$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$
$$\Rightarrow A' = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

Now, A + A' = I

$$\therefore \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} + \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 2\cos \alpha & 0 \\ 0 & 2\cos \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Comparing the corresponding elements of the two matrices, we have:

$$2\cos\alpha = 1$$

$$\Rightarrow \cos\alpha = \frac{1\pi}{2} = \cos\frac{\pi}{3}$$
$$\therefore \alpha = \frac{\pi}{3}$$

Exercise 3.4

Question 1:

Find the inverse of each of the matrices, if it exists.

$$\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$

Answer

Let
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$

$$\therefore A^{-1} = \begin{bmatrix} \frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{bmatrix}$$

Find the inverse of each of the matrices, if it exists.

 $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$

Answer

Let
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\begin{split} & \therefore \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A \\ \Rightarrow \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} A \qquad (\mathbf{R}_1 \to \mathbf{R}_1 - \mathbf{R}_2) \\ \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} A \qquad (\mathbf{R}_2 \to \mathbf{R}_2 - \mathbf{R}_1) \end{split}$$

$$\therefore A^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$$

Question 3:

Find the inverse of each of the matrices, if it exists.

 $\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$

Answer

Let
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$$

We know that A = IA

$$\begin{split} & \therefore \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A \\ \Rightarrow \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} A \qquad (R_2 \rightarrow R_2 - 2R_1) \\ \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix} A \qquad (R_1 \rightarrow R_1 - 3R_2) \\ \therefore A^{-1} = \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix}$$

Question 4:

Find the inverse of each of the matrices, if it exists.

$$\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$$

Answer

Let
$$A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$$

Question 5:

Find the inverse of each of the matrices, if it exists.

$$\begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}$$

Answer

Let
$$A = \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}$$

Question 6:

Find the inverse of each of the matrices, if it exists.

$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$

Answer

$$\operatorname{Let} A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$

Question 7:

Find the inverse of each of the matrices, if it exists.

3	1]
5	2

Answer

Let
$$A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$$

Find the inverse of each of the matrices, if it exists.

 $\begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}$

Answer

$$\operatorname{Let} A = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}$$

$$\therefore \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

$$\Rightarrow \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} A \qquad (R_1 \rightarrow R_1 - R_2)$$

$$\Rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -3 & 4 \end{bmatrix} A \qquad (R_2 \rightarrow R_2 - 3R_1)$$

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -5 \\ -3 & 4 \end{bmatrix} A \qquad (R_1 \rightarrow R_1 - R_2)$$

$$\therefore A^{-1} = \begin{bmatrix} 4 & -5 \\ -3 & 4 \end{bmatrix}$$

Question 9:

Find the inverse of each of the matrices, if it exists.

$$\begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix}$$

Answer

Let
$$A = \begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix}$$

We know that A = IA

$$\begin{array}{cccc} \vdots \begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A \\ \Rightarrow \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} A \qquad (R_1 \to R_1 - R_2) \\ \Rightarrow \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} A \qquad (R_2 \to R_2 - 2R_1) \\ \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -10 \\ -2 & 3 \end{bmatrix} A \qquad (R_1 \to R_1 - 3R_2)$$

$$\therefore A^{-1} = \begin{bmatrix} 7 & -10 \\ -2 & 3 \end{bmatrix}$$

Question 10:

Find the inverse of each of the matrices, if it exists.

$$\begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix}$$

Answer

Let
$$A = \begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix} = A \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Question 11:

Find the inverse of each of the matrices, if it exists.

$$\begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}$$

Answer

Let
$$A = \begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}$$

$$\therefore \begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix} = A \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} = A \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \quad (C_2 \to C_2 + 3C_1)$$

$$\Rightarrow \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} = A \begin{bmatrix} -2 & 3 \\ -1 & 1 \end{bmatrix} \quad (C_1 \to C_1 - C_2)$$

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = A \begin{bmatrix} -1 & 3 \\ -\frac{1}{2} & 1 \end{bmatrix} \quad (C_1 \to \frac{1}{2}C_1)$$

$$\therefore A^{-1} = \begin{bmatrix} -1 & 3 \\ -\frac{1}{2} & 1 \end{bmatrix}$$

Question 12:

Find the inverse of each of the matrices, if it exists.

$$\begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}$$

Answer

Let
$$A = \begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}$$

We know that A = IA

$$\begin{array}{ccc} \vdots \begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A \\ \Rightarrow \begin{bmatrix} 1 & -\frac{1}{2} \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{6} & 0 \\ 0 & 1 \end{bmatrix} A \qquad \left(R_1 \to \frac{1}{6} R_1 \right) \\ \Rightarrow \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{6} & 0 \\ \frac{1}{3} & 1 \end{bmatrix} A \qquad \left(R_2 \to R_2 + 2R_1 \right)$$

Now, in the above equation, we can see all the zeros in the second row of the matrix on the L.H.S.

Therefore, A^{-1} does not exist.

