$A=\left[\begin{array}{rr}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
$\Rightarrow A^{\prime}=\left[\begin{array}{ll}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$

Now, $A+A^{\prime}=I$
$\therefore\left[\begin{array}{rr}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]+\left[\begin{array}{ll}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{lc}2 \cos \alpha & 0 \\ 0 & 2 \cos \alpha\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Comparing the corresponding elements of the two matrices, we have:
$2 \cos \alpha=1$
$\Rightarrow \cos \alpha=\frac{1 \pi}{2}=\cos \frac{-}{3}$
$\therefore \alpha=\frac{\pi}{3}$

Exercise 3.4

Question 1:

Find the inverse of each of the matrices, if it exists.
$\left[\begin{array}{rr}1 & -1 \\ 2 & 3\end{array}\right]$
Answer
Let $A=\left[\begin{array}{rr}1 & -1 \\ 2 & 3\end{array}\right]$
We know that $A=I A$
$\therefore\left[\begin{array}{rr}1 & -1 \\ 2 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
$\Rightarrow\left[\begin{array}{rr}1 & -1 \\ 0 & 5\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ -2 & 1\end{array}\right] A \quad\left(\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}\right)$
$\Rightarrow\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ -\frac{2}{5} & \frac{1}{5}\end{array}\right] A \quad\left(\mathrm{R}_{2} \rightarrow \frac{1}{5} \mathrm{R}_{2}\right)$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}\frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5}\end{array}\right] A \quad\left(\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}\right)$
$\therefore A^{-1}=\left[\begin{array}{ll}\frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5}\end{array}\right]$

Question 2:

Find the inverse of each of the matrices, if it exists.
$\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$
Answer
Let $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$
We know that $A=I A$
$\therefore\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right] A \quad\left(\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}\right)$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{lr}1 & -1 \\ -1 & 2\end{array}\right] A \quad\left(\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}\right)$
$\therefore A^{-1}=\left[\begin{array}{lr}1 & -1 \\ -1 & 2\end{array}\right]$

Question 3:

Find the inverse of each of the matrices, if it exists.
$\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$
Answer
Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$
We know that $A=I A$
$\therefore\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
$\Rightarrow\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ -2 & 1\end{array}\right] A \quad\left(\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}\right)$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{lc}7 & -3 \\ -2 & 1\end{array}\right] A \quad\left(\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-3 \mathrm{R}_{2}\right)$
$\therefore A^{-1}=\left[\begin{array}{lc}7 & -3 \\ -2 & 1\end{array}\right]$

Question 4:

Find the inverse of each of the matrices, if it exists.

$$
\left[\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right]
$$

Answer
Let $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$
We know that $A=I A$
$\therefore\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
$\Rightarrow\left[\begin{array}{ll}1 & \frac{3}{2} \\ 5 & 7\end{array}\right]=\left[\begin{array}{ll}\frac{1}{2} & 0 \\ 0 & 1\end{array}\right] A$
$\left(\mathrm{R}_{1} \rightarrow \frac{1}{2} \mathrm{R}_{1}\right)$
$\Rightarrow\left[\begin{array}{ll}1 & \frac{3}{2} \\ 0 & -\frac{1}{2}\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ -\frac{5}{2} & 1\end{array}\right] A \quad\left(\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-5 \mathrm{R}_{1}\right)$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & -\frac{1}{2}\end{array}\right]=\left[\begin{array}{cc}-7 & 3 \\ -\frac{5}{2} & 1\end{array}\right] A \quad\left(\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+3 \mathrm{R}_{2}\right)$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{lr}-7 & 3 \\ 5 & -2\end{array}\right] A \quad\left(\mathrm{R}_{2} \rightarrow-2 \mathrm{R}_{1}\right)$
$\therefore A^{-1}=\left[\begin{array}{lr}-7 & 3 \\ 5 & -2\end{array}\right]$

Question 5:

Find the inverse of each of the matrices, if it exists.
$\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]$
Answer
Let $A=\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]$
We know that $A=I A$
$\therefore\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
$\Rightarrow\left[\begin{array}{ll}1 & \frac{1}{2} \\ 7 & 4\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & 1\end{array}\right] A$
$\left(\mathrm{R}_{1} \rightarrow \frac{1}{2} \mathrm{R}_{1}\right)$
$\Rightarrow\left[\begin{array}{ll}1 & \frac{1}{2} \\ 0 & \frac{1}{2}\end{array}\right]=\left[\begin{array}{ll}\frac{1}{2} & 0 \\ -\frac{7}{2} & 1\end{array}\right] A$
$\left(\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-7 \mathrm{R}_{1}\right)$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & \frac{1}{2}\end{array}\right]=\left[\begin{array}{cc}4 & -1 \\ -\frac{7}{2} & 1\end{array}\right] A \quad\left(\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}\right)$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]=\left[\begin{array}{lr}4 & -1 \\ -7 & 2\end{array}\right] A \quad\left(\mathrm{R}_{2} \rightarrow 2 \mathrm{R}_{2}\right)$
$\therefore A^{-1}=\left[\begin{array}{lr}4 & -1 \\ -7 & 2\end{array}\right]$

