ \left(x, \ \frac{x^2}{1+x^2}\right) : x \in \mathbf{R} \right\} \\ &= \left\{ \left(0, \ 0\right), \ \left(\pm 0.5, \ \frac{1}{5}\right), \ \left(\pm 1, \ \frac{1}{2}\right), \ \left(\pm 1.5, \ \frac{9}{13}\right), \ \left(\pm 2, \ \frac{4}{5}\right), \ \left(3, \ \frac{9}{10}\right), \ \left(4, \ \frac{16}{17}\right), \ \ldots \right\} \end{split}$$

The range of f is the set of all second elements. It can be observed that all these elements are greater than or equal to 0 but less than 1.

[Denominator is greater numerator] Thus, range of f = [0, 1)

Question 7:

Let f, g: $\mathbf{R} \to \mathbf{R}$ be defined, respectively by f(x) = x + 1, g(x) = 2x - 3. Find f + g, f - gf and g . Answer $f, g: \mathbf{R} \to \mathbf{R}$ is defined as f(x) = x + 1, g(x) = 2x - 3(f + g)(x) = f(x) + g(x) = (x + 1) + (2x - 3) = 3x - 2 $\therefore (f+g)(x) = 3x - 2$ (f-g)(x) = f(x) - g(x) = (x + 1) - (2x - 3) = x + 1 - 2x + 3 = -x + 4 $\therefore (f-q)(x) = -x + 4$ $\left(\frac{f}{\sigma}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0, x \in \mathbf{R}$ $\therefore \left(\frac{f}{\sigma}\right)(x) = \frac{x+1}{2x-3}, \ 2x-3 \neq 0 \text{ or } 2x \neq 3$ $\therefore \left(\frac{f}{g}\right)(x) = \frac{x+1}{2x-3}, x \neq \frac{3}{2}$ **Question 8:** Let $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$ be a function from **Z** to **Z** defined by f(x) = ax+ *b*, for some integers *a*, *b*. Determine *a*, *b*. Answer $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$ f(x) = ax + b $(1, 1) \in f$ $\Rightarrow f(1) = 1$ $\Rightarrow a \times 1 + b = 1$ $\Rightarrow a + b = 1$ $(0, -1) \in f$ $\Rightarrow f(0) = -1$ $\Rightarrow a \times 0 + b = -1$ $\Rightarrow b = -1$ On substituting b = -1 in a + b = 1, we obtain $a + (-1) = 1 \Rightarrow a = 1 + 1 = 2$. Thus, the respective values of a and b are 2 and -1. **Question 9:** Let R be a relation from **N** to **N** defined by $R = \{(a, b): a, b \in \mathbb{N} \text{ and } a = b^2\}$. Are the following true? (i) $(a, a) \in \mathbb{R}$, for all $a \in \mathbb{N}$ (ii) $(a, b) \in \mathbb{R}$, implies $(b, a) \in \mathbb{R}$ (iii) $(a, b) \in \mathbb{R}$, $(b, c) \in \mathbb{R}$ implies $(a, c) \in \mathbb{R}$. Justify your answer in each case. Answer $R = \{(a, b): a, b \in \mathbb{N} \text{ and } a = b^2\}$ (i) It can be seen that $2 \in \mathbf{N}$; however, $2 \neq 2^2 = 4$. Therefore, the statement " $(a, a) \in \mathbb{R}$, for all $a \in \mathbb{N}^{n}$ is not true. (ii) It can be seen that $(9, 3) \in \mathbb{N}$ because $9, 3 \in \mathbb{N}$ and $9 = 3^{2}$. Now, $3 \neq 9^2 = 81$; therefore, $(3, 9) \notin \mathbf{N}$

Therefore, the statement $(a, b) \in \mathbb{R}$, implies $(b, a) \in \mathbb{R}''$ is not true. (iii) It can be seen that $(9, 3) \in \mathbb{R}$, $(16, 4) \in \mathbb{R}$ because 9, 3, 16, $4 \in \mathbb{N}$ and $9 = 3^2$ and 16 $= 4^{2}$. Now, $9 \neq 4^2 = 16$; therefore, $(9, 4) \notin \mathbf{N}$ Therefore, the statement $(a, b) \in \mathbb{R}$, $(b, c) \in \mathbb{R}$ implies $(a, c) \in \mathbb{R}''$ is not true. **Question 10:** Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and $f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 6)}$ 11)}. Are the following true? (i) *f* is a relation from A to B (ii) *f* is a function from A to B. Justify your answer in each case. Answer $A = \{1, 2, 3, 4\}$ and $B = \{1, 5, 9, 11, 15, 16\}$ $A \times B = \{(1, 1), (1, 5), (1, 9), (1, 11), (1, 15), (1, 16), (2, 1), (2, 5), (2, 9), (2, 11), (2, 10), (2, 11), (2, 10), (2, 10), (2, 11), (2, 10)$ (2, 15), (2, 16), (3, 1), (3, 5), (3, 9), (3, 11), (3, 15), (3, 16), (4, 1), (4, 5), (4, 9), (4, 11), (4, 15), (4, 16)} It is given that $f = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\}$ (i) A relation from a non-empty set A to a non-empty set B is a subset of the Cartesian product $A \times B$. It is observed that f is a subset of A \times B. Thus, *f* is a relation from A to B. (ii) Since the same first element i.e., 2 corresponds to two different images i.e., 9 and 11, relation *f* is not a function. **Question 11:** Let f be the subset of $\mathbf{Z} \times \mathbf{Z}$ defined by $f = \{(ab, a + b): a, b \in \mathbf{Z}\}$. Is f a function from \mathbf{Z} to **Z**: justify your answer. Answer The relation *f* is defined as $f = \{(ab, a + b): a, b \in \mathbf{Z}\}$ We know that a relation f from a set A to a set B is said to be a function if every element of set A has unique images in set B. Since 2, 6, -2, $-6 \in \mathbb{Z}$, $(2 \times 6, 2 + 6)$, $(-2 \times -6, -2 + (-6)) \in f$ i.e., (12, 8), (12, −8) ∈ *f* It can be seen that the same first element i.e., 12 corresponds to two different images i.e., 8 and -8. Thus, relation f is not a function. **Ouestion 12:** Let A = {9, 10, 11, 12, 13} and let f: A \rightarrow N be defined by f(n) = the highest prime factor of *n*. Find the range of *f*. Answer A = {9, 10, 11, 12, 13} *f*: $A \rightarrow N$ is defined as f(n) = The highest prime factor of nPrime factor of 9 = 3Prime factors of 10 = 2, 5Prime factor of 11 = 11Prime factors of 12 = 2, 3Prime factor of 13 = 13

 $\therefore f(9) =$ The highest prime factor of 9 = 3

f(10) = The highest prime factor of 10 = 5f(11) = The highest prime factor of 11 = 11f(12) = The highest prime factor of 12 = 3f(13) = The highest prime factor of 13 = 13The range of f is the set of all f(n), where $n \in A$. \therefore Range of $f = \{3, 5, 11, 13\}$