Question 13:

Find the inverse of each of the matrices, if it exists.

$$\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

Answer

Let
$$A = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

We know that A = IA

$$\begin{array}{ccc} \vdots \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A \\ \Rightarrow \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} A \qquad (R_1 \rightarrow R_1 + R_2) \\ \Rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} A \qquad (R_2 \rightarrow R_2 + R_1) \\ \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} A \qquad (R_1 \rightarrow R_1 + R_2)$$

$$\therefore A^{-1} = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$

Question 14:

Find the inverse of each of the matrices, if it exists.

 $\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$

Answer

Let $A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$

We know that A = IA

$$\therefore \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Applying $\begin{array}{c} \mathbf{R}_1 \rightarrow \mathbf{R}_1 - \frac{1}{2}\mathbf{R}_2 \\ \begin{bmatrix} 0 & 0 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & 1 \end{bmatrix} A$

Class XII

Now, in the above equation, we can see all the zeros in the first row of the matrix on the L.H.S.

Therefore, A^{-1} does not exist.

Question 16:

Find the inverse of each of the matrices, if it exists.

[1	3	-2
-3	0	-5
2	5	0

Answer

$$\operatorname{Let} A = \begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix}$$

We know that A = IA

	1	3	-2	1	0	0
:.	-3	0	-5 =	0	1	0
	2	5	0	0	0	1

Applying $R_2 \rightarrow R_2$ + $3R_1$ and $R_3 \rightarrow R_3$ – $2R_1,$ we have:

[1	3	-2] [1	0	0
0	9	-11 = 3	1	0 A
0	-1	4 🗕 🛛 –2	0	1

Applying $R_1 \rightarrow R_1 + 3R_3$ and $R_2 \rightarrow R_2 + 8R_3$, we have:

1	0	10	-5	0	3
0	1	21 =	-13	1	8 A
0	-1	4	-2	0	1

Applying $R_3 \rightarrow R_3 + R_2$, we have:

[1	0	10 [-5	0	3
0	1	21 = -13	1	8 A
0	0	25 –15	1	9

Applying $R_3 \rightarrow \frac{1}{25}R_3$, we have:

_					
[1	0	10 -5	0	3	
0	1	21 = -13	1	8 2	4
L0	0	1 _ 3	1	9	
		5	25	25	

Applying $R_1 \rightarrow R_1 - 10R_3$, and $R_2 \rightarrow R_2 - 21R_3$, we have:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{3}{5} \\ -\frac{2}{5} & \frac{4}{25} & \frac{11}{25} \\ -\frac{3}{5} & \frac{1}{25} & \frac{9}{25} \end{bmatrix} A$$
$$\therefore A^{-1} = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{3}{5} \\ -\frac{2}{5} & \frac{4}{25} & -\frac{3}{5} \\ -\frac{2}{5} & \frac{4}{25} & \frac{11}{25} \\ -\frac{3}{5} & \frac{1}{25} & \frac{9}{25} \end{bmatrix}$$

Question 17:

Find the inverse of each of the matrices, if it exists.

 $\begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$

Answer

	2	0	-1
Let $A =$	5	1	0
	0	1	3

We know that A = IA

	2	0	-1]	1	0	0
÷	5	1	0 =	0	1	0 A
	0	1	3	0	0	1

	$R_1 \rightarrow \frac{1}{2}R_1$	
Applying	2',	we have:

1	0	$-\frac{1}{2}$	$\frac{1}{2}$ 0	0
5	1	0 =	0 1	0 A
0	1	3	0 0	1
L				

Applying $R_2 \rightarrow R_2 - 5R_1$, we have:

$$\begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{5}{2} \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -\frac{5}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

Applying $R_3 \rightarrow R_3 - R_2$, we have:

1	0	$-\frac{1}{2}$ $\left[\frac{1}{2}\right]$	0	0
0	1	$\frac{5}{2} = -\frac{5}{2}$	1	0 A
0	0	$\frac{1}{2}$ $\frac{5}{2}$	-1	1

Applying $R_3 \rightarrow 2R_3$, we have:

1	0	$-\frac{1}{2}$	$\frac{1}{2}$	0	0	
0	1	$\frac{5}{2} =$	$-\frac{5}{2}$	1	0	A
0	0	1	5	-2	2	
L			-			

Applying $R_1 \rightarrow R_1 + \frac{1}{2}R_3$, and $R_2 \rightarrow R_2 - \frac{5}{2}R_3$, we have:

[1	0	0	3	-1	1]
0	1	0 =	-15	6	-5 A
lo	0	1	5	-2	2
	[3	-1	1		
$\therefore A^{-1}$:	= -15	6	-5		
	5	-2	2		

Question 18:

Matrices A and B will be inverse of each other only if

A. AB = BA **C.** AB = 0, BA = I **B.** AB = BA = 0 **D.** AB = BA = I
Answer

Answer: D

We know that if A is a square matrix of order m, and if there exists another square matrix B of the same order m, such that AB = BA = I, then B is said to be the inverse of A. In this case, it is clear that A is the inverse of B.

Thus, matrices A and B will be inverses of each other only if AB = BA = I.