Question 6:

Find the inverse of each of the matrices, if it exists.
$\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$
Answer
Let $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$
We know that $A=I A$
$\therefore\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
$\Rightarrow\left[\begin{array}{ll}1 & \frac{5}{2} \\ 1 & 3\end{array}\right]=\left[\begin{array}{ll}\frac{1}{2} & 0 \\ 0 & 1\end{array}\right] A$
$\left(\mathrm{R}_{1} \rightarrow \frac{1}{2} \mathrm{R}_{1}\right)$
$\Rightarrow\left[\begin{array}{ll}1 & \frac{5}{2} \\ 0 & \frac{1}{2}\end{array}\right]=\left[\begin{array}{ll}\frac{1}{2} & 0 \\ -\frac{1}{2} & 1\end{array}\right] A$
$\left(\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}\right)$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & \frac{1}{2}\end{array}\right]=\left[\begin{array}{ll}3 & -5 \\ -\frac{1}{2} & 1\end{array}\right] A \quad\left(\mathrm{R}_{1} \rightarrow \mathrm{R}_{2}-5 \mathrm{R}_{2}\right)$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{lr}3 & -5 \\ -1 & 2\end{array}\right] A \quad\left(\mathrm{R}_{2} \rightarrow 2 \mathrm{R}_{2}\right)$
$\therefore A^{-1}=\left[\begin{array}{lr}3 & -5 \\ -1 & 2\end{array}\right]$

Question 7:

Find the inverse of each of the matrices, if it exists.
$\left[\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right]$
Answer
Let $A=\left[\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right]$
We know that $A=A I$

$$
\begin{aligned}
& \therefore\left[\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right]=A\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]=A\left[\begin{array}{ll}
1 & 0 \\
-2 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=A\left[\begin{array}{lr}
1 & -1 \\
-2 & 3
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=A\left[\begin{array}{lr}
2 & -1 \\
-5 & 3
\end{array}\right] \\
& \left.\therefore \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-2 \mathrm{C}_{2}\right) \\
& \left.\therefore \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}\right) \\
& \hline-\left[\begin{array}{rr}
2 & -1 \\
-5 & 3
\end{array}\right]
\end{aligned}
$$

Question 8:

Find the inverse of each of the matrices, if it exists.
$\left[\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right]$
Answer
Let $A=\left[\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right]$
We know that $A=I A$

$$
\begin{aligned}
& \therefore\left[\begin{array}{ll}
4 & 5 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] A \\
& \Rightarrow\left[\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] A \\
& \Rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & -1 \\
-3 & 4
\end{array}\right] A \\
& \Rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{lr}
4 & -5 \\
-3 & 4
\end{array}\right] A \\
& \left.\therefore \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}\right) \\
& \therefore A^{-1}=\left[\begin{array}{rr}
4 & -5 \\
-3 & 4
\end{array}\right]
\end{aligned}
$$

Question 9:

Find the inverse of each of the matrices, if it exists.
$\left[\begin{array}{rr}3 & 10 \\ 2 & 7\end{array}\right]$
Answer
Let $A=\left[\begin{array}{rr}3 & 10 \\ 2 & 7\end{array}\right]$
We know that $A=I A$

$$
\begin{aligned}
& \therefore\left[\begin{array}{rr}
3 & 10 \\
2 & 7
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] A \\
& \Rightarrow\left[\begin{array}{lr}
1 & 3 \\
2 & 7
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] A \\
& \Rightarrow\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
1 & -1 \\
-2 & 3
\end{array}\right] A \\
& \Rightarrow\left[\begin{array}{lr}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cr}
7 & -10 \\
-2 & 3
\end{array}\right] A \\
& \left.\therefore \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}\right) \\
& \therefore A^{-1}=\left[\begin{array}{rr}
7 & -10 \\
-2 & 3
\end{array}\right]
\end{aligned}
$$

Question 10:

Find the inverse of each of the matrices, if it exists.
$\left[\begin{array}{lr}3 & -1 \\ -4 & 2\end{array}\right]$
Answer
Let $A=\left[\begin{array}{lr}3 & -1 \\ -4 & 2\end{array}\right]$
We know that $A=A I$
$\therefore\left[\begin{array}{lr}3 & -1 \\ -4 & 2\end{array}\right]=A\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{rr}1 & -1 \\ 0 & 2\end{array}\right]=A\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$
$\left(\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+2 \mathrm{C}_{2}\right)$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]=A\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$
$\left(\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{1}\right)$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=A\left[\begin{array}{ll}1 & \frac{1}{2} \\ 2 & \frac{3}{2}\end{array}\right]$
$\left(\mathrm{C}_{2} \rightarrow \frac{1}{2} \mathrm{C}_{2}\right)$
$\therefore A^{-1}=\left[\begin{array}{ll}1 & \frac{1}{2} \\ 2 & \frac{3}{2}\end{array}\right]$

Question 11:

Find the inverse of each of the matrices, if it exists.
$\left[\begin{array}{ll}2 & -6 \\ 1 & -2\end{array}\right]$
Answer
Let $A=\left[\begin{array}{ll}2 & -6 \\ 1 & -2\end{array}\right]$
We know that $A=A I$
$\therefore\left[\begin{array}{ll}2 & -6 \\ 1 & -2\end{array}\right]=A\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]=A\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \quad\left(\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+3 \mathrm{C}_{1}\right)$
$\Rightarrow\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]=A\left[\begin{array}{ll}-2 & 3 \\ -1 & 1\end{array}\right] \quad\left(\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{2}\right)$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=A\left[\begin{array}{ll}-1 & 3 \\ -\frac{1}{2} & 1\end{array}\right] \quad\left(\mathrm{C}_{1} \rightarrow \frac{1}{2} \mathrm{C}_{1}\right)$
$\therefore A^{-1}=\left[\begin{array}{ll}-1 & 3 \\ -\frac{1}{2} & 1\end{array}\right]$

Question 12:

Find the inverse of each of the matrices, if it exists.
$\left[\begin{array}{lr}6 & -3 \\ -2 & 1\end{array}\right]$
Answer
Let $A=\left[\begin{array}{lr}6 & -3 \\ -2 & 1\end{array}\right]$
We know that $A=I A$

$$
\begin{aligned}
& \therefore\left[\begin{array}{lr}
6 & -3 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ll}
1 & -\frac{1}{2} \\
-2 & 1
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{6} & 0 \\
0 & 1
\end{array}\right] A \\
& \Rightarrow\left[\begin{array}{ll}
1 & -\frac{1}{2} \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{6} & 0 \\
\frac{1}{3} & 1
\end{array}\right] A
\end{aligned}
$$

Now, in the above equation, we can see all the zeros in the second row of the matrix on the L.H.S.
Therefore, A^{-1} does not exist.

Question 13:

Find the inverse of each of the matrices, if it exists.
$\left[\begin{array}{lr}2 & -3 \\ -1 & 2\end{array}\right]$
Answer

Let $A=\left[\begin{array}{lr}2 & -3 \\ -1 & 2\end{array}\right]$
We know that $A=I A$
$\therefore\left[\begin{array}{lr}2 & -3 \\ -1 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
$\Rightarrow\left[\begin{array}{lr}1 & -1 \\ -1 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] A \quad\left(\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}\right)$
$\Rightarrow\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right] A \quad\left(\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+\mathrm{R}_{1}\right)$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right] A \quad\left(\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}\right)$
$\therefore A^{-1}=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$

Question 14:

Find the inverse of each of the matrices, if it exists.

$$
\left.\begin{array}{ll}
{\left[\begin{array}{ll}
2 & 1 \\
4
\end{array}\right.} & 2
\end{array}\right]
$$

Answer
Let $A=\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]$
We know that $A=I A$
$\therefore\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\frac{1}{2} \mathrm{R}_{2}$, we have:
$\left[\begin{array}{ll}0 & 0 \\ 4 & 2\end{array}\right]=\left[\begin{array}{ll}1 & -\frac{1}{2} \\ 0 & 1\end{array}\right] A$

Now, in the above equation, we can see all the zeros in the first row of the matrix on the L.H.S.

Therefore, A^{-1} does not exist.

Question 16:

Find the inverse of each of the matrices, if it exists.

$$
\left[\begin{array}{llr}
1 & 3 & -2 \\
-3 & 0 & -5 \\
2 & 5 & 0
\end{array}\right]
$$

Answer
Let $A=\left[\begin{array}{llr}1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0\end{array}\right]$
We know that $A=I A$

$$
\therefore\left[\begin{array}{llr}
1 & 3 & -2 \\
-3 & 0 & -5 \\
2 & 5 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A
$$

Applying $R_{2} \rightarrow R_{2}+3 R_{1}$ and $R_{3} \rightarrow R_{3}-2 R_{1}$, we have:

$$
\left[\begin{array}{llc}
1 & 3 & -2 \\
0 & 9 & -11 \\
0 & -1 & 4
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right] A
$$

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+3 \mathrm{R}_{3}$ and $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+8 \mathrm{R}_{3}$, we have:

$$
\left[\begin{array}{lll}
1 & 0 & 10 \\
0 & 1 & 21 \\
0 & -1 & 4
\end{array}\right]=\left[\begin{array}{lll}
-5 & 0 & 3 \\
-13 & 1 & 8 \\
-2 & 0 & 1
\end{array}\right] A
$$

Applying $R_{3} \rightarrow R_{3}+R_{2}$, we have:

$$
\left[\begin{array}{lll}
1 & 0 & 10 \\
0 & 1 & 21 \\
0 & 0 & 25
\end{array}\right]=\left[\begin{array}{lll}
-5 & 0 & 3 \\
-13 & 1 & 8 \\
-15 & 1 & 9
\end{array}\right] A
$$

Applying $\mathrm{R}_{3} \rightarrow \frac{1}{25} \mathrm{R}_{3}$, we have:

$$
\left[\begin{array}{lll}
1 & 0 & 10 \\
0 & 1 & 21 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-5 & 0 & 3 \\
-13 & 1 & 8 \\
-\frac{3}{5} & \frac{1}{25} & \frac{9}{25}
\end{array}\right] A
$$

Applying $R_{1} \rightarrow R_{1}-10 R_{3}$, and $R_{2} \rightarrow R_{2}-21 R_{3}$, we have:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lcc}
1 & -\frac{2}{5} & -\frac{3}{5} \\
-\frac{2}{5} & \frac{4}{25} & \frac{11}{25} \\
-\frac{3}{5} & \frac{1}{25} & \frac{9}{25}
\end{array}\right] A} \\
& \therefore A^{-1}=\left[\begin{array}{ccc}
1 & -\frac{2}{5} & -\frac{3}{5} \\
-\frac{2}{5} & \frac{4}{25} & \frac{11}{25} \\
-\frac{3}{5} & \frac{1}{25} & \frac{9}{25}
\end{array}\right]
\end{aligned}
$$

Question 17:

Find the inverse of each of the matrices, if it exists.
$\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$
Answer
Let $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$
We know that $A=I A$
$\therefore\left[\begin{array}{lll}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $\mathrm{R}_{1} \rightarrow \frac{1}{2} \mathrm{R}_{1}$, we have:
$\left[\begin{array}{lll}1 & 0 & -\frac{1}{2} \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}\frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$

Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-5 \mathrm{R}_{1}$, we have:

$$
\left[\begin{array}{lll}
1 & 0 & -\frac{1}{2} \\
0 & 1 & \frac{5}{2} \\
0 & 1 & 3
\end{array}\right]=\left[\begin{array}{lll}
\frac{1}{2} & 0 & 0 \\
-\frac{5}{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A
$$

Applying $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}$, we have:

$$
\left[\begin{array}{lll}
1 & 0 & -\frac{1}{2} \\
0 & 1 & \frac{5}{2} \\
0 & 0 & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{lll}
\frac{1}{2} & 0 & 0 \\
-\frac{5}{2} & 1 & 0 \\
\frac{5}{2} & -1 & 1
\end{array}\right] A
$$

Applying $\mathrm{R}_{3} \rightarrow 2 \mathrm{R}_{3}$, we have:

$$
\left[\begin{array}{lll}
1 & 0 & -\frac{1}{2} \\
0 & 1 & \frac{5}{2} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
\frac{1}{2} & 0 & 0 \\
-\frac{5}{2} & 1 & 0 \\
5 & -2 & 2
\end{array}\right] A
$$

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\frac{1}{2} \mathrm{R}_{3}$, and $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\frac{5}{2} \mathrm{R}_{3}$, we have:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lrl}
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{array}\right] A} \\
& \therefore A^{-1}=\left[\begin{array}{lrl}
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{array}\right]
\end{aligned}
$$

Question 18:

Matrices A and B will be inverse of each other only if
A. $A B=B A$
C. $A B=0, B A=I$
B. $A B=B A=0$
D. $A B=B A=I$

Answer

Answer: D

We know that if A is a square matrix of order m, and if there exists another square matrix B of the same order m, such that $A B=B A=I$, then B is said to be the inverse of A. In this case, it is clear that A is the inverse of B.
Thus, matrices A and B will be inverses of each other only if $A B=B A=I$